首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Incubation of proteins with glucose leads to their non-enzymatic glycation and formation of Amadori products known as an early glycation product. Oxidative cleavage of Amadori products is considered as a major route to advanced glycation endproducts (AGEs) formation in vivo. Non-enzymatic glycation of proteins or Maillard reaction is increased in diabetes mellitus due to hyperglycemia and leads to several complications such as blindness, heart disease, nerve damage, and kidney failure. The early and advanced glycation products are accumulated in plasma and tissues of diabetic patients and cause production of autoantibodies against corresponding products. The advanced glycation products are also associated with other diseases like cancer. This review summarizes current knowledge of these stage specific glycated products as common and early diagnostic biomarkers for the associated diseases and the complications with the aim of a novel therapeutic target for the diseases.  相似文献   

2.
Fructosamines, also known as Amadori products, are formed by the condensation of glucose with the amino group of amino acids or proteins. These compounds are precursors of advanced glycation end products (AGEs) that can be formed either endogenously during aging and diabetes, and exogenously in heat-processed food. The negative effects of dietary AGEs on human health as well as their negative impact on the quality of dairy products have been widely described, therefore specific tools able to prevent the formation of glycation products are needed. Two fructosamine oxidase enzymes isolated from Aspergillus sp. namely, Faox I and Faox II catalyze the oxidative deglycation of Amadori products representing a potential tool for inhibiting the Maillard reaction in dairy products. In this paper, the ability of recombinant Faox I and II in limiting the formation of carboxy-methyl lysine (CML) and protein-bound hydroxymethyl furfurol (b-HMF) in a commercial UHT low lactose milk and a beta-lactoglobulin (β-LG) glucose model system was investigated. Results show a consistent reduction of CML and b-HMF under all conditions. Faox effects were particularly evident on b-HMF formation in low lactose commercial milk. Peptide analysis of the β-LG glucose system identified some peptides, derived from cyanogen bromide hydrolysis, as suitable candidates to monitor Faox action in milk-based products. All in all data suggested that non-enzymatic reactions in dairy products might be strongly reduced by implementing Faox enzymes.  相似文献   

3.
Antibodies directed against advanced glycation products formed during Maillard reaction have been generated and characterized. These antibodies reacted specifically with advanced glycation products in common among proteins incubated with glucose, but not early-stage compounds such as a Schiff base adduct and Amadori rearrangement products. Incubation of bovine serum albumin with glucose caused a time-related increase in immunoreactivity and a concomitant increase in fluorescence intensity. These antibodies may serve as a useful tool to elucidate pathophysiological roles of advanced Maillard reaction in diabetic complications and aging processes.  相似文献   

4.
The interaction of reducing carbohydrates with proteins leads to a cascade of reactions that are known as glycation or Maillard reaction. We studied the impact of incubation of human serum albumin (HSA) with glucose, at various concentrations and incubation times, on the extent of HSA glycation and structural changes using circular dichroism (CD), fluorescence, and microviscometer techniques. The number of moles of glucose bound per mole of HSA (r), the number of reacted lysine and arginine residues, and the Amadori product formation during glycation were determined using 3-(dansylamino) phenyl boronic acid, fluorescamine, 9, 10 phenanthrenequinone, and p-nitroblue tetrazoliumchloride, respectively. The formation of advanced glycation end products (AGE) was detected using the autofluorescence characteristic of samples. We identified three stages of Maillard reaction for HSA upon incubation with the physiological level of glucose (0-630 mg/dl): the early, intermediate and late stages, which occurred after 7-14, 21, and >28 days of incubation, respectively. Structural information, Stokes radius, and 1-anilinonaphthalene-8-sulfonate (ANS) binding data indicated the formation of a molten globule-like state of HSA after 21 days of incubation with 35 mM (630 mg/dl) glucose. Thus, the extent of the Maillard reaction was influenced by the concentration of glucose and incubation time, such that longer exposure of HSA to glucose may have a more deleterious effect on its structure and especially on its half-life and turnover in the circulation. Our results suggest that in acute diabetes mellitus patients, HSA, after 21 days of glycation, passes through a molten globule-like state and may contribute to the pathogenesis of diabetes, and perhaps other diseases.  相似文献   

