首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Codon usage in the G+C-rich Streptomyces genome.   总被引:45,自引:0,他引:45  
F Wright  M J Bibb 《Gene》1992,113(1):55-65
The codon usage (CU) patterns of 64 genes from the Gram+ prokaryotic genus Streptomyces were analysed. Despite the extremely high overall G+C content of the Streptomyces genome (estimated at 0.74), individual genes varied in G+C content from 0.610 to 0.797, and had third codon position G+C contents (GC3s) that varied from 0.764 to 0.983. The variation in GC3s explains a significant proportion of the variation in CU patterns. This is consistent with an evolutionary model of the Streptomyces genome where biased mutation pressure has led to a high average G+C content with random variation about the mean, although the variation observed is greater than that expected from a simple binomial model. The only gene in the sample that can be confidently predicted to be highly expressed, EF-Tu of Streptomyces coelicolor A3(2) (GC3s = 0.927), shows a preference for a third position C in several of the four codon families, and for CGY and GGY for Arg and Gly codons, respectively (Y = pyrimidine); similar CU patterns are found in highly expressed genes of the G+C-rich Micrococcus luteus genome. It thus appears that codon usage in Streptomyces is determined predominantly by mutation bias, with weak translational selection operating only in highly expressed genes. We discuss the possible consequences of the extreme codon bias of Streptomyces and consider how it may have evolved. A set of CU tables is provided for use with computer programs that locate protein-coding regions.  相似文献   

2.
Rao Y  Wu G  Wang Z  Chai X  Nie Q  Zhang X 《DNA research》2011,18(6):499-512
Synonymous codons are used with different frequencies both among species and among genes within the same genome and are controlled by neutral processes (such as mutation and drift) as well as by selection. Up to now, a systematic examination of the codon usage for the chicken genome has not been performed. Here, we carried out a whole genome analysis of the chicken genome by the use of the relative synonymous codon usage (RSCU) method and identified 11 putative optimal codons, all of them ending with uracil (U), which is significantly departing from the pattern observed in other eukaryotes. Optimal codons in the chicken genome are most likely the ones corresponding to highly expressed transfer RNA (tRNAs) or tRNA gene copy numbers in the cell. Codon bias, measured as the frequency of optimal codons (Fop), is negatively correlated with the G + C content, recombination rate, but positively correlated with gene expression, protein length, gene length and intron length. The positive correlation between codon bias and protein, gene and intron length is quite different from other multi-cellular organism, as this trend has been only found in unicellular organisms. Our data displayed that regional G + C content explains a large proportion of the variance of codon bias in chicken. Stepwise selection model analyses indicate that G + C content of coding sequence is the most important factor for codon bias. It appears that variation in the G + C content of CDSs accounts for over 60% of the variation of codon bias. This study suggests that both mutation bias and selection contribute to codon bias. However, mutation bias is the driving force of the codon usage in the Gallus gallus genome. Our data also provide evidence that the negative correlation between codon bias and recombination rates in G. gallus is determined mostly by recombination-dependent mutational patterns.  相似文献   

3.

Background  

Pathogenicity islands (PAIs), distinct genomic segments of pathogens encoding virulence factors, represent a subgroup of genomic islands (GIs) that have been acquired by horizontal gene transfer event. Up to now, computational approaches for identifying PAIs have been focused on the detection of genomic regions which only differ from the rest of the genome in their base composition and codon usage. These approaches often lead to the identification of genomic islands, rather than PAIs.  相似文献   

4.
MOTIVATION: Some genomic islands contain horizontally transferred genes, which play critical roles in altering the genotypes and phenotypes of organisms, and horizontal gene transfer has been recognized as a universal event throughout bacterial evolution. A windowless method to display the distribution of genomic GC content, the cumulative GC profile, is proposed to identify genomic islands in genomes whose complete genome sequences are available. Two new indices are proposed to assess the codon usage bias and amino acid usage bias in genomic islands. RESULTS: A 211 kb genomic island (CGGI-1) has been identified in the genome of Corynebacterium glutamicum, and three genomic islands VVGI-1, VVGI-2 and VVGI-3, with lengths 167, 40 and 33 kb, respectively, have been identified in the genome of Vibrio vulnificus CMCP6 chromosome I. The CGGI-1 is flanked by two approximately 500 bp direct repeats, and utilizes a Val-tRNA as the integration site. For the VVGI-1 and VVGI-2, each has an integrase gene at 5' junction. All the identified genomic islands show unusual GC content, codon usage and amino acid usage, compared with the rest of the genomes. In addition, it is found that genomic islands are fairly homogenous in terms of GC content variation. An index, h, to quantify the homogeneity of GC content for genomic islands is proposed, and it is shown that h is less than 0.1 for all the genomic islands analyzed. The cumulative GC profile, as well as various indices to assess the codon usage bias, amino acid usage bias and homogeneity of the genomic islands, will be useful in the analysis of other genomes. AVAILABILITY: Programs used in this work and numerical results are available upon request.  相似文献   

