首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Rao Y  Wu G  Wang Z  Chai X  Nie Q  Zhang X 《DNA research》2011,18(6):499-512
Synonymous codons are used with different frequencies both among species and among genes within the same genome and are controlled by neutral processes (such as mutation and drift) as well as by selection. Up to now, a systematic examination of the codon usage for the chicken genome has not been performed. Here, we carried out a whole genome analysis of the chicken genome by the use of the relative synonymous codon usage (RSCU) method and identified 11 putative optimal codons, all of them ending with uracil (U), which is significantly departing from the pattern observed in other eukaryotes. Optimal codons in the chicken genome are most likely the ones corresponding to highly expressed transfer RNA (tRNAs) or tRNA gene copy numbers in the cell. Codon bias, measured as the frequency of optimal codons (Fop), is negatively correlated with the G + C content, recombination rate, but positively correlated with gene expression, protein length, gene length and intron length. The positive correlation between codon bias and protein, gene and intron length is quite different from other multi-cellular organism, as this trend has been only found in unicellular organisms. Our data displayed that regional G + C content explains a large proportion of the variance of codon bias in chicken. Stepwise selection model analyses indicate that G + C content of coding sequence is the most important factor for codon bias. It appears that variation in the G + C content of CDSs accounts for over 60% of the variation of codon bias. This study suggests that both mutation bias and selection contribute to codon bias. However, mutation bias is the driving force of the codon usage in the Gallus gallus genome. Our data also provide evidence that the negative correlation between codon bias and recombination rates in G. gallus is determined mostly by recombination-dependent mutational patterns.  相似文献   

2.
Analysis of synonymous codon usage pattern in the genome of a thermophilic cyanobacterium, Thermosynechococcus elongatus BP-1 using multivariate statistical analysis revealed a single major explanatory axis accounting for codon usage variation in the organism. This axis is correlated with the GC content at third base of synonymous codons (GC3s) in correspondence analysis taking T. elongatus genes. A negative correlation was observed between effective number of codons i.e. Nc and GC3s. Results suggested a mutational bias as the major factor in shaping codon usage in this cyanobacterium. In comparison to the lowly expressed genes, highly expressed genes of this organism possess significantly higher proportion of pyrimidine-ending codons suggesting that besides, mutational bias, translational selection also influenced codon usage variation in T. elongatus. Correspondence analysis of relative synonymous codon usage (RSCU) with A, T, G, C at third positions (A3s, T3s, G3s, C3s, respectively) also supported this fact and expression levels of genes and gene length also influenced codon usage. A role of translational accuracy was identified in dictating the codon usage variation of this genome. Results indicated that although mutational bias is the major factor in shaping codon usage in T. elongatus, factors like translational selection, translational accuracy and gene expression level also influenced codon usage variation.  相似文献   

3.
Palidwor GA  Perkins TJ  Xia X 《PloS one》2010,5(10):e13431

Background

In spite of extensive research on the effect of mutation and selection on codon usage, a general model of codon usage bias due to mutational bias has been lacking. Because most amino acids allow synonymous GC content changing substitutions in the third codon position, the overall GC bias of a genome or genomic region is highly correlated with GC3, a measure of third position GC content. For individual amino acids as well, G/C ending codons usage generally increases with increasing GC bias and decreases with increasing AT bias. Arginine and leucine, amino acids that allow GC-changing synonymous substitutions in the first and third codon positions, have codons which may be expected to show different usage patterns.

