首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
滇重楼地上部分的配糖体   总被引:13,自引:0,他引:13  
从滇重楼ParispolyphyllaSm.var.yunnanensis(Fr.)H-M,地上部分,分离出4个微量的配糖体,经光谱分析和化学降解证明其化学结构分别为25S-异钮替皂甙元-3-O-α-L-鼠李吡喃糖基(1→2)[α-L-鼠李吡喃糖基(1→4)]-β-D-葡萄吡喃甙(A),26-β-D-葡萄吡喃糖基-纽替皂甙元-3-O-α-L-鼠李吡喃糖基(1→2)[α-L-鼠李吡喃糖基(1→4)-β-D-葡萄吡喃糖甙(B),山奈酚-3-O-β-D-葡萄吡喃糖基(1→6)-β-D-葡萄吡喃甙(C),7-O-α-L-鼠李吡喃糖基-山奈酚-3-O-β-D-葡萄吡喃糖基(1→6)-β-D-葡萄糖甙(D)。  相似文献   

2.
蜘蛛抱蛋根茎中的甾体皂甙   总被引:6,自引:1,他引:5  
从蜘蛛抱蛋(AspidistraelatiorBl.)根茎的甲醇提取物中分离得两个甾体皂甙。经波谱解析及化学降解证明其化学结构分别为薯芋皂甙元一3一O-[B-D-葡萄吡喃糖基(1→2)]-[B-D-木吡喃糖基(1→3)]-B-D-葡萄吡喃糖基(1→4)-B-D一半乳吡喃糖甙(即蜘蛛抱蛋甙aspidistrin)及新静诺特皂甙元-3-O-[B-D-葡萄吡喃糖基(1→2)]~[B-D-木吡喃糖基(1→3)-B-D-葡萄吡喃糖基(1→4)一B-D-半乳吡喃糖甙,后者为一新试,命名为新蜘蛛抱蛋甙reoaspidistrin。  相似文献   

3.
仙茅根茎中的配糖体   总被引:5,自引:0,他引:5  
从仙茅( Curculigo orchioidesGaertn) 根茎中分离到7 个化合物, 经光谱分析推定其化学结构分别为: 2, 6 - 二甲氧基苯甲酸(A) ; 苔黑酚葡萄糖甙(B) ; 仙茅素A (C) ; 仙茅甙(D) ; 24s, 3β, 11α, 16β, 24 - 四羟基环阿尔廷醇- 3 - O- α- L- 鼠李吡喃糖基(1 →2) - β-D- 葡萄吡喃糖甙(E) ; 24s, 3β, 11α, 16β, 24 - 四羟基环阿尔廷醇- 3- O- β- D- 葡萄吡喃糖基(1 →2) - β- D- 葡萄吡喃糖甙(F) 和胡萝卜甙(G) 。F为一新甙。  相似文献   

4.
圆穗蓼中的新黄酮甙成分   总被引:1,自引:0,他引:1  
从圆穗蓼(Polygonum sphaerostachyum Meisn.)中分离得到2个新黄酮甙,经光谱分析和化学方法鉴定为:3'-羟基-5,4'-二甲氧基-6,7-二氧亚甲基黄酮-3-O-「β-D-吡喃木糖基(1→6)」-β-D-吡喃葡萄糖甙⑴和5,4'-二甲氧基-3'-异丙烯基乙酰基-6,7-二氧亚甲基黄酮-3-O-「β-D-吡喃木糖基(1→6)-β-D-吡喃葡萄糖甙⑵,分别命名为圆穗蓼素A  相似文献   