5.
In diabetes, protein glycation mostly occurs at intrachain lysine residues resulting in the formation of early stage Amadori products which are finally converted to advance glycation end products (AGEs). Several studies have reported autoantibodies against AGEs in diabetes but not much data are found in respect of Amadori products. In this study, poly-l-lysine (PLL) was glycated with 50 mM glucose and the resultant Amadori products were estimated by fructosamine or nitroblue tetrazolium assay. We report high content of Amadori products in PLL upon glycation. Glycated PLL showed marked hyperchromicity in the UV spectrum, ellipticity changes in CD spectroscopy, and variations in ε-methylene protons shift in NMR. It was better recognized by autoantibodies in type 2 diabetics compared to the native PLL. Induced antibodies against glycated PLL were successfully used to probe early glycation in the IgG isolated from diabetes type 2 patients. Role of Amadori products of glycated proteins in the induction of autoantibodies in type 2 diabetes as well as in associated secondary complications has been discussed.  相似文献   

6.
Glycation of biomolecules, such as proteins, peptide hormones, nucleic acids, and lipids, may be a major contributor to the pathological manifestations of aging and diabetes mellitus. These nonenzymatic reactions, also termed the Maillard reaction, alter the biological and chemical properties of biomolecules. In order to investigate the effect of various reducing sugars on the products formed from small bioactive peptides (Tyr-Gly-Gly-Phe-Leu, Tyr-Gly-Gly-Phe-Leu-NH2, Tyr-Gly-Gly-Phe-Leu-OMe, Tyr-Gly-Gly-Phe, and Tyr-Gly-Gly), model systems were prepared with glucose, mannose or galactose. Peptide-sugar mixtures were incubated at 37 or 50 degrees C in phosphate-buffered saline, pH 7.4, or in methanol. The extent of glycation was determined periodically by RP HPLC. All sugar-peptide mixtures generated two different types of glycation products: N-(1-deoxy-ketos-1-yl)-peptide (Amadori compound) and the imidazolidinone compound substituted by sugar pentitol and peptide residue. The amount and distribution of peptide glycation products depended on the structure of the reactants, and increased in both concentration- and time-dependent manner in relation to exposure to sugar. Additionally, the rate of hydrolysis of glucose-derived imidazolidinone compounds, obtained either from leucine-enkephalin (1) or its shorter N-terminal fragments 2 and 3, was determined by incubation at 37 degrees C in human serum. These results revealed that imidazolidinones obtained from glucose and small peptides are almost completely protected from the action of enzymes in serum, the predominant route of degradation being spontaneous hydrolysis to initial sugar and peptide compound.  相似文献   

7.
Nonenzymatic glycation of proteins has been implicated in various diabetic complications and age-related disorders. Proteins undergo glycation at the N-terminus or at the epsilon-amino group of lysine residues. Glycation of proteins proceeds through the stages of Schiff base formation, conversion to ketoamine product and advanced glycation end products. Gramicidin S, which has two ornithine residues, was used as a model system to study the various stages of glycation of proteins using electrospray ionization mass spectrometry. The proximity of two ornithine residues in the peptide favors the glycation reaction. Formation of advanced glycation end products and diglycation on ornithine residues in gramicidin S were observed. The formation of Schiff base adduct is reversible, whereas the Amadori rearrangement to the ketoamine product is irreversible. Nucleophilic amines and hydrazines can deglycate the Schiff base adduct of glucose with peptides and proteins. Hydroxylamine, isonicotinic acid hydrazide and aminoguanidine effectively removed glucose from the Schiff base adduct of gramicidin S. Hydroxylamine is more effective in deglycating the adduct compared with isonicotinic acid hydrazide and aminoguanidine. The observation that the hydrazines are effective in deglycating the Schiff base adduct even in the presence of high concentrations of glucose, may have a possible therapeutic application in preventing complications of diabetes mellitus. Hydrazines may be used to distinguish between the Schiff base and the ketoamine products formed at the initial stages of glycation.  相似文献   