Principal Findings

In analyzing codon usage bias in hundreds of prokaryotic and plant genomes and in human genes, we find that two G-ending codons, AGG (arginine) and TTG (leucine), unlike all other G/C-ending codons, show overall usage that decreases with increasing GC bias, contrary to the usual expectation that G/C-ending codon usage should increase with increasing genomic GC bias. Moreover, the usage of some codons appears nonlinear, even nonmonotone, as a function of GC bias. To explain these observations, we propose a continuous-time Markov chain model of GC-biased synonymous substitution. This model correctly predicts the qualitative usage patterns of all codons, including nonlinear codon usage in isoleucine, arginine and leucine. The model accounts for 72%, 64% and 52% of the observed variability of codon usage in prokaryotes, plants and human respectively. When codons are grouped based on common GC content, 87%, 80% and 68% of the variation in usage is explained for prokaryotes, plants and human respectively.

Conclusions

The model clarifies the sometimes-counterintuitive effects that GC mutational bias can have on codon usage, quantifies the influence of GC mutational bias and provides a natural null model relative to which other influences on codon bias may be measured.  相似文献   

4.
Codon usage patterns in the slime mould Dictyostelium discoideum have been re-examined (a total of 58 genes have been analysed). Considering the extreme A + T-richness of this genome (G + C = 22%), there is a surprising degree of codon usage variation among genes. For example, G + C content at silent sites varies from less than 10% to greater than 30%. It was previously suggested [Warrick, H.M. and Spudich, J.A. (1988) Nucleic Acids Res. 16: 6617-6635] that highly expressed genes contain fewer 'optimal' codons than genes expressed at lower levels. However, it appears that the optimal codons were misidentified. Multivariate statistical analysis shows that the greatest variation among genes is in relative usage of a particular subset of codons (about one per amino acid), many of which are C-ending. We have identified these as optimal codons, since (i) their frequency is positively correlated with gene expression level, and (ii) there is a strong mutation bias in this genome towards A and T nucleotides. Thus, codon usage in D. discoideum can be explained by a balance between the forces of mutational bias and translational selection.  相似文献   

5.
The usage of alternative synonymous codons in the apicomplexan Cryptosporidium parvum has been investigated. A data set of 54 genes was analysed. Overall, A- and U-ending codons predominate, as expected in an A+T-rich genome. Two trends of codon usage variation among genes were identified using correspondence analysis. The primary trend is in the extent of usage of a subset of presumably translationally optimal codons, that are used at significantly higher frequencies in genes expected to be expressed at high levels. Fifteen of the 18 codons identified as optimal are more G+C-rich than the otherwise common codons, so that codon selection associated with translation opposes the general mutation bias. Among 40 genes with lower frequencies of these optimal codons, a secondary trend in G+C content was identified. In these genes, G+C content at synonymously variable third positions of codons is correlated with that in 5' and 3' flanking sequences, indicative of regional variation in G+C content, perhaps reflecting regional variation in mutational biases.  相似文献   

6.
双孢蘑菇Agaricus bisporus是世界上最广泛栽培的食用菌之一。本研究通过分析双孢蘑菇基因组密码子使用偏性,探讨密码子偏性的影响因素及其对基因表达的影响。以双孢蘑菇基因组和转录组数据为依据,分析了双孢蘑菇基因组基因、高表达基因(high expression gene,HEG)和低表达基因(low expression gene,LEG)的密码子使用性。发现双孢蘑菇基因组编码基因平均GC含量为49.08%,T3s值(35.59%)最高,平均ENC值偏高,多数基因表达潜力较低。共鉴定出14个最优密码子,均以C或T结尾,并且遵循密码子中嘌呤和嘧啶使用的均衡性原则。高表达基因具有更强的密码子偏性,进化过程中受到基因突变和自然选择等多种因素影响。基因表达与G/C碱基含量和CAI值呈极显著正相关。高表达基因编码了多种与真菌生长发育相关的蛋白和酶类。研究结果明确了双孢蘑菇基因密码子的使用偏性,为双孢蘑菇转基因育种和品质改良提供了参考。  相似文献   