5.
闭鞘姜根中的甾体皂甙   总被引:4,自引:0,他引:4  
从闭鞘姜「Costus speciosus(Koenig)Smith」根茎中分离出五个化合物。经波谱解析和化学降解,证明其化学结构分别为胡萝卜甙(A):薯芋皂甙元3-O-a-L鼠李吡喃糖基(1-2)-β-D-葡萄吡喃糖甙(B);薯芋皂甙元3-O-a-L-鼠李吡喃糖基(1-2)「a-L-鼠李吡喃糖基(1-4)」β-D葡萄吡喃糖甙(C);薯芋皂甙元-3-O-a-L-鼠李吡喃糖基(1-2)「β-D-葡萄  相似文献   

6.
鞭打绣球中的苯丙素甙和环烯醚萜甙   总被引:6,自引:0,他引:6  
从鞭打绣球(HemiphragmaheterophyllumWall.)(玄参科)的全草中分离到2个新的苯丙素甙,命名为鞭打绣球甙A和B(hemiphrosideAandB),2个已知的苯丙素甙,plantamajoside和plantainosideD,以及3个已知的环烯醚萜甙,globularicisin,globularin和iso-scrophularioside.通过化学和光谱分析,鞭打绣球甙A和B的结构分别鉴定为2-(3-羟基-4-甲氧基苯基)乙基0-β-D-葡萄吡喃糖基(1→3)-4-O-反式阿魏醚基-β-D-葡萄吡喃糖试和2-(3,4-二羟基苯基)乙基O-[6-O-乙醚基-β-D-葡萄吡喃糖基(1→3)]-4-O-反式咖啡醚基-β-D-葡萄吡喃糖甙.  相似文献   

7.
红木荷树皮的化学成分   总被引:6,自引:0,他引:6  
从红木茶树皮中分离出4个化学成分,经光谱解析和化学降解,分别被鉴定为α-菠甾醇,α-菠甾醇葡萄糖甙,表儿茶素和一新的三萜皂甙22-O-当归酰酯-3-O(α-L-鼠李吡喃糖基(1→2))-(β-D-葡萄吡喃糖基(1→2)-β-D-半乳吡喃糖基(1→4))-β-D-葡萄糖醛酸甙。  相似文献   

8.
圆果雪胆中的皂甙成分   总被引:4,自引:1,他引:3  
从圆果雪胆(Hemsleya amabilis)的块茎中分离到10个化合物,其中3个雪胆皂甙是首次从该种植物中得到,它们的结构通过光谱和化学的方法鉴定为齐墩果酸-3-O-α-吡喃阿拉伯糖(1→3)-β-葡萄糖醛酸甙,28-O-β-D-吡喃葡萄糖齐墩果酸3-O-α-吡喃阿拉伯糖(1→3)-β-D-葡萄糖醛酸,28-O-β-D-吡喃葡萄糖齐墩果酸3-O-「β-D-吡喃葡萄糖(1→2)」-「α-吡喃阿  相似文献   

9.
滇重楼地上部分的两个微量皂甙   总被引:10,自引:1,他引:9  
从滇重楼地上部分中分离出两个新的微量的甾体皂甙PolyphyllosideⅢ和Ⅳ,根据化学降解和光谱分析,它们的化学结构分别为27-羟基-偏诺皂皂甙元-3-O[a-L-鼠李吡喃糖基(1→2)][a-L-鼠李吡喃糖基(1→4-a-L鼠李吡喃糖基(1→4)]-β-D-葡萄吡喃糖甙,23β,27-二羟基-偏皂甙元-3-O-[a-鼠李吡喃糖(1→2)]  相似文献   

10.
从单条草(LysimachiacandidaLindl)全草中分离出3个皂甙类化合物,经波谱分析并结合化学方法鉴定为:报春花素A3OβD吡喃木糖基(1→2)βD吡喃葡萄糖基(1→4)[βD吡喃葡萄糖基(1→2)]αL吡喃阿拉伯糖甙(1)、原报春花素A3OβD吡喃木糖基(1→2)βD吡喃葡萄糖基(1→4)[βD吡喃葡萄糖基(1→2)]αL吡喃阿拉伯糖甙(lysikoianoside,2)和α菠甾醇葡萄糖甙(3)。其中1是新化合物,命名为单条草甙(candidoside)。  相似文献   

