首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Twenty three novel cyanine dyes have been applied as fluorescent stains for the detection of nucleic acids in agarose gel electrophoresis. Significant fluorescence enhancement of these dyes in the presence of double stranded DNA was observed. Five dyes offered superior sensitivity in the detection and quantification of DNA, over Ethidium Bromide, the most commonly used nucleic acid stain.  相似文献   

3.
In most molecular experiments, nucleic acids are subjected to agarose gel electrophoresis to determine the size of the molecule. The addition of a nucleic acid dye allows the nucleic acid to be detected under the UV image system after running the gel, so the nucleic acid dye is an integral part of the electrophoresis experiment. But when considering the mutagenicity and toxicity of nucleic acid dyes, one must be careful to insure the proper disposal of experimental waste. In this article, a new usage of nucleic acid dye in agarose gel electrophoresis is described where the nucleic acid dyes were added to the loading buffer and nucleic acid marker buffer. The results show that this method has advantages as: a smaller amount of dye can be used, there is less time in contact with the dye, and its operation is easier and reduces toxicity damage. Also the bands showed a much clearer image, having a lower background value. The improved method shows better results with lower toxicity and is superior to the traditional method.  相似文献   

4.
GelStar nucleic acid gel stain: high sensitivity detection in gels.   总被引:1,自引:0,他引:1  
GelStar nucleic acid gel stain can be used for sensitive fluorescent detection of both double-stranded (ds) and single-stranded (ss) DNAs, oligonucleotides and RNA in gels. The stain can be added to agarose gels at casting for immediate imaging after electrophoresis or can be used after electrophoresis with both agarose and acrylamide gels. GelStar stain is highly fluorescent only when bound to nucleic acids thus giving superior signal-to-noise ratios and obviating the need to destain the gel. The detection limits of GelStar strain are 20 pg for dsDNA, 25 pg for ssDNA and 10 ng for native or glyoxal-treated RNA.  相似文献   

5.
The gel electrophoresis mobility shift assay (EMSA) is used to detect protein complexes with nucleic acids. It is the core technology underlying a wide range of qualitative and quantitative analyses for the characterization of interacting systems. In the classical assay, solutions of protein and nucleic acid are combined and the resulting mixtures are subjected to electrophoresis under native conditions through polyacrylamide or agarose gel. After electrophoresis, the distribution of species containing nucleic acid is determined, usually by autoradiography of 32P-labeled nucleic acid. In general, protein-nucleic acid complexes migrate more slowly than the corresponding free nucleic acid. In this protocol, we identify the most important factors that determine the stabilities and electrophoretic mobilities of complexes under assay conditions. A representative protocol is provided and commonly used variants are discussed. Expected outcomes are briefly described. References to extensions of the method and a troubleshooting guide are provided.  相似文献   

6.
Methylene blue can be used as a stain for visualizing nucleic acids in polyacrylamide gel electrophoresis. However, its relatively low sensitivity and reversible binding make it a temporary stain that diffuses from the gel relatively fast. Here we describe a very simple method for fixing methylene blue bands in nucleic acid polyacrylamide gels. The procedure makes the methylene blue stain permanent and increases the visibility of the bands, also contributing to increasing the sensitivity of methylene blue.  相似文献   

7.
We developed a method for the detection of phosphatase activity using fluorogenic substrates after polyacrylamide gel electrophoresis. When phosphatases such as Ca2+/calmodulin-dependent protein kinase phosphatase (CaMKP), protein phosphatase 2C (PP2C), protein phosphatase 5 (PP5), and alkaline phosphatase were resolved by polyacrylamide gel electrophoresis in the absence of SDS and the gel was incubated with a fluorogenic substrate such as 4-methylumbelliferyl phosphate (MUP), all of these phosphatase activities could be detected in situ. Although 6,8-difluoro-4-methylumbelliferyl phosphate (DiFMUP) as well as MUP could be used as a fluorogenic substrate for an in-gel assay, MUP exhibited lower background fluorescence. Using this procedure, several fluorescent bands that correspond to endogenous phosphatases were observed after electrophoresis of various crude samples. The in-gel phosphatase assay could also be used to detect protein phosphatases resolved by SDS-polyacrylamide gel electrophoresis. In this case, however, the denaturation/renaturation process of resolved proteins was necessary for the detection of phosphatase activity. This procedure could be used for detection of renaturable protein phosphatases such as CaMKP and some other phosphatases expressed in cell extracts. The present fluorescent in-gel phosphatase assay is very useful, since no radioactive compounds or no special apparatus are required.  相似文献   

