首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BackgroundCytosolic Ca2 + buffers are members of the large family of Ca2 +-binding proteins and are essential components of the Ca2 + signaling toolkit implicated in the precise regulation of intracellular Ca2 + signals. Their physiological role in excitable cells has been investigated in vivo by analyzing the phenotype of mice either lacking one of the Ca2 + buffers or mice with ectopic expression.Scope of ReviewIn this review, results obtained with knockout mice for the three most prominent Ca2 + buffers, parvalbumin, calbindin-D28k and calretinin are summarized.Major ConclusionsThe absence of Ca2 + buffers in specific neuron subpopulations, and for parvalbumin additionally in fast-twitch muscles, leads to Ca2 + buffer-specific changes in intracellular Ca2 + signals. This affects the excitation–contraction cycle in parvalbumin-deficient muscles, and in Ca2 + buffer-deficient neurons, properties associated with synaptic transmission (e.g. short-term modulation), excitability and network oscillations are altered. These findings have not only resulted in a better understanding of the physiological function of Ca2 + buffers, but have revealed that the absence of Ca2 + signaling toolkit components leads to protein-and neuron-specific adaptive/homeostatic changes that also include changes in neuron morphology (e.g. altered spine morphology, changes in mitochondria content) and network properties.General SignificanceThe complex phenotype of Ca2 + buffer knockout mice arises from the direct effect of these proteins on Ca2 + signaling and moreover from the homeostatic mechanisms induced in these mice. For a better mechanistic understanding of neurological diseases linked to disturbed/altered Ca2 + signaling, a global view on Ca2 + signaling is expected to lead to new avenues for specific therapies. This article is part of a Special Issue entitled Biochemical, biophysical and genetic approaches to intracellular calcium signaling.  相似文献   

2.
3.
TRPA1 is a non-selective Ca2 + permeable channel located in the plasma membrane that functions as a cellular sensor detecting mechanical, chemical and thermal stimuli, being a component of neuronal, epithelial, blood and smooth muscle tissues. TRPA1 has been shown to influence a broad range of physiological processes that involve Ca2 +-dependent signaling pathways. Here we report that TRPA1 is expressed in MEG01 but not in platelets at the protein level. MEG01 cells maturation induced by PMA results in attenuation of TRPA1 protein expression and enhances thapsigargin-evoked Ca2 + entry without altering the release of Ca2 + from intracellular stores. Inhibition of TRPA1 by HC-030031 results in enhancement of both thrombin- and thapsigargin-stimulated Ca2 + entry. Co-immunoprecipitation experiments revealed that TRPA1 associates with STIM1, as well as Orai1, TRPC1 and TRPC6. Downregulation of TRPA1 expression by MEG01 maturation, as well as pharmacological inhibition of TRPA1 by HC-030031, results in enhancement of the association between STIM1 and Orai1. Altogether, these findings provide evidence for a new and interesting function of TRPA1 in cellular function associated to the regulation of agonist-induced Ca2 + entry by the modulation of STIM1/Orai1 interaction.  相似文献   

4.
Mouse prostate membrane-associated proteins of the annexin family showed changes in SUMOylation during androgen treatment. Among these the calcium-binding annexin A1 protein (ANXA1) was chosen for further characterization given its role in protein secretion and cancer. SUMOylation of ANXA1 was confirmed by overexpressing SUMO-1 in LNCaP cells. Site-directed mutagenesis indicated that K257 located in a SUMOylation consensus motif in the C-terminal calcium-binding DA3 repeat domain is SUMOylated. Mutation of the N-terminal Y21 decreased markedly the SUMOylation signal while EGF stimulation increased ANXA1 SUMOylation. A structural analysis of ANXA1 revealed that K257 is located in a hot spot where Ca2 + and SUMO-1 bind and where a nuclear export signal and a polyubiquitination site are also present. Also, Y21 is buried inside an α-helix structure in the Ca2 +-free conformation implying that Ca2 + binding, and the subsequent expelling of the N-terminal α-helix in a disordered conformation, is permissive for its phosphorylation. These results show for the first time that SUMOylation can be regulated by an external signal (EGF) and indicate the presence of a cross-talk between the N-terminal and C-terminal domains of ANXA1 through post-translational modifications.  相似文献   