11.
金铁锁的新三萜皂甙   总被引:10,自引:0,他引:10  
从金铁锁(Psammosilene tunicoides W.C.Wu et C.Y.Wu)根部分离得到5个齐墩果烷型五环三萜皂苷,它们的结构通过波谱和化学方法分别鉴定为:3-O-β-D-galactopyranosyl-(1→2)-β-D-glucuronopyranosyl-gypsogenin(1),3-O-β-D-galactopyranosyl-(1→2)-[β-D-galactopyranosyl-(1→3)-β-D-glucuronopyranosyl-gypsogenin(2),3-O-β-D-galactopyranosyl-(1→2)-β-D-glucuronopyra-nosyl-gypsogenin-28-O-β-D-xylopyranosyl-(1→4)-[β-D-glucopyranosyl-(1→3)]-α-L-rhamnopyranosyl(1→2)-β-D-fucopyranoside(LobatosideI,3),3-O-β-D-galactopyranosyl-(1→2)-[β-D-xylopyranosyl-(1→3)-β-D-glucuronopyranosylgypsogenin-28-O-β-D-xylopyranosyl-(1→4)-[β-D-glucopyranosyl-(1→3)]-α-L-rhamnopyranosyl(1→2)-β-D-fucopyranoside(4),3-O-β-D-galactopyranosyl-(1→)-β-D-glucuro-nopyranosyl-grpsogenin-28-O-β-D-xylopyranosyl-(1→4)-[β-D-6-O-acetylglucopyranosyl-(1→3)-β-D-glucuro-nopyranosyl-gypsogenin-28-O-β-D-xylopyranosyl-(1→4)-[β-D-6-O-acetylglucopyranosyl-(1→3)]-α-L-rh-amnopyranosyl(1→2)-β-D-fucopyranoside(5),其中5为新化合物,1和2为首次从自然界中分离得到。  相似文献   

12.
黄花远志的新齐墩果烷型三萜皂甙   总被引:3,自引:0,他引:3  
从云南产远志科药用植物黄花远志(PolygalaarillataBuchHamexDDon)茎皮的乙醇提取物中分离得到4个新的齐墩果烷型三萜皂甙,命名为黄花远志皂甙(arillatanoside)A~D。同时还分离得到1个已知的三萜皂甙远志甙(polygalasaponin)XXXV。它们的结构通过波谱方法推定。  相似文献   

13.
Five triterpene saponins never reported before, hederifoliosides A-E, and four known triterpene saponins were isolated from the tubers of Cyclamen hederifolium. The structures of hederifoliosides A-E were determined as 3β,16α-dihydroxy-13β,28-epoxyolean-30-oic acid 3-O-{[β-D-glucopyranosyl-(1 → 2)-O]-β-D-xylopyranosyl-(1 → 2)-O-β-D-glucopyranosyl-(1 → 4)-O-α-L-arabinopyranoside}, 3β,16α-dihydroxy-13β,28-epoxyolean-30-oic acid 3-O-{[β-D-glucopyranosyl-(1 → 2)-O]-β-D-xylopyranosyl-(1 → 2)-O-[β-D-glucopyranosyl-(1 → 3)]-O-β-D-glucopyranosyl-(1 → 4)-O-α-L-arabinopyranoside}, 3β,16α-dihydroxy-13β,28-epoxyolean-30-al 3-O-{[β-D-glucopyranosyl-(1 → 2)-O]-β-D-xylopyranosyl-(1 → 2)-O-[β-D-glucopyranosyl-(1 → 3)]-O-[β-D-glucopyranosyl-(1 → 6)]-O-β-D-glucopyranosyl-(1 → 4)-O-α-L-arabinopyranoside}, 30-O-β-D-glucopyranosyl-(1 → 2)-O-β-D-glucopyranosyl-3β,16α,30-trihydroxyolean-12-en-28-al 3-O-{[β-D-glucopyranosyl-(1 → 2)-O]-β-D-xylopyranosyl-(1 → 2)-O-β-D-glucopyranosyl-(1 → 4)-O-α-L-arabinopyranoside}, 30-O-β-D-glucopyranosyl-(1 → 2)-O-β-D-glucopyranosyl-3β,16α,28,30-tetrahydroxyolean-12-en 3-O-{[β-D-glucopyranosyl-(1 → 2)-O]-β-D-xylopyranosyl-(1 → 2)-O-[β-D-glucopyranosyl-(1 → 3)]-O-β-D-glucopyranosyl-(1 → 4)-O-α-L-arabinopyranoside}, by a combination of one- and two-dimensional NMR techniques, and mass spectrometry. The cytotoxic activity of the isolated compounds was evaluated against a small panel of cancer cell lines including Hela, H-446, HT-29, and U937. None of the tested compounds, in a range of concentrations between 1 and 50 μM, caused a significant reduction of the cell number.  相似文献   