5.
Selection on Silent Sites in the Rodent H3 Histone Gene Family   总被引:6,自引:0,他引:6       下载免费PDF全文
R. W. DeBry  W. F. Marzluff 《Genetics》1994,138(1):191-202
Selection promoting differential use of synonymous codons has been shown for several unicellular organisms and for Drosophila, but not for mammals. Selection coefficients operating on synonymous codons are likely to be extremely small, so that a very large effective population size is required for selection to overcome the effects of drift. In mammals, codon-usage bias is believed to be determined exclusively by mutation pressure, with differences between genes due to large-scale variation in base composition around the genome. The replication-dependent histone genes are expressed at extremely high levels during periods of DNA synthesis, and thus are among the most likely mammalian genes to be affected by selection on synonymous codon usage. We suggest that the extremely biased pattern of codon usage in the H3 genes is determined in part by selection. Silent site G + C content is much higher than expected based on flanking sequence G + C content, compared to other rodent genes with similar silent site base composition but lower levels of expression. Dinucleotide-mediated mutation bias does affect codon usage, but the affect is limited to the choice between G and C in some fourfold degenerate codons. Gene conversion between the two clusters of histone genes has not been an important force in the evolution of the H3 genes, but gene conversion appears to have had some effect within the cluster on chromosome 13.  相似文献   

6.
We present a simple method to detect pathogenicity islands and anomalous gene clusters in bacterial genomes. The method uses iterative discriminant analysis to define genomic regions that deviate most from the rest of the genome in three compositional criteria: G+C content, dinucleotide frequency and codon usage. Using this method, we identify many virulence-related gene islands, e.g. encoding protein secretion systems, adhesins, toxins, and other anomalous gene clusters, such as prophages. The program and the whole dataset, including the catalogs of genes in the detected anomalous segments, are publicly available at http://compbio.sibsnet.org/projects/pai-ida/. This program can be used in searching for virulence-related factors in newly sequenced bacterial genomes.  相似文献   

7.
伪狂犬病病毒基因编码区碱基组成与密码子使用偏差   总被引:6,自引:0,他引:6  
由于伪狂犬病病毒(PRV)中G C含量高达74%,至今尚没有一个毒株完成全基因组测序。对已知的68个PRV基因编码区序列碱基组成及密码子使用现象进行了统计分析,结果发现PRV基因中存在非常强的密码子使用偏差。所有68个PRV基因编码区密码子第三位总的G C含量为96.24%,其中UL48基因高达99.52%。PRV基因偏向于使用富含GC的密码子,特别是以C或G结尾的密码子。此外,还发现PRV中G C含量变化较大的UL48、UL40、UL14和IE180等基因附近正好与已知的PRV基因组复制起始区相对应。根据基因功能将PRV基因分为6类进行分析发现,基因功能相同或相近的基因其密码子使用模式相似,其中调节基因的同义密码子相对使用度(RSCU)与其他基因有显著差异,在调节基因中以C结尾的密码子的RSCU值远大于其他同义密码子。最后,对PRV基因氨基酸组成差异进行多元分析,发现不同功能的PRV基因在对应分析图上分布不同,表明PRV基因密码子使用模式可能与基因功能相关。  相似文献   

8.
ABSTRACT: BACKGROUND: Synonymous codon usage bias has typically been correlated with, and attributed to translational efficiency. However, there are other pressures on genomic sequence composition that can affect codon usage patterns such as mutational biases. This study provides an analysis of the codon usage patterns in Arabidopsis thaliana in relation to gene expression levels, codon volatility, mutational biases and selective pressures. RESULTS: We have performed synonymous codon usage and codon volatility analyses for all genes in the A. thaliana genome. In contrast to reports for species from other kingdoms, we find that neither codon usage nor volatility are correlated with selection pressure (as measured by dN/dS), nor with gene expression levels on a genome wide level. Our results show that codon volatility and usage are not synonymous, rather that they are correlated with the abundance of G and C at the third codon position (GC3). CONCLUSIONS: Our results indicate that while the A. thaliana genome shows evidence for synonymous codon usage bias, this is not related to the expression levels of its constituent genes. Neither codon volatility nor codon usage are correlated with expression levels or selective pressures but, because they are directly related to the composition of G and C at the third codon position, they are the result of mutational bias. Therefore, in A. thaliana codon volatility and usage do not result from selection for translation efficiency or protein functional shift as measured by positive selection.  相似文献   