5.
STIM1 acts as an endoplasmic reticulum Ca2 + sensor that communicates the filling state of the intracellular stores to the store-operated channels. In addition, STIM1 is expressed in the plasma membrane, with the Ca2 + binding EF-hand motif facing the extracellular medium; however, its role sensing extracellular Ca2 + concentrations in store-operated Ca2 + entry (SOCE), as well as the underlying mechanism remains unclear. Here we report that divalent cation entry stimulated by thapsigargin (TG) is attenuated by extracellular Ca2 + in a concentration-dependent manner. Expression of the Ca2 +-binding defective STIM1(D76A) mutant did not alter the surface expression of STIM1 but abolishes the regulation of divalent cation entry by extracellular Ca2 +. Orai1 and TRPC1 have been shown to play a major role in SOCE. Expression of the STIM1(D76A) mutant did not alter Orai1 phosphoserine content. TRPC1 silencing significantly attenuated TG-induced Mn2 + entry. Expression of the STIM1(K684,685E) mutant impaired the association of plasma membrane STIM1 with TRPC1, as well as the regulation of TG-induced divalent cation entry by extracellular Ca2 +, which suggests that TRPC1 might be involved in the regulation of divalent cation entry by extracellular Ca2 + mediated by plasma membrane-resident STIM1. Expression of the STIM1(D76A) or STIM1(K684,685E) mutants reduced store-operated divalent cation entry and resulted in loss of dependence on the extracellular Ca2 + concentration, providing evidence for a functional role of plasma membrane-resident STIM1 in the regulation of store-operated divalent cation entry, which at least involves the EF-hand motif and the C-terminal polybasic lysine-rich domain.  相似文献   

6.
Intracellular Ca2 + levels are tightly regulated in the neuronal system. The loss of Ca2 + homeostasis is associated with many neurological diseases and neuropsychiatric disorders such as Parkinson's, Alzheimer's, and schizophrenia. We investigated the mechanisms involved in intracellular Ca2 + signaling in PC-12 cells. The stimulation of NGF-differentiated PC-12 cells with 3 μM ATP caused an early Ca2 + release followed by a delayed Ca2 + release. The delayed Ca2 + release was dependent on prior ATP priming and on dopamine secretion by PC-12 cells. Delayed Ca2 + release was abolished in the presence of spiperone, suggesting that it is due to the activation of D2 dopamine receptors (D2R) by dopamine secreted by PC-12 cells. This was shown to be independent of PKA activation but dependent on PLC activity. An endocytosis step was required for inducing the delayed Ca2 + release. Given the importance of calcyon in clathrin-mediated endocytosis, we verified the role of this protein in the delayed Ca2 + release phenomenon. siRNA targeting of calcyon blocked the delayed Ca2 + release, decreased ATP-evoked IP3R-mediated Ca2 + release, and impaired subsequent Ca2 + oscillations. Our results suggested that calcyon is involved in an unknown mechanism that causes a delayed IP3R-mediated Ca2 + release in PC-12 cells. In schizophrenia, Ca2 + dysregulation may depend on the upregulation of calcyon, which maintains elevated Ca2 + levels as well as dopamine signaling.  相似文献   