7.
Phytophthora is a genus entirely comprised of destructive plant pathogens. It belongs to the Stramenopila, a unique branch of eukaryotes, phylogenetically distinct from plants, animals, or fungi. Phytophthora genes show a strong preference for usage of codons ending with G or C (high GC3). The presence of high GC3 in genes can be utilized to differentiate coding regions from noncoding regions in the genome. We found that both selective pressure and mutation bias drive codon bias in Phytophthora. Indicative for selection pressure is the higher GC3 value of highly expressed genes in different Phytophthora species. Lineage specific GC increase of noncoding regions is reminiscent of whole-genome mutation bias, whereas the elevated Phytophthora GC3 is primarily a result of translation efficiency-driven selection. Heterogeneous retrotransposons exist in Phytophthora genomes and many of them vary in their GC content. Interestingly, the most widespread groups of retroelements in Phytophthora show high GC3 and a codon bias that is similar to host genes. Apparently, selection pressure has been exerted on the retroelement’s codon usage, and such mimicry of host codon bias might be beneficial for the propagation of retrotransposons. Reviewing Editor: Dr. Yves van de Peer  相似文献   

8.
Selection on Silent Sites in the Rodent H3 Histone Gene Family   总被引:6,自引:0,他引:6       下载免费PDF全文
R. W. DeBry  W. F. Marzluff 《Genetics》1994,138(1):191-202
Selection promoting differential use of synonymous codons has been shown for several unicellular organisms and for Drosophila, but not for mammals. Selection coefficients operating on synonymous codons are likely to be extremely small, so that a very large effective population size is required for selection to overcome the effects of drift. In mammals, codon-usage bias is believed to be determined exclusively by mutation pressure, with differences between genes due to large-scale variation in base composition around the genome. The replication-dependent histone genes are expressed at extremely high levels during periods of DNA synthesis, and thus are among the most likely mammalian genes to be affected by selection on synonymous codon usage. We suggest that the extremely biased pattern of codon usage in the H3 genes is determined in part by selection. Silent site G + C content is much higher than expected based on flanking sequence G + C content, compared to other rodent genes with similar silent site base composition but lower levels of expression. Dinucleotide-mediated mutation bias does affect codon usage, but the affect is limited to the choice between G and C in some fourfold degenerate codons. Gene conversion between the two clusters of histone genes has not been an important force in the evolution of the H3 genes, but gene conversion appears to have had some effect within the cluster on chromosome 13.  相似文献   

9.
According to population genetics models, genomic regions with lower crossing-over rates are expected to experience less effective selection because of Hill-Robertson interference (HRi). The effect of genetic linkage is thought to be particularly important for a selection of weak intensity such as selection affecting codon usage. Consistent with this model, codon bias correlates positively with recombination rate in Drosophila melanogaster and Caenorhabditis elegans. However, in these species, the G+C content of both noncoding DNA and synonymous sites correlates positively with recombination, which suggests that mutation patterns and recombination are associated. To remove this effect of mutation patterns on codon bias, we used the synonymous sites of lowly expressed genes that are expected to be effectively neutral sites. We measured the differences between codon biases of highly expressed genes and their lowly expressed neighbors. In D. melanogaster we find that HRi weakly reduces selection on codon usage of genes located in regions of very low recombination; but these genes only comprise 4% of the total. In C. elegans we do not find any evidence for the effect of recombination on selection for codon bias. Computer simulations indicate that HRi poorly enhances codon bias if the local recombination rate is greater than the mutation rate. This prediction of the model is consistent with our data and with the current estimate of the mutation rate in D. melanogaster. The case of C. elegans, which is highly self-fertilizing, is discussed. Our results suggest that HRi is a minor determinant of variations in codon bias across the genome.  相似文献   