9.
Analysis of synonymous codon usage pattern in the genome of a thermophilic cyanobacterium, Thermosynechococcus elongatus BP-1 using multivariate statistical analysis revealed a single major explanatory axis accounting for codon usage variation in the organism. This axis is correlated with the GC content at third base of synonymous codons (GC3s) in correspondence analysis taking T. elongatus genes. A negative correlation was observed between effective number of codons i.e. Nc and GC3s. Results suggested a mutational bias as the major factor in shaping codon usage in this cyanobacterium. In comparison to the lowly expressed genes, highly expressed genes of this organism possess significantly higher proportion of pyrimidine-ending codons suggesting that besides, mutational bias, translational selection also influenced codon usage variation in T. elongatus. Correspondence analysis of relative synonymous codon usage (RSCU) with A, T, G, C at third positions (A3s, T3s, G3s, C3s, respectively) also supported this fact and expression levels of genes and gene length also influenced codon usage. A role of translational accuracy was identified in dictating the codon usage variation of this genome. Results indicated that although mutational bias is the major factor in shaping codon usage in T. elongatus, factors like translational selection, translational accuracy and gene expression level also influenced codon usage variation.  相似文献   

10.
Possessing three circular chromosomes is a distinct genomic characteristic of Burkholderia cenocepacia AU 1054, a clinically important pathogen in cystic fibrosis. In this study, base composition, codon usage and functional role category were analyzed in the B. cenocepacia AU 1054 genome. Although no bias in the base and codon usage was detected between any two chromosomes, function differences did exist in the genes of each chromosome. Similar base composition and differential functional role categories indicated that genes on these three chromosomes were relatively stable and that a proper division of labor was established. Based on variations in the base or codon usage, four small gene clusters were observed in all of the genes. Multivariate analysis revealed that protein hydrophobicity played a predominant role in shaping base usage bias, while horizontal gene transfer and the gene expression level were the two most important factors that affected the codon usage bias. Interestingly, we also found that these gene clusters were correlated with different biological functions: (i) 45 pyrimidine-leading-codon preferred genes were predominantly involved in regulatory function; (ii) most drug resistance-related genes involved in 826 genes that coding for hydrophobic proteins; (iii) most of the 111 horizontal transfer genes were responsible for genomic plasticity; and (iv) 73 highly expressed genes (predicted by their codon adaptation index values) showed environmental adaptation to cystic fibrosis. Our results showed that genes with base or codon usage bias were affected by mutational pressure and natural selection, and their functions could contribute to drug assistance and transmissible activity in B. cenocepacia.  相似文献   

11.
Codon usage patterns in the slime mould Dictyostelium discoideum have been re-examined (a total of 58 genes have been analysed). Considering the extreme A + T-richness of this genome (G + C = 22%), there is a surprising degree of codon usage variation among genes. For example, G + C content at silent sites varies from less than 10% to greater than 30%. It was previously suggested [Warrick, H.M. and Spudich, J.A. (1988) Nucleic Acids Res. 16: 6617-6635] that highly expressed genes contain fewer 'optimal' codons than genes expressed at lower levels. However, it appears that the optimal codons were misidentified. Multivariate statistical analysis shows that the greatest variation among genes is in relative usage of a particular subset of codons (about one per amino acid), many of which are C-ending. We have identified these as optimal codons, since (i) their frequency is positively correlated with gene expression level, and (ii) there is a strong mutation bias in this genome towards A and T nucleotides. Thus, codon usage in D. discoideum can be explained by a balance between the forces of mutational bias and translational selection.  相似文献   

12.
Heger A  Ponting CP 《Genetics》2007,177(3):1337-1348
Codon usage bias in Drosophila melanogaster genes has been attributed to negative selection of those codons whose cellular tRNA abundance restricts rates of mRNA translation. Previous studies, which involved limited numbers of genes, can now be compared against analyses of the entire gene complements of 12 Drosophila species whose genome sequences have become available. Using large numbers (6138) of orthologs represented in all 12 species, we establish that the codon preferences of more closely related species are better correlated. Differences between codon usage biases are attributed, in part, to changes in mutational biases. These biases are apparent from the strong correlation (r = 0.92, P < 0.001) among these genomes' intronic G + C contents and exonic G + C contents at degenerate third codon positions. To perform a cross-species comparison of selection on codon usage, while accounting for changes in mutational biases, we calibrated each genome in turn using the codon usage bias indices of highly expressed ribosomal protein genes. The strength of translational selection was predicted to have varied between species largely according to their phylogeny, with the D. melanogaster group species exhibiting the strongest degree of selection.  相似文献   