7.
Sarcoplasmic reticulum (SR) Ca2 + release plays an essential role in mediating cardiac myocyte contraction. Depolarization of the plasma membrane results in influx of Ca2 + through l-type Ca2 + channels (LTCCs) that in turn triggers efflux of Ca2 + from the SR through ryanodine receptor type-2 channels (RyR2). This process known as Ca2 +-induced Ca2 +release (CICR) occurs within the dyadic region, where the adjacent transverse (T)-tubules and SR membranes allow RyR2 clusters to release SR Ca2 + following Ca2 + influx through adjacent LTCCs. SR Ca2 + released during systole binds to troponin-C and initiates actin–myosin cross-bridging, leading to muscle contraction. During diastole, the cytosolic Ca2 + concentration is restored by the resequestration of Ca2 + into the SR by SR/ER Ca2 +-ATPase (SERCA2a) and by the extrusion of Ca2 + via the Na+/Ca2 +-exchanger (NCX1). This whole process, entitled excitation–contraction (EC) coupling, is highly coordinated and determines the force of contraction, providing a link between the electrical and mechanical activities of cardiac muscle. In response to heart failure (HF), the heart undergoes maladaptive changes that result in depressed intracellular Ca2 + cycling and decreased SR Ca2 + concentrations. As a result, the amplitude of CICR is reduced resulting in less force production during EC coupling. In this review, we discuss the specific proteins that alter the regulation of Ca2 + during HF. In particular, we will focus on defects in RyR2-mediated SR Ca2 + release. This article is part of a Special Issue entitled: Heart failure pathogenesis and emerging diagnostic and therapeutic interventions.  相似文献   

8.
9.
Mutations in the second EF-hand (D61N, D63N, D65N, and E72A) of S100B were used to study its Ca2 + binding and dynamic properties in the absence and presence of a bound target, TRTK-12. With D63NS100B as an exception (D63NKD = 50 ± 9 μM), Ca2 + binding to EF2-hand mutants were reduced by more than 8-fold in the absence of TRTK-12 (D61NKD = 412 ± 67 μM, D65NKD = 968 ± 171 μM, and E72AKD = 471 ± 133 μM), when compared to wild-type protein (WTKD = 56 ± 9 μM). For the TRTK-12 complexes, the Ca2 +-binding affinity to wild type (WT + TRTKKD = 12 ± 10 μM) and the EF2 mutants was increased by 5- to 14-fold versus in the absence of target (D61N + TRTKKD = 29 ± 1.2 μM, D63N + TRTKKD = 10 ± 2.2 μM, D65N + TRTKKD = 73 ± 4.4 μM, and E72A + TRTKKD = 18 ± 3.7 μM). In addition, Rex, as measured using relaxation dispersion for side‐chain 15N resonances of Asn63 (D63NS100B), was reduced upon TRTK-12 binding when measured by NMR. Likewise, backbone motions on multiple timescales (picoseconds to milliseconds) throughout wild type, D61NS100B, D63NS100B, and D65NS100B were lowered upon binding TRTK-12. However, the X-ray structures of Ca2 +-bound (2.0 Å) and TRTK-bound (1.2 Å) D63NS100B showed no change in Ca2 + coordination; thus, these and analogous structural data for the wild-type protein could not be used to explain how target binding increased Ca2 +-binding affinity in solution. Therefore, a model for how S100B–TRTK‐12 complex formation increases Ca2 + binding is discussed, which considers changes in protein dynamics upon binding the target TRTK-12.  相似文献   

10.
In the present work, we examine and compare the effects of saturated (palmitic) and unsaturated (oleic) fatty acids in relation to their ability to cause the Ca2 +-dependent membrane permeabilization. The results obtained can be summarized as follows. (1) Oleic acid (OA) permeabilizes liposomal membranes at much higher concentrations of Ca2 + than palmitic acid (PA): 1 mM versus 100 μM respectively. (2) The OA/Ca2 +-induced permeabilization of liposomes is not accompanied by changes in the phase state of lipid bilayer, in contrast to what is observed with PA and Ca2 +. (3) The addition of Ca2 + to the PA-containing vesicles does not change their size; in the case of OA, it leads to the appearance of larger and smaller vesicles, with larger vesicles dominating. This can be interpreted as a result of fusion and fission of liposomes. (4) Like PA, OA is able to induce a Ca2 +-dependent high-amplitude swelling of mitochondria, yet it requires higher concentrations of Ca2 + (30 and 100 μM for PA and OA respectively). (5) In contrast to PA, OA is unable to cause the Ca2 +-dependent high-amplitude swelling of mitoplasts, suggesting that the cause of OA/Ca2 +-induced permeability transition in mitochondria may be the fusion of the inner and outer mitochondrial membranes. (6) The presence of OA enhances PA/Ca2 +-induced permeabilization of liposomes and mitochondria. The paper discusses possible mechanisms of PA/Ca2 +- and OA/Ca2 +-induced membrane permeabilization, the probability of these mechanisms to be realized in the cell, and their possible physiological role.  相似文献   