10.
To study the possible codon usage and base composition variation in the bacteriophages, fourteen mycobacteriophages were used as a model system here and both the parameters in all these phages and their plating bacteria, M. smegmatis had been determined and compared. As all the organisms are GC-rich, the GC contents at third codon positions were found in fact higher than the second codon positions as well as the first + second codon positions in all the organisms indicating that directional mutational pressure is strongly operative at the synonymous third codon positions. Nc plot indicates that codon usage variation in all these organisms are governed by the forces other than compositional constraints. Correspondence analysis suggests that: (i) there are codon usage variation among the genes and genomes of the fourteen mycobacteriophages and M. smegmatis, i.e., codon usage patterns in the mycobacteriophages is phage-specific but not the M. smegmatis-specific; (ii) synonymous codon usage patterns of Barnyard, Che8, Che9d, and Omega are more similar than the rest mycobacteriophages and M. smegmatis; (iii) codon usage bias in the mycobacteriophages are mainly determined by mutational pressure; and (iv) the genes of comparatively GC rich genomes are more biased than the GC poor genomes. Translational selection in determining the codon usage variation in highly expressed genes can be invoked from the predominant occurrences of C ending codons in the highly expressed genes. Cluster analysis based on codon usage data also shows that there are two distinct branches for the fourteen mycobacteriophages and there is codon usage variation even among the phages of each branch.  相似文献   

11.
A gene in a genome is defined as putative alien (pA) if its codon usage difference from the average gene exceeds a high threshold and codon usage differences from ribosomal protein genes, chaperone genes and protein-synthesis-processing factors are also high. pA gene clusters in bacterial genomes are relevant for detecting genomic islands (GIs), including pathogenicity islands (PAIs). Four other analyses appropriate to this task are G+C genome variation (the standard method); genomic signature divergences (dinucleotide bias); extremes of codon bias; and anomalies of amino acid usage. For example, the cagA domain of Helicobacter pylori is highly deviant in its genome signature and codon bias from the rest of the genome. Using these methods we can detect two potential PAIs in the Neisseria meningitidis genome, which contain hemagglutinin and/or hemolysin-related genes. Additionally, G+C variation and genome signature differences of the Mycobacterium tuberculosis genome indicate two pA gene clusters.  相似文献   

12.
Burkholderia pseudomallei is a recognized biothreat agent and the causative agent of melioidosis. Codon usage biases of all protein-coding genes (length greater than or equal to 300 bp) from the complete genome of B. pseudomallei K96243 have been analyzed. As B. pseudomallei is a GC-rich organism (68.5%), overall codon usage data analysis indicates that indeed codons ending in G and/or C are predominant in this organism. But multivariate statistical analysis indicates that there is a single major trend in the codon usage variation among the genes in this organism, which has a strong positively correlation with the expressivities of the genes. The majority of the lowly expressed genes are scattered towards the negative end of the major axis whereas the highly expressed genes are clustered towards the positive end. At the same time, from the results that there were two significant correlations between axis 1 coordinates and the GC, GC3s content at silent sites of each sequence, and clearly significant negatively correlations between the ‘Effective Number of Codons’ values and GC, GC3s content, we inferred that codon usage bias was affected by gene nucleotide composition also. In addition, some other factors such as the lengths of the genes as well as the hydrophobicity of genes also influence the codon usage variation among the genes in this organism in a minor way. At the same time, notably, 21 codons have been defined as ‘optimal codons’ of the B. pseudomallei. In summary, our work have provided a basic understanding of the mechanisms for codon usage bias and some more useful information for improving the expression of target genes in vivo and in vitro. Sheng Zhao and Qin Zhang contributed equally to this work.  相似文献   