8.
The digital fluorescent imaging for documentation and analysis of gel electrophoretic separations of nucleic acids and proteins is widely used in quantitative biology. Most fluorescent stains used in postelectrophoretic analysis of proteins and nucleic acids have significant excitation peaks with UV light (300-365 nm), making midrange UV (UV-B) as the excitation source of choice. However, coupling quantitative CCD imaging with UV is difficult due to lack of uniformity found in typical UV transilluminators. The apparent amount of those macromolecules depends on the position of the gel band on the imaging surface of the transilluminator. Here, we report the development and validation of a highly uniform UV transillumination system. Using a novel high density lighting system containing a single lamp formed into a high density grid, an electronic ballast, a phosphor coating, and a bandpass filter to convert 254 nm light produced to 300-340 nm, uniformity of 80% CV observed in typical UV transilluminators. This system has been used for the quantitative analysis of electrophoretically separated nucleic acids and proteins (CV相似文献   

9.
The most common method of analysis of proteins synthesized in a cell-free translation system (e.g., nascent proteins) involves the use of radioactive amino acids such as [(35)S]methionine or [(14)C]leucine. We report a sensitive, nonisotopic, fluorescence-based method for the detection of nascent proteins directly in polyacrylamide gels. A fluorescent reporter group is incorporated at the N-terminus of nascent proteins using an Escherichia coli initiator tRNA(fmet) misaminoacylated with methionine modified at the alpha-amino group. In addition to the normal formyl group, we find that the protein translational machinery accepts BODIPY-FL, a relatively small fluorophore with a high fluorescent quantum yield, as an N-terminal modification. Under the optimal conditions, fluorescent bands from nanogram levels of in vitro-produced proteins could be detected directly in gels using a conventional UV-transilluminator. Higher sensitivity ( approximately 100-fold) could be obtained using a laser-based fluorescent gel scanner. The major advantages of this approach include elimination of radioactivity and the rapid detection of the protein bands immediately after electrophoresis without any downstream processing. The ability to rapidly synthesize nascent proteins containing an N-terminal tag facilitates many biotechnological applications including functional analysis of gene products, drug discovery, and mutation screening.  相似文献   

10.
Proteomics research relies heavily on visualization methods for detection of proteins separated by polyacrylamide gel electrophoresis. Commonly used staining approaches involve colorimetric dyes such as Coomassie Brilliant Blue, fluorescent dyes including Sypro Ruby, newly developed reactive fluorophores, as well as a plethora of others. The most desired characteristic in selecting one stain over another is sensitivity, but this is far from the only important parameter. This review evaluates protein detection methods in terms of their quantitative attributes, including limit of detection (i.e., sensitivity), linear dynamic range, inter-protein variability, capacity for spot detection after 2D gel electrophoresis, and compatibility with subsequent mass spectrometric analyses. Unfortunately, many of these quantitative criteria are not routinely or consistently addressed by most of the studies published to date. We would urge more rigorous routine characterization of stains and detection methodologies as a critical approach to systematically improving these critically important tools for quantitative proteomics. In addition, substantial improvements in detection technology, particularly over the last decade or so, emphasize the need to consider renewed characterization of existing stains; the quantitative stains we need, or at least the chemistries required for their future development, may well already exist.  相似文献   