11.
Loss-of-function mutations in PINK1 or parkin genes are associated with juvenile-onset autosomal recessive forms of Parkinson disease. Numerous studies have established that PINK1 and parkin participate in a common mitochondrial-quality control pathway, promoting the selective degradation of dysfunctional mitochondria by mitophagy. Upregulation of parkin mRNA and protein levels has been proposed as protective mechanism against mitochondrial and endoplasmic reticulum (ER) stress. To better understand how parkin could exert protective function we considered the possibility that it could modulate the ER–mitochondria inter-organelles cross talk. To verify this hypothesis we investigated the effects of parkin overexpression on ER–mitochondria crosstalk with respect to the regulation of two key cellular parameters: Ca2 + homeostasis and ATP production. Our results indicate that parkin overexpression in model cells physically and functionally enhanced ER–mitochondria coupling, favored Ca2 + transfer from the ER to the mitochondria following cells stimulation with an 1,4,5 inositol trisphosphate (InsP3) generating agonist and increased the agonist-induced ATP production. The overexpression of a parkin mutant lacking the first 79 residues (ΔUbl) failed to enhance the mitochondrial Ca2 + transients, thus highlighting the importance of the N-terminal ubiquitin like domain for the observed phenotype. siRNA-mediated parkin silencing caused mitochondrial fragmentation, impaired mitochondrial Ca2 + handling and reduced the ER–mitochondria tethering. These data support a novel role for parkin in the regulation of mitochondrial homeostasis, Ca2 + signaling and energy metabolism under physiological conditions.  相似文献   

12.
《Cellular signalling》2014,26(12):2826-2833
Eight paralogue members form the family of transmembrane channel-like (TMC) proteins that share considerable sequence homology to anoctamin 1 (Ano1, TMEM16A). Ano1 is a Ca2 + activated Cl channel that is related to head and neck cancer, often caused by human papilloma virus (HPV) infection. Mutations in TMC 6 and 8 (EVER1, EVER2) cause epidermodysplasia verruciformis. This rare skin disease is characterized by abnormal susceptibility to HPV infection and cancer. We found that in contrast to Ano1 the common paralogues TMC4–TMC8 did not produce Ca2 + activated Cl currents when expressed in HEK293 cells. On the contrary, TMC8 was found to be localized in the endoplasmic reticulum (ER), where it inhibited receptor mediated Ca2 + release, activation of Ano1 and volume regulated LRRC8-related Cl currents. Zn2 + is co-released from the ER together with Ca2 + and thereby further augments Ca2 + store release. Because TMC8 is required to lower cytosolic Zn2 + concentrations by the Zn2 + transporter ZnT-1, we hypothesize that HPV infections and cancer caused by mutations in TMC8 are related to upregulated Zn2 +/Ca2 + signaling and activation of Ano1.  相似文献   