13.
The Horizontal Gene Transfer DataBase (HGT-DB) is a genomic database that includes statistical parameters such as G+C content, codon and amino-acid usage, as well as information about which genes deviate in these parameters for prokaryotic complete genomes. Under the hypothesis that genes from distantly related species have different nucleotide compositions, these deviated genes may have been acquired by horizontal gene transfer. The current version of the database contains 88 bacterial and archaeal complete genomes, including multiple chromosomes and strains. For each genome, the database provides statistical parameters for all the genes, as well as averages and standard deviations of G+C content, codon usage, relative synonymous codon usage and amino-acid content. It also provides information about correspondence analyses of the codon usage, plus lists of extraneous group of genes in terms of G+C content and lists of putatively acquired genes. With this information, researchers can explore the G+C content and codon usage of a gene when they find incongruities in sequence-based phylogenetic trees. A search engine that allows searches for gene names or keywords for a specific organism is also available. HGT-DB is freely accessible at http://www.fut.es/~debb/HGT.  相似文献   

14.
Summary This paper reports on the relationship between the number of silent differences and the codon usage changes in the lineages leading to human and rat. Examination of 102 pairs of homologous genes gives rise to four main conclusions: (1) We have previously demonstrated the existence of a codon usage change (called the minor shift) between human and rat; this was confirmed here with a larger sample. For genes with extreme C+G frequencies, the C+G level in the third codon position is less extreme in rat than in human. (2) Protein similarity and percentage of positive differences are the two main factors that discriminate homologous genes when characterized by differences between rat and human. By definition, positive differences result from silent changes between A or T and C or G with a direction implying a C+G content variation in the same direction as the overall gene variation. (3) For genes showing both codon usage change and low protein similarity, a majority of amino acid replacements contributes to C+G level variation in positions I and II in the same direction as the variation in position III. This is thus a new example of protein evolution due to constraints acting at the DNA level. (4) In heavy isochores (high C+G content) no direct correlation exists between codon usage change (measured by the dissymmetry of differences) and silent dissimilarity. In light isochores the opposite situation is observed: modification of codon usage is associated with a high synonymous dissimilarity. This result shows that, in some cases, modification of constraints acting at the DNA level could accelerate divergence between genomes.  相似文献   

15.
There has been significant progress in understanding the process of protein translation in recent years. One of the best examples is the discovery of usage bias in successive synonymous codons and its role in eukaryotic translation efficiency. We observed here a similar type of bias in the other two life domains, bacteria and archaea, although the bias strength was much smaller than in eukaryotes. Among 136 prokaryotic genomes, 98 were found to have significant bias from random use of successive synonymous codons with Z scores larger than three. Furthermore, significantly different bias strengths were found between prokaryotes grouped by various genomic or biochemical characteristics. Interestingly, the bias strength measured by a general Z score could be fitted well (R = 0.83, P < 10−15) by three genomic variables: genome size, G + C content, and tRNA gene number based on multiple linear regression. A different distribution of synonymous codon pairs between protein-coding genes and intergenic sequences suggests that bias is caused by translation selection. The present results indicate that protein translation is tuned by codon (pair) usage, and the intensity of the regulation is associated with genome size, tRNA gene number, and G + C content.  相似文献   

16.
The codon usage in the Vibrio cholerae genome is analyzed in this paper. Although there are much more genes on the chromosome 1 than on chromosome 2, the codon usage patterns of genes on the two chromosomes are quite similar, indicating that the two chromosomes may have coexisted in the same cell for a very long history. Unlike the base frequency pattern observed in other genomes, the G+C content at the third codon position of the V. cholerae genome varies in a rather small interval. The most notable feature of codon usage of V. cholerae genome is that there is a fraction of genes show significant bias in base choice at the second codon position. The 2,006 known genes can be classified into two clusters according to the base frequencies at this position. The smaller cluster contains 227 genes, most of which code for proteins involved in transport and binding functions. The encoding products of these genes have significant bias in amino acids composition as compared with other genes. The codon usage patterns for the 1,836 function unknown ORFs are also analyzed, which is useful to study their functions.  相似文献   