8.
Reaction of protein amino groups with glucose (the Maillard reaction) leads from early stage products such as Schiff base and Amadori products to advanced glycation end products (AGE), structures implicated in diabetic complications and the aging process. We have prepared the polyclonal anti-AGE antibody and the monoclonal anti-AGE antibody against AGE-bovine serum albumin and made an immunochemical approach to characterize AGE structures. Both polyclonal and monoclonal antibodies reacted with AGE-proteins such as AGE-bovine serum albumin, AGE-human serum albumin, and AGE-hemoglobin but not with unmodified counterparts. Treatments of these AGE-proteins with borohydride had no effect on the immunoreactivity. Moreover, fructosyl-epsilon-caproic acid, a synthetic Amadori compound, did not serve as an antigen, indicating that these antibodies were specific for AGE products but not for early stage products of the Maillard reaction. In addition, these antibodies were also able to recognize AGE products prepared either from alpha-tosyl-1-lysine, alpha-tosyl-1-lysine methyl ester, monoaminocarboxylic acid such as epsilon-aminocaproic acid, gamma-amino-n-butyric acid, and beta-alanine. Thus, these results strongly suggest the presence of a common structure in AGE preparations, regardless of whether AGE products are generated from proteins, amino acids, or monoaminocarboxylic acids.  相似文献   

9.
Lipid glycation and protein glycation in diabetes and atherosclerosis   总被引:1,自引:0,他引:1  
Recent instrumental analyses using a hybrid quadrupole/linear ion trap spectrometer in LC-MS/MS have demonstrated that the Maillard reaction progresses not only on proteins but also on amino residues of membrane lipids such as phosphatidylethanolamine (PE), thus forming Amadori-PE (deoxy-d-fructosyl PE) as the principal products. The plasma Amadori-PE level is 0.08 mol% of the total PE in healthy subjects and 0.15–0.29 mol% in diabetic patients. Pyridoxal 5′-phosphate and pyridoxal are the most effective lipid glycation inhibitors, and the PE-pyridoxal 5′-phosphate adduct is detectable in human red blood cells. These findings are beneficial for developing a potential clinical marker for glycemic control as well as potential compounds to prevent the pathogenesis of diabetic complications and atherosclerosis. Glucose and other aldehydes, such as glyoxal, methylglyoxal, and glycolaldehyde, react with the amino residues of proteins to form Amadori products and Heynes rearrangement products. Because several advanced glycation end-product (AGE) inhibitors such as pyridoxamine and benfotiamine inhibit the development of retinopathy and neuropathy in streptozotocin (STZ)-induced diabetic rats, AGEs may play a role in the development of diabetic complications. In the present review, we describe the recent progress and future applications of the Maillard reaction research regarding lipid and protein modifications in diabetes and atherosclerosis.  相似文献   

10.
Glycation or the Maillard reaction in proteins forms advanced glycation end products (AGEs) that contribute to age- and diabetes-associated changes in tissues. Dideoxyosones, which are formed by the long-range carbonyl shift of the Amadori product, are newly discovered intermediates in the process of AGE formation in proteins. They react with o-phenylenediamine (OPD) to produce quinoxalines. We developed a monoclonal antibody against 2-methylquinoxaline-6-carboxylate coupled to keyhole limpet hemocyanin. The antibody reacted strongly with ribose and fructose (+OPD)-modified RNase A and weakly with glucose and ascorbate (+OPD)-modified RNase A. Reaction with substituted quinoxalines indicated that this antibody favored the 2-methyl group on the quinoxaline ring. We used high performance liquid chromatography to isolate and purify three antibody-reactive products from a reaction mixture of N alpha-hippuryl-L-lysine+ribose+OPD. The two most reactive products were identified as diastereoisomers of N1-benzoylglycyl-N6-(2-hydroxy-3-quinoxalin-2-ylpropyl)lysine and the other less reactive product as N1-benzoylglycyl-N6-[2-hydroxy-2-(3-methylquinoxalin-2-yl)ethyl]lysine. Our study confirms that dideoxyosone intermediates form during glycation and offers a new tool for the study of this important pathway in diabetes and aging.  相似文献   