14.
Four new 28-nor-oleanane-type triterpene oligoglycosides, camellenodiol 3-O-β-D-galactopyranosyl(1→2)[β-D-xylopyranosyl(1→2)-β-D-galactopyranosyl(1→3)]-β-D-glucuronopyranoside (2), camellenodiol 3-O-4'-O-acetyl-β-D-galactopyranosyl(1→2)[β-D-xylopyranosyl(1→2)-β-D-galactopyranosyl(1→3)]-β-D-glucuronopyranoside (4), camellenodiol 3-O-(β-D-galactopyranosyl(1→2)[β-D-xylopyranosyl(1→2)-β-D-galactopyranosyl(1→3)]-6'-methoxy-β-D- glucuronopyranoside (5), and maragenin II 3-O-(β-D-galactopyranosyl(1→2)[β-D-xylopyranosyl(1→2)-β-D-galactopyranosyl(1→3)]-6'-methoxy-β-D-glucuronopyranoside (6), along with two known compounds, (1 and 3), were isolated from the stem bark of Camellia japonica. Their chemical structures were established mainly by 2D NMR techniques and mass spectrometry. The isolated compounds showed inhibitory effects on NO production in RAW264.7 macrophages.  相似文献   

15.
Monoclonal antibodies were raised against a (1→3,1→4)-β-glucan-bovine serum albumin (BSA) conjugate. One antibody (BG1) selected for further characterization, was specific for (1→3,1→4)-β-glucan, displaying no binding activity against a (1→3)-β-glucan-BSA conjugate and minimal binding against a cellopentaose-BSA conjugate. A range of oligosaccharides was prepared by enzymatic digestion of (1→3,1→4)-β-glucan, purified by size exclusion chromatography and characterized by 1H-NMR and anion exchange chromatography. These (1→3,1→4)-β-oligoglucosides, together with (1→3)-β- and (1→4)-β-oligoglucosides were used to characterize the binding site of the monoclonal antibody (BG1) by competitive inhibition. The monoclonal antibody showed maximal binding to a heptasaccharide with the structure Glc(1→3) Glc(1→4) Glc(1→4) Glc(1→3) Glc(1→4) Glc(1→4) Glc and was determined to have an affinity constant of 3.8 × 104 M−1 for this oligoglucoside. The monoclonal antibody (BG1) has been used to develop a sensitive sandwich ELISA for the specific quantitation of (1→3,1→4)-β-glucans. The assay operates in the range 1–10 ng ml−1 and shows no significant cross-reaction with tamarind xyloglucan, wheat endosperm arabinoxylan or carboxymethyl-pachyman ((1→3)-β-glucan). When used with a second-stage, rabbit anti-mouse gold conjugate and viewed under the electron microscope, the monoclonal antibody probe was found to bind strongly to the walls of the aleurone in thin sections of immature wheat (Triticum aestivum) cv. Millewa grains but not to the middle lamella region. A previously described specific anti-(1→3)-β-glucan antibody (Meikle et al., 1991) bound to discrete patches on the aleurone walls, believed to be plasmodesmata.  相似文献   

16.
Four new steroidal glycosides such as 3-O-6-deoxy-3-O-methyl-β-D-allopyranosyl-(1 → 4)-β-D-oleandropyranosyl-(1 → 4)-β-D-cymaropyranosyl-(1 → 4)-β-D-cymaropyranoside-12-β-tigloyl-14-β-hydroxy-17-β-pregnane (1), 3-O-6-deoxy-3-O-methyl-β-D-allopyranosyl-(1 → 4)-β-D-oleandropyranosyl-(1 → 4)-β-D-cymaropyranosyl-(1 → 4)-β-D-cymaropyranoside-12-β-(2'-amino)-benzoyl-14-β-hydroxy-17-β-pregnane (2), 3-O-6-deoxy-3-O-methyl-β-D-allopyranosyl-(1 → 4)-β-D-oleandropyranosyl-(1 → 4)-β-D-cymaropyranosyl-(1 → 4)-β-D-cymaropyranoside-12-β-14-β-dihydroxy-17-α-pregnane (3) and 3-O-6-deoxy-3-O-methyl-β-D-allopyranosyl-(1 → 4)-β-D-oleandropyranosyl-(1 → 4)-β-D-cymaropyranosyl-(1 → 4)-β-D-cymaropyranoside-12-β-14-β-dihydroxy-17-β-pregnane (4) were isolated from the aerial parts of Ceropegia fusca Bolle (Asclepiadaceae), a crassulacean acid metabolism plant, an endemic species to the Canary Islands that has been used in traditional medicine as a cicatrizant, vulnerary and disinfectant. The dichloromethane extract exhibited significant cytostatic activity against HL-60, A-431 and SK-MEL-1 cells, human leukemic, epidermoid carcinoma and melanoma cells, respectively. As shown in Table I, compounds 1 and 2 showed very similar IC(50) values. The acetylation of 1 to give the diacetate 5 increases 5-fold the cytotoxicity against HL-60 cells. Compounds 3 and 4 did not show cytotoxicity at the assayed concentrations. With respect to the compounds containing only the steroid ring (6-8), the presence of a charged O-amino-benzoyl but not a tigloyl group improved the cytotoxicity.  相似文献   

17.
Sixteen oleanane-type glycosides were extracted from three Weigela hybrids and cultivars: W. x Styriaca, W. florida “Minor black” and W. florida “Brigela”, and four of them were previously undescribed ones: 3-O-β-D-xylopyranosyl-(1→4)-β-D-xylopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)-β-D-xylopyranosyloleanolic acid, 3-O-β-D-xylopyranosyl-(1→4)-β-D-xylopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)-α-L-arabinopyranosyloleanolic acid, 3-O-β-D-xylopyranosyl-(1→4)-β-D-xylopyranosyl-(1→4)-β-D-xylopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)-α-L-arabinopyranosyloleanolic acid, and 3-O-β-D-xylopyranosyl-(1→4)-β-D-xylopyranosyl-(1→4)-β-D-xylopyranosyl-(1→4)-β-D-xylopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)-α-L-arabinopyranosyloleanolic acid. Their full structural elucidation required extensive 1D and 2D NMR experiments, as well as mass spectrometry analysis. Six compounds among the known ones were in sufficient amount to be tested for their antifungal activity against Candida albicans, and their antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa.  相似文献   