13.
伪狂犬病病毒基因编码区碱基组成与密码子使用偏差   总被引:6,自引:0,他引:6  
由于伪狂犬病病毒(PRV)中G C含量高达74%,至今尚没有一个毒株完成全基因组测序。对已知的68个PRV基因编码区序列碱基组成及密码子使用现象进行了统计分析,结果发现PRV基因中存在非常强的密码子使用偏差。所有68个PRV基因编码区密码子第三位总的G C含量为96.24%,其中UL48基因高达99.52%。PRV基因偏向于使用富含GC的密码子,特别是以C或G结尾的密码子。此外,还发现PRV中G C含量变化较大的UL48、UL40、UL14和IE180等基因附近正好与已知的PRV基因组复制起始区相对应。根据基因功能将PRV基因分为6类进行分析发现,基因功能相同或相近的基因其密码子使用模式相似,其中调节基因的同义密码子相对使用度(RSCU)与其他基因有显著差异,在调节基因中以C结尾的密码子的RSCU值远大于其他同义密码子。最后,对PRV基因氨基酸组成差异进行多元分析,发现不同功能的PRV基因在对应分析图上分布不同,表明PRV基因密码子使用模式可能与基因功能相关。  相似文献   

14.
The genomes of the spirochaetes Borrelia burgdorferi and Treponema pallidum show strong strand-specific skews in nucleotide composition, with the leading strand in replication being richer in G and T than the lagging strand in both species. This mutation bias results in codon usage and amino acid composition patterns that are significantly different between genes encoded on the two strands, in both species. There are also substantial differences between the species, with T.pallidum having a much higher G+C content than B. burgdorferi. These changes in amino acid and codon compositions represent neutral sequence change that has been caused by strong strand- and species-specific mutation pressures. Genes that have been relocated between the leading and lagging strands since B. burgdorferi and T.pallidum diverged from a common ancestor now show codon and amino acid compositions typical of their current locations. There is no evidence that translational selection operates on codon usage in highly expressed genes in these species, and the primary influence on codon usage is whether a gene is transcribed in the same direction as replication, or opposite to it. The dnaA gene in both species has codon usage patterns distinctive of a lagging strand gene, indicating that the origin of replication lies downstream of this gene, possibly within dnaN. Our findings strongly suggest that gene-finding algorithms that ignore variability within the genome may be flawed.  相似文献   

15.
Heger A  Ponting CP 《Genetics》2007,177(3):1337-1348
Codon usage bias in Drosophila melanogaster genes has been attributed to negative selection of those codons whose cellular tRNA abundance restricts rates of mRNA translation. Previous studies, which involved limited numbers of genes, can now be compared against analyses of the entire gene complements of 12 Drosophila species whose genome sequences have become available. Using large numbers (6138) of orthologs represented in all 12 species, we establish that the codon preferences of more closely related species are better correlated. Differences between codon usage biases are attributed, in part, to changes in mutational biases. These biases are apparent from the strong correlation (r = 0.92, P < 0.001) among these genomes' intronic G + C contents and exonic G + C contents at degenerate third codon positions. To perform a cross-species comparison of selection on codon usage, while accounting for changes in mutational biases, we calibrated each genome in turn using the codon usage bias indices of highly expressed ribosomal protein genes. The strength of translational selection was predicted to have varied between species largely according to their phylogeny, with the D. melanogaster group species exhibiting the strongest degree of selection.  相似文献   

16.
Codon usage and base composition in sequences from the A + T-rich genome ofRickettsia prowazekii, a member of the alpha Proteobacteria, have been investigated. Synonymous codon usage patterns are roughly similar among genes, even though the data set includes genes expected to be expressed at very different levels, indicating that translational selection has been ineffective in this species. However, multivariate statistical analysis differentiates genes according to their G + C contents at the first two codon positions. To study this variation, we have compared the amino acid composition patterns of 21R. prowazekii proteins with that of a homologous set of proteins fromEscherichia coli. The analysis shows that individual genes have been affected by biased mutation rates to very different extents: genes encoding proteins highly conserved among other species being the least affected. Overall, protein coding and intergenic spacer regions have G + C content values of 32.5% and 21.4%, respectively. Extrapolation from these values suggests thatR. prowazekii has around 800 genes and that 60–70% of the genome may be coding. Correspondence to: S.G.E. Andersson  相似文献   