11.
Nonenzymatic protein glycation is caused by a Schiff's base reaction between the aldehyde groups of reducing sugars and the primary amines of proteins. These structures may undergo further Amadori rearrangement and free radical‐mediated oxidation to finally generate irreversible advanced glycation end products (AGEs). One of the factors known to modulate the glycation of proteins is glutathione, the most abundant nonprotein thiol tripeptide with the γ‐linkage, H‐Glu(Cys‐Gly‐OH)‐OH (GSH). Screening for products formed by GSH with D ‐glucose is an essential step in understanding the participation of GSH in glycation (the Maillard) reaction. Under the conditions used in these studies we observed N‐(1‐deoxy‐D ‐fructos‐1‐yl)‐pyroglutamic acid as the major glycation product formed in the mixtures of GSH and glucose in vitro. A RP HPLC/MS and tandem MS analyses of the GSH/glucose mixtures revealed that cleavage of the N‐terminal glutamic acid and the formation of pyroglutamic acid‐related Amadori product were accompanied by generation of Cys‐Gly‐derived Amadori and thiazolidine compounds. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

12.
Reactions of reducing sugars with free amino groups of proteins can form advanced glycation end products (AGEs). While the formation of nucleoside AGEs has been studied in detail, no extensive work has been carried out to assess DNA Amadori and DNA advanced glycation end products. In this study, we report biophysical/chemical characterization of glucose-induced changes in DNA, as well as DNA Amadori and DNA advanced glycation end products. Glucose treated DNA exhibited hyperchromicity, decrease in melting temperature, and enhanced emission intensity in a time dependent manner. Formation of DNA Amadori product and DNA advanced glycation end products, mainly CEdG (N(2)-carboxyethyl-2'-deoxyguanosine), were the major outcome of the study.  相似文献   

13.
Nonenzymatic glycation by glucose (glucation) was compared with glycation by fructose (fructation). The rate and extent of protein-bound fluorescence generation upon fructation was about 10 times that upon glucation. In contrast, nonenzymatically glucated bovine serum albumin (BSA) released about twice as much formaldehyde upon periodate oxidation as did nonenzymatically fructated BSA. However, the rate of blocking of amino groups was similar in both proteins. Periodate oxidation of borohydride-reduced glycated BSA led to regeneration of amino groups with preservation of fluorescence. From the ratio between the decrease in formaldehyde-releasing ability and the regenerated amino groups, formaldehyde molar yields of 0.47 and 0.8 were computed for fructose- and glucose-derived Amadori groups, respectively. This is consistent with participation of both carbon 1 and carbon 3 in the Amadori rearrangement from fructose. The formaldehyde releasing ability of nonenzymatically fructated BSA attains asymptotic maximum values earlier than that of nonenzymatically glucated BSA. Thus, the higher rate of fluorescence generation in nonenzymatically fructated BSA could be explained by a faster conversion of its Amadori groups. Since fluorescence generation through the Maillard reaction has been correlated with long term complications of diabetes mellitus, the participation of nonenzymatic fructation in this pathological state deserves further exploration. This is especially relevant in tissues where fructose levels increase in diabetes as a result of the operation of the sorbitol pathway.  相似文献   

14.
Jakas A  Horvat S 《Biopolymers》2003,69(4):421-431
Reactions between biological amines and reducing sugars (the Maillard reaction) are among the most important of the chemical and oxidative changes occurring in biological systems that contribute to the formation of a complex family of rearranged and dehydrated covalent adducts that have been implicated in the pathogenesis of human diseases. In this study, chemistry of the Maillard reactions was studied in four model systems containing fructosamines (Amadori compounds) obtained from the endogenous opioid pentapeptide leucine-enkephalin (Tyr-Gly-Gly-Phe-Leu), leucine-enkephalin methyl ester, structurally related tripeptide (Tyr-Gly-Gly), or from amino acid (Tyr). The degradation of model compounds as well as their ability to develop Maillard fluorescence was investigated under oxidative conditions in methanol and phosphate buffer pH 7.4 at two different temperatures (37 and 70 degrees C). At 37 degrees C, glycated leucine-enkephalin degraded slowly in methanol (t(1/2) approximately 13 days) and phosphate buffer (t(1/2) approximately 9 days), producing a parent peptide compound as a major product throughout a three-week incubation period. Whereas fluorescence slowly increased over time at 37 degrees C, incubations off all studied Amadori compounds