17.
The usage of alternative synonymous codons in the apicomplexan Cryptosporidium parvum has been investigated. A data set of 54 genes was analysed. Overall, A- and U-ending codons predominate, as expected in an A+T-rich genome. Two trends of codon usage variation among genes were identified using correspondence analysis. The primary trend is in the extent of usage of a subset of presumably translationally optimal codons, that are used at significantly higher frequencies in genes expected to be expressed at high levels. Fifteen of the 18 codons identified as optimal are more G+C-rich than the otherwise common codons, so that codon selection associated with translation opposes the general mutation bias. Among 40 genes with lower frequencies of these optimal codons, a secondary trend in G+C content was identified. In these genes, G+C content at synonymously variable third positions of codons is correlated with that in 5' and 3' flanking sequences, indicative of regional variation in G+C content, perhaps reflecting regional variation in mutational biases.  相似文献   

18.
双孢蘑菇Agaricus bisporus是世界上最广泛栽培的食用菌之一。本研究通过分析双孢蘑菇基因组密码子使用偏性,探讨密码子偏性的影响因素及其对基因表达的影响。以双孢蘑菇基因组和转录组数据为依据,分析了双孢蘑菇基因组基因、高表达基因(high expression gene,HEG)和低表达基因(low expression gene,LEG)的密码子使用性。发现双孢蘑菇基因组编码基因平均GC含量为49.08%,T3s值(35.59%)最高,平均ENC值偏高,多数基因表达潜力较低。共鉴定出14个最优密码子,均以C或T结尾,并且遵循密码子中嘌呤和嘧啶使用的均衡性原则。高表达基因具有更强的密码子偏性,进化过程中受到基因突变和自然选择等多种因素影响。基因表达与G/C碱基含量和CAI值呈极显著正相关。高表达基因编码了多种与真菌生长发育相关的蛋白和酶类。研究结果明确了双孢蘑菇基因密码子的使用偏性,为双孢蘑菇转基因育种和品质改良提供了参考。  相似文献   

19.
Codon usages in different gene classes of the Escherichia coli genome   总被引:3,自引:0,他引:3  
A new measure for assessing codon bias of one group of genes with respect to a second group of genes is introduced. In this formulation, codon bias correlations for Escherichia coli genes are evaluated for level of expression, for contrasts along genes, for genes in different 200 kb (or longer) contigs around the genome, for effects of gene size, for variation over different function classes, for codon bias in relation to possible lateral transfer and for dicodon bias for some gene classes. Among the function classes, codon biases of ribosomal proteins are the most deviant from the codon frequencies of the average E. coli gene. Other classes of ‘highly expressed genes’ (e.g. amino acyl tRNA synthetases, chaperonins, modification genes essential to translation activities) show less extreme codon biases. Consistently for genes with experimentally determined expression rates in the exponential growth phase, those of highest molar abundances are more deviant from the average gene codon frequencies and are more similar in codon frequencies to the average ribosomal protein gene. Independent of gene size, the codon biases in the 5′ third of genes deviate by more than a factor of two from those in the middle and 3′ thirds. In this context, there appear to be conflicting selection pressures imposed by the constraints of ribosomal binding, or more generally the early phase of protein synthesis (about the first 50 codons) may be more biased than the complete nascent polypeptide. In partitioning the E. coli genome into 10 equal lengths, pronounced differences in codon site 3 G+C frequencies accumulate. Genes near to oriC have 5% greater codon site 3 G+C frequencies than do genes from the ter region. This difference also is observed between small (100–300 codons) and large (>800 codons) genes. This result contrasts with that for eukaryotic genomes (including human, Caenorhabditis elegans and yeast) where long genes tend to have site 3 more AT rich than short genes. Many of the above results are special for E. coli genes and do not apply to genes of most bacterial genomes. A gene is defined as alien (possibly horizontally transferred) if its codon bias relative to the average gene exceeds a high threshold and the codon bias relative to ribosomal proteins is also appropriately high. These are identified, including four clusters (operons). The bulk of these genes have no known function.  相似文献   

20.
Abstract The G + C content in a sequenced region of 27 kb of the Nocardia lactamdurans genome is 70.4 and 70.6% in the 14 characterized ORFs, showing an extreme average G + C content (94.9%) in the third codon position. The codon usage parameters of the N. lactamdurans genes studied are closely related and depart weakly from the values of other species of the genus Nocardia . The homologies and differences in the codon usage between N. lactamdurans and Streptomyces sp. or other high-G + C Gram-positive genera are analysed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号