13.
Exogenous brain-derived neurotrophic factor (BDNF) enhances Ca2 + signaling and cell proliferation in human airway smooth muscle (ASM), especially with inflammation. Human ASM also expresses BDNF, raising the potential for autocrine/paracrine effects. The mechanisms by which ASM BDNF secretion occurs are not known. Transient receptor potential channels (TRPCs) regulate a variety of intracellular processes including store-operated Ca2 + entry (SOCE; including in ASM) and secretion of factors such as cytokines. In human ASM, we tested the hypothesis that TRPC3 regulates BDNF secretion. At baseline, intracellular BDNF was present, and BDNF secretion was detectable by enzyme linked immunosorbent assay (ELISA) of cell supernatants or by real-time fluorescence imaging of cells transfected with GFP–BDNF vector. Exposure to the pro-inflammatory cytokine tumor necrosis factor-alpha (TNFα) (20 ng/ml, 48 h) or a mixture of allergens (ovalbumin, house dust mite, Alternaria, and Aspergillus extracts) significantly enhanced BDNF secretion and increased TRPC3 expression. TRPC3 knockdown (siRNA or inhibitor Pyr3; 10 μM) blunted BDNF secretion, and prevented inflammation effects. Chelation of extracellular Ca2 + (EGTA; 1 mM) or intracellular Ca2 + (BAPTA; 5 μM) significantly reduced secreted BDNF, as did the knockdown of SOCE proteins STIM1 and Orai1 or plasma membrane caveolin-1. Functionally, secreted BDNF had autocrine effects suggested by phosphorylation of high-affinity tropomyosin-related kinase TrkB receptor, prevented by chelating extracellular BDNF with chimeric TrkB-Fc. These data emphasize the role of TRPC3 and Ca2 + influx in the regulation of BDNF secretion by human ASM and the enhancing effects of inflammation. Given the BDNF effects on Ca2 + and cell proliferation, BDNF secretion may contribute to altered airway structure and function in diseases such as asthma.  相似文献   

14.
Na+- Ca2 + exchanger (NCX) has been proposed to play a role in refilling the sarco/endoplasmic reticulum (SER) Ca2 + pool along with the SER Ca2 + pump (SERCA). Here, SERCA inhibitor thapsigargin was used to determine the effects of SER Ca2 + depletion on NCX–SERCA interactions in smooth muscle cells cultured from pig coronary artery. The cells were Na+-loaded and then placed in either a Na+-containing or in a Na+-substituted solution. Subsequently, the difference in Ca2 + entry between the two groups was examined and defined as the NCX mediated Ca2 + entry. The NCX mediated Ca2 + entry in the smooth muscle cells was monitored using two methods: Ca2 +sensitive fluorescence dye Fluo-4 and radioactive Ca2 +. Ca2 +-entry was greater in the Na+-substituted cells than in the Na+-containing cells when measured by either method. This difference was established to be NCX-mediated as it was sensitive to the NCX inhibitors. Thapsigargin diminished the NCX mediated Ca2 + entry as determined by either method. Immunofluorescence confocal microscopy was used to determine the co-localization of NCX1 and subsarcolemmal SERCA2 in the cells incubated in the Na+-substituted solution with or without thapsigargin. SER Ca2 + depletion with thapsigargin increased the co-localization between NCX1 and the subsarcolemmal SERCA2. Thus, inhibition of SERCA2 leads to blockade of constant Ca2 + entry through NCX1 and also increases proximity between NCX1 and SERCA2. This blockade of Ca2 + entry may protect the cells against Ca2 +-overload during ischemia–reperfusion when SERCA2 is known to be damaged.  相似文献   