18.
Six new protopanaxadiol-type ginsenosides, named ginsenosides Ra(4) -Ra(9) (1-6, resp.), along with 14 known dammarane-type triterpene saponins, were isolated from the root of Panax ginseng, one of the most important Chinese medicinal herbs. The structures of the new compounds were determined by spectroscopic methods, including 1D- and 2D-NMR, HR-MS, and chemical transformation as (20S)- 3-O-{β-D-6-O-[(E)-but-2-enoyl]glucopyranosyl-(1→2)-β-D-glucopyranosyl}-20-O-[β-D-xylopyranosyl-(1→4)-α-L-arabinopyranosyl-(1→6)-β-D-glucopyranosyl]protopanaxadiol (1), (20S)-3-O-[β-D-6-O-acetylglucopyranosyl-(1→2)-β-D-glucopyranosyl]-20-O-[β-D-xylopyranosyl-(1→4)-α-L-arabinopyranosyl-(1→6)-β-D-glucopyranosyl]protopanaxadiol (2), (20S)-3-O-{β-D-6-O-[(E)-but-2-enoyl]glucopyranosyl-(1→2)-β-D-glucopyranosyl}-20-O-[β-D-glucopyranosyl-(1→6)-β-D-glucopyranosyl]protopanaxadiol (3), (20S)-3-O-{β-D-6-O-[(E)-but-2-enoyl]glucopyranosyl-(1→2)-β-D-glucopyranosyl}-20-O-[α-L-arabinopyranosyl-(1→6)-β-D-glucopyranosyl]protopanaxadiol (4), (20S)-3-O-{β-D-4-O-[(E)-but-2-enoyl]glucopyranosyl-(1→2)-β-D-glucopyranosyl}-20-O-[α-L-arabinofuranosyl-(1→6)-β-D-glucopyranosyl]protopanaxadiol (5), (20S)-3-O-{β-D-6-O-[(E)-but-2-enoyl]glucopyranosyl-(1→2)-β-D-glucopyranosyl}-20-O-[α-L-arabinofuranosyl-(1→6)-β-D-glucopyranosyl]protopanaxadiol (6). The sugar moiety at C(3) of the aglycone of each new ginsenoside is butenoylated or acetylated.  相似文献   

19.
Two new saponins, agavasaponin E and agavasaponin H have been isolated from the methanolic extract of Agave americana leaves and their structures elucidated. Agavasaponin E is 3-O-[β-d-xylopyranosyl-(1→2glc1)-α-l-rhamnopyranosyl-(1→4)-α-l-rhamnopyranosyl-(1→3glc 1)-β-d-glucopyranosyl-(1→4)-β-d-glucopyranosyl-(1→4)-α-d-galactopyranosyl]-(25R)-5α-spirostan-12-on-3β-ol, whereas agavasaponin H is 3-O-[β-d-xylopyranosyl-(1→2 glc 1)-α-l-rhamnopyranosyl-(1→4)-α-l-rhamnopyranosyl-(1→3 glc 1)-β-d-glucopyranosyl-(1→4)-β-d-glucopyranosyl-(1→4)-β-d-galactopyranosyl]-26-O-[β-d-glucopyranosyl]-(25R)-5α-furostan-12-on-3β,22α,26-triol.  相似文献   

20.
Two different glucans (PS-I, water-soluble; and PS-II, water-insoluble) were isolated from the alkaline extract of fruit bodies of an edible mushroom Calocybe indica. On the basis of acid hydrolysis, methylation analysis, periodate oxidation, and NMR analysis ((1)H, (13)C, DEPT-135, TOCSY, DQF-COSY, NOESY, ROESY, HMQC, and HMBC), the structure of the repeating unit of these polysaccharides were established as: PS-I: →6)-β-D-Glcp-(1→6)-β-D-glcp-(1→6)-)-β-D-Glcp-(1→ α-D=Glcp (Water-soluble glucan). PS-II: →3)-β-D-Glcp-(1→3)-β-D-glcp-(1→3)-)-β-D-Glcp-(1→3)-β-D-Glcp-(1→ β-D-Glcp (Water-insoluble glucan, Calocyban).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号