11.
12.
Adult females of Meloidogyne incognita were excised from tomato roots and incubated in 0.04 M phosphate buffered saline, pH 7.4 for 18-72 hours to allow accumulation of stylet exudate. Twenty-four percent of the females produced exudate during the initial 18-hour incubation period; 70% of those females producing exudate initially produced additional exudate during the subsequent 54-hour incubation period. Analysis of exudate by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed the presence of at least nine major protein bands. Differential staining with silver and Coomassie Brilliant Blue G-250 stains indicated that three of the bands were glycoproteins. Upon acid hydrolysis, 14 amino acids were detected in the stylet exudate. The basic amino acids lysine, histidine, and arginine comprised 21.8% of the total amino acids detected. No peroxidase activity was detected in the stylet exudates. Data presented extend and generally confirm prior work on the chemical composition of stylet exudate.  相似文献   

13.
M BAND PROTEIN : Two Components Isolated from Chicken Breast Muscle   总被引:4,自引:3,他引:1       下载免费PDF全文
M band protein can be specifically extracted from fresh chicken breast muscle myofibrils suspended in 5 mM Tris-HCl pH 8.0. During discontinuous polyacrylamide gel electrophoresis the isolated protein separates into three bands which can be identified as two separate components (A, B) and a complex of the two. When partially purified fractions of the separated components are combined, an increase in the intensity of the band containing the complex can be shown. The polypeptide chain weights of the two components are 100,000 (A) and 40,000 (B) daltons as estimated by sodium dodecyl sulfate- (SDS-) polyacrylamide gel electrophoresis. Antibody prepared against total M band protein stains only the M band of the myofibril and is completely absorbed by M band protein. M band protein also absorbs the M band staining specifically from antibody which stains both I and M bands. Immunodiffusion data indicate that anti-M band is a mixture of two specific antibodies, one against each component.  相似文献   

14.
Proteomic analyses using two-dimensional gel electrophoresis (2DE) depend heavily upon the quality of protein stains for sensitive detection. Indeed, detection rather than protein resolution is likely a current limiting factor in 2DE. The recent development of fluorescent protein stains has dramatically improved the sensitivity of in-gel protein detection and has enabled more accurate protein quantification. Here, we have evaluated the overall quality and relative cost of five commercially available fluorescent stains, Krypton, Deep Purple, Rubeo, Flamingo, and the most commonly used stain, Sypro Ruby (SR). All stains were found to be statistically comparable with regard to number of protein spots detected, but SR was superior with regard to fluorophore stability (e.g., capacity for repeated use of the stain solution). Notably, colloidal Coomassie Blue was also found to be comparable to SR when detected using an infrared fluorescence imaging system rather than standard densitometry. Thus, depending on available equipment and operating budgets, there are at least two high-sensitivity alternatives to achieve the best currently available in-gel protein detection: Sypro Ruby or Coomassie Blue.  相似文献   

15.
Quantitative accuracy based on the fluorescent intensity of bands in a denaturing gradient gel electrophoresis (DGGE) profile of polymerase chain reaction (PCR)‐amplified 16S rRNA gene fragments was evaluated for the molecular inference of dominant populations using a cyanobacterial primer pair in a picocyanobacterial community. A serial dilution technique of the template prior to PCR of extracted nucleic acids allowed for elimination of minor strains (less than 10% of the whole cell number) using a cell mixture of three known cultured Synechococcus species with different ratios. When the most abundant strain among the three accounted for more than 80% of the cells, the single band derived from the most abundant one was detected exclusively after the template dilution. In the case of two or three strains evenly distributed in the sample, all strains remained as bands after template dilution. The technique used in the present study was also applied to lake water samples collected from depths of 1 and 5 m on 27 August 1999. The same dominant Synechococcus population was detected in both samples. Thus, the template‐dilution technique prior to PCR is useful to determine dominant picocyanobacterial populations in the DGGE profiling.  相似文献   