15.
The palmitate/Ca2 +-induced (Pal/Ca2 +) pore, which is formed due to the unique feature of long-chain saturated fatty acids to bind Ca2 + with high affinity, has been shown to play an important role in the physiology of mitochondria. The present study demonstrates that the efflux of Ca2 + from rat liver mitochondria induced by ruthenium red, an inhibitor of the energy-dependent Ca2 + influx, seems to be partly due to the opening of Pal/Ca2 + pores. Exogenous Pal stimulates the efflux. Measurements of pH showed that the Ca2 +-induced alkalization of the mitochondrial matrix increased in the presence of Pal. The influx of Ca2 + (Sr2 +) also induced an outflow of K+ followed by the reuptake of the ion by mitochondria. The outflow was not affected by a K+/H+ exchange blocker, and the reuptake was prevented by an ATP-dependent K+ channel inhibitor. It was also shown that the addition of Sr2 + to mitochondria under hypotonic conditions was accompanied by reversible cyclic changes in the membrane potential, the concentrations of Sr2 + and K+ and the respiratory rate. The cyclic changes were effectively suppressed by the inhibitors of Ca2 +-dependent phospholipase A2, and a new Sr2 + cycle could only be initiated after the previous cycle was finished, indicating a refractory period in the mitochondrial sensitivity to Sr2 +. All of the Ca2 +- and Sr2 +-induced effects were observed in the presence of cyclosporin A. This paper discusses a possible role of Pal/Ca2 + pores in the maintenance of cell ion homeostasis.  相似文献   

16.
17.
A-Kinase Anchoring Proteins (AKAPs) direct the flow of cellular information by positioning multiprotein signaling complexes into proximity with effector proteins. However, certain AKAPs are not stationary but can undergo spatiotemporal redistribution in response to stimuli. Gravin, a 300 kD AKAP that intersects with a diverse signaling array, is localized to the plasma membrane but has been shown to translocate to the cytosol following the elevation of intracellular calcium ([Ca2 +]i). Despite the potential for gravin redistribution to impact multiple signaling pathways, the dynamics of this event remain poorly understood. In this study, quantitative microscopy of cells expressing gravin–EGFP revealed that Ca2 + elevation caused the complete translocation of gravin from the cell cortex to the cytosol in as little as 60 s of treatment with ionomycin or thapsigargin. In addition, receptor mediated signaling was also shown to cause gravin redistribution following ATP treatment, and this event required both [Ca2 +]i elevation and PKC activation. To understand the mechanism for Ca2 + mediated gravin dynamics, deletion of calmodulin-binding domains revealed that a fourth putative calmodulin binding domain called CB4 (a.a. 670–694) is critical for targeting gravin to the cell cortex despite its location downstream of gravin's membrane-targeting domains, which include an N-terminal myristoylation site and three polybasic domains. Finally, confocal microscopy of cells co-transfected with gravin–EYFP and PKA RII–ECFP revealed that gravin redistribution mediated by ionomycin, thapsigargin, and ATP each triggered the gravin-dependent loss of PKA localized at the cell cortex. Our results support the hypothesis that gravin redistribution regulates cross-talk between PKA-dependent signaling and receptor-mediated events involving Ca2 + and PKC.  相似文献   

18.
Recent studies have implicated a relationship between RhoA/ROCK activity and defective Ca2+ homeostasis in hypertrophic hearts. This study investigated molecular mechanism underlying ROCK inhibition-mediated cardioprotection against pressure overload-induced cardiac hypertrophy, with a focus on Ca2+ homeostasis.Cardiac hypertrophy model was established by performing transverse aortic constriction (TAC) in 8-week-old male rats. Groups were assigned as SHAM, TAC and TAC + Fas (rats undergoing TAC and treated with fasudil). Rats in the TAC + Fas group were administered fasudil (5 mg/kg/day), and rats in the SHAM and TAC groups were treated with vehicle for 10 weeks. Electrophysiological recordings were obtained from isolated left ventricular myocytes and expression levels of proteins were determined using western blotting. Rats in the TAC group showed remarkable cardiac hypertrophy, and fasudil treatment significantly reversed this alteration. TAC + Fas myocytes showed significant improvement in reduced contractility and Ca2+ transients. Moreover, these myocytes showed restoration of slow relaxation rate and Ca2+ reuptake. Although L-type Ca2+ currents did not change in TAC group, there was a significant reduction in the triggered Ca2+ transients which was reversed either by long-term fasudil treatment or incubation of TAC myocytes with fasudil. The hearts of rats in the TAC group showed a significant decrease in ROCK1, ROCK2, RyR2 protein levels and p-PLBS16/T17/SERCA2 ratio and increase in RhoA expression and MLC phosphorylation. However, fasudil treatment largely reversed TAC-induced alterations in protein expression.Thus, our findings indicate that upregulation of the RhoA/ROCK pathway is significantly associated with cardiac hypertrophy-related Ca2+ dysregulation and suggest that ROCK inhibition prevents hypertrophic heart failure.  相似文献   