17.
Among a sample of 39 Geodia cydonium (Demospongiae, Porifera) genes, with an average G + C content of 51.2%, extensive structural heterogeneity and considerable variations in synonymous codon usage were found. The G + C content of coding sequences and G + C content at silent codon positions (GC3S) varied from 42.4 to 59.2% and from 35.6 to 76.5%, respectively. Correspondence analysis of 39 genes revealed that putative highly expressed genes preferentially use a limited subset of codons, which were therefore defined as preferred codons in G. cydonium . A total of 22 preferred codons for 18 amino acids with synonyms in codons were identified and they all (with one exception) end with C or G. Among these codons there are also C- and G-ending codons which were previously identified as codons optimal for translation in a variety of eukaryotes, including metazoans and plants. The bias in synonymous codon usage in putative highly expressed G. cydonium genes is moderate, indicating that these genes are not shaped under strong natural selection. We postulate that the preference for C- and G-ending codons was already established in the ancestor of all Metazoa, including also sponges. This ancestor most probably also had a G + C rich genome. The selection toward C- and G-ending codons has been largely conserved throughout eukaryote evolution; exceptions are, for example, mammals for which strong mutational biases caused switches from that rule.  相似文献   

18.
为确定澳洲坚果光壳种(Macadamia integrifolia Maiden&Betche)叶绿体基因组密码子偏好性形成的主要影响因素,本研究通过其叶绿体基因组的51条蛋白编码序列,系统分析其密码子的使用模式及其特征.密码子偏好性参数分析结果显示,叶绿体基因密码子3位碱基的GC含量次序为GC1>GC2>GC3;有效...  相似文献   

19.
Codon usage in Aspergillus nidulans.   总被引:17,自引:0,他引:17  
Summary Synonymous codon usage in genes from the ascomycete (filamentous) fungus Aspergillus nidulans has been investigated. A total of 45 gene sequences has been analysed. Multivariate statistical analysis has been used to identify a single major trend among genes. At one end of this trend are lowly expressed genes, whereas at the other extreme lie genes known or expected to be highly expressed. The major trend is from nearly random codon usage (in the lowly expressed genes) to codon usage that is highly biased towards a set of 19–20 optimal codons. The G+C content of the A. nidulans genome is close to 50%, indicating little overall mutational bias, and so the codon usage of lowly expressed genes is as expected in the absence of selection pressure at silent sites. Most of the optimal codons are C- or G-ending, making highly expressed genes more G+C-rich at silent sites.  相似文献   

20.

Background

Synonymous codon usage varies widely between genomes, and also between genes within genomes. Although there is now a large body of data on variations in codon usage, it is still not clear if the observed patterns reflect the effects of positive Darwinian selection acting at the level of translational efficiency or whether these patterns are due simply to the effects of mutational bias. In this study, we have included both intra-genomic and inter-genomic comparisons of codon usage. This allows us to distinguish more efficiently between the effects of nucleotide bias and translational selection.

Results

We show that there is an extreme degree of heterogeneity in codon usage patterns within the rice genome, and that this heterogeneity is highly correlated with differences in nucleotide content (particularly GC content) between the genes. In contrast to the situation observed within the rice genome, Arabidopsis genes show relatively little variation in both codon usage and nucleotide content. By exploiting a combination of intra-genomic and inter-genomic comparisons, we provide evidence that the differences in codon usage among the rice genes reflect a relatively rapid evolutionary increase in the GC content of some rice genes. We also noted that the degree of codon bias was negatively correlated with gene length.

Conclusion

Our results show that mutational bias can cause a dramatic evolutionary divergence in codon usage patterns within a period of approximately two hundred million years.The heterogeneity of codon usage patterns within the rice genome can be explained by a balance between genome-wide mutational biases and negative selection against these biased mutations. The strength of the negative selection is proportional to the length of the coding sequences. Our results indicate that the large variations in synonymous codon usage are not related to selection acting on the translational efficiency of synonymous codons.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号