16.
Tang Z  Wang K  Tan W  Li J  Liu L  Guo Q  Meng X  Ma C  Huang S 《Nucleic acids research》2003,31(23):e148
Nucleic acids ligation is a vital process in the repair, replication and recombination of nucleic acids. Traditionally, it is assayed by denatured gel electrophoresis and autoradiography, which are not sensitive, and are complex and discontinuous. Here we report a new approach for ligation monitoring using molecular beacon DNA probes. The molecular beacon, designed in such a way that its sequence is complementary with the product of the ligation process, is used to monitor the nucleic acid ligation in a homogeneous solution and in real-time. Our method is fast and simple. We are able to study nucleic acids ligation kinetics conveniently and to determine the activity of DNA ligase accurately. We have studied different factors that influence DNA ligation catalyzed by T4 DNA ligase. The major advantages of our method are its ultrasensitivity, excellent specificity, convenience and real-time monitoring in homogeneous solution. This method will be widely useful for studying nucleic acids ligation process and other nucleic acid interactions.  相似文献   

17.
A simple vertical slab gel electrophoresis apparatus for analytical, preparative, and two-dimensional electrophoresis is described. The use of permanently sealed Plexiglas acrylic plastic slab gel molds which need to be sealed only at the bottom during gel formation, rather than the glass plate sandwich used in most previous designs, virtually eliminates leakage during gel formation and, in addition, permits the continuous monitoring with ultraviolet light of proteins and nucleic acids labeled with fluorescent dyes during electrophoresis. Results obtainable with this apparatus are equivalent to those achieved in other apparati which are more expensive to fabricate or purchase.  相似文献   

18.
Interactions between proteins and nucleic acids are frequently analyzed using electrophoretic mobility shift assays (EMSAs). This technique separates bound protein:nucleic acid complexes from free nucleic acids by electrophoresis, most commonly using polyacrylamide gels. The current study utilizes recent advances in agarose gel electrophoresis technology to develop a new EMSA protocol that is simpler and faster than traditional polyacrylamide methods. Agarose gels are normally run at low voltages (∼10 V/cm) to minimize heating and gel artifacts. In this study we demonstrate that EMSAs performed using agarose gels can be run at high voltages (≥20 V/cm) with 0.5 × TB (Tris-borate) buffer, allowing for short run times while simultaneously yielding high band resolution. Several parameters affecting band and image quality were optimized for the procedure, including gel thickness, agarose percentage, and applied voltage. Association of the siRNA-binding protein p19 with its target RNA was investigated using the new system. The agarose gel and conventional polyacrylamide gel methods generated similar apparent binding constants in side-by-side experiments. A particular advantage of the new approach described here is that the short run times (5–10 min) reduce opportunities for dissociation of bound complexes, an important concern in non-equilibrium nucleic acid binding experiments.  相似文献   

19.
N,N,N',N'-Tetramethylphenylenediamine (TMPD) acts as an effective indicator of peroxidase activity on polyacrylamide electrophoresis gels. The test is easy to perform, rapid, sensitive, and reliable. The procedure produces vivid bright blue bands (Wursters blue) on a clear background. TMPD and Wursters blue did not interfere with a number of other electrophoresis stains subsequently applied. These included total protein staining with Coomassie blue, and a number of pigment producing electrophoresis stains used to investigate melanogenesis-related enzymes in the black yeast Phaeococcomyces sp.  相似文献   

20.
An efficient method for the isolation of a few milligrams of a protein from a protein mixture by sodium dodecyl sulfate-polyacrylamide gel electrophoresis is described. The method is based on the insertion of an intermediate agarose-containing layer in the polyacrylamide gel. The protein mixture labeled with fluorescamine and the unlabeled one were run simultaneously in separate slots. During electrophoresis the fluorescent-conjugated protein bands were followed by uv illumination. The electrophoresis was stopped when the fluorescent band corresponding to the protein to be isolated was in the agarose layer. The protein is extracted quantitatively from the agarose in less than 1 h by ultracentrifugation. The pure protein recovered in the supernatant was used directly, in the Tris-sodium dodecyl sulfate buffer, to prepare rabbit antiserum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号