19.
BackgroundFocal adhesions (FAs) are large, dynamic protein complexes located close to the plasma membrane, which serve as the mechanical linkages and a biochemical signaling hub of cells. The coordinated and dynamic regulation of focal adhesion is required for cell migration. Degradation, or turnover, of FAs is a major event at the trailing edge of a migratory cell, and is mediated by Ca2 +/calpain-dependent proteolysis and disassembly. Here, we investigated how Ca2 + influx induces cascades of FA turnover in living cells.MethodsImages obtained with a total internal reflection fluorescence microscope (TIRFM) showed that Ca2 + ions induce different processes in the FA molecules focal adhesion kinase (FAK), paxillin, vinculin, and talin. Three mutated calpain-resistant FA molecules, FAK-V744G, paxillin-S95G, and talin-L432G, were used to clarify the role of each FA molecule in FA turnover.ResultsVinculin was resistant to degradation and was not significantly affected by the presence of mutated calpain-resistant FA molecules. In contrast, talin was more sensitive to calpain-mediated turnover than the other molecules. Three-dimensional (3D) fluorescence imaging and immunoblotting demonstrated that outer FA molecules were more sensitive to calpain-mediated proteolysis than internal FA molecules. Furthermore, cell contraction is not involved in degradation of FA.ConclusionsThese results suggest that Ca2 +-mediated degradation of FAs was mediated by both proteolysis and disassembly. The 3D architecture of FAs is related to the different dynamics of FA molecule degradation during Ca2 +-mediated FA turnover.General significanceThis study will help us to clearly understand the underlying mechanism of focal adhesion turnover by Ca2 +.  相似文献   

20.
Alcohol intake is associated with myocardial contractile dysfunction and apoptosis although the precise mechanism is unclear. This study was designed to examine the effect of the cytochrome P450 enzyme CYP2E1 inhibition on ethanol-induced cardiac dysfunction. Adult male mice were fed a 4% ethanol liquid or pair-fed control diet for 6 weeks. Following 2 weeks of diet feeding, a cohort of mice started to receive the CYP2E1 inhibitor diallyl sulfide (100 mg/kg/d, i.p.) for the remaining feeding duration. Cardiac function was assessed using echocardiographic and IonOptix systems. Western blot analysis was used to evaluate CYP2E1, heme oxygenase-1 (HO-1), iNOS, the intracellular Ca2 + regulatory proteins sarco(endo)plasmic reticulum Ca2 +-ATPase, Na+Ca2 + exchanger and phospholamban, pro-apoptotic protein cleaved caspase-3, Bax, c-Jun-NH2-terminal kinase (JNK) and apoptosis signal-regulating kinase (ASK-1). Ethanol led to elevated levels of CYP2E1, iNOS and phospholamban, decreased levels of HO-1 and Na+Ca2 + exchanger, cardiac contractile and intracellular Ca2 + defects, cardiac fibrosis, overt O2? production, and apoptosis accompanied with increased phosphorylation of JNK and ASK-1, the effects were significantly attenuated or ablated by diallyl sulfide. Inhibitors of JNK and ASK-1 but not HO-1 inducer or iNOS inhibitor obliterated ethanol-induced cardiomyocyte contractile dysfunction, substantiating a role for JNK and ASK-1 signaling in ethanol-induced myocardial injury. Taken together, these findings suggest that ethanol metabolism through CYP2E1 may contribute to the pathogenesis of alcoholic cardiomyopathy including myocardial contractile dysfunction, oxidative stress and apoptosis, possibly through activation of JNK and ASK-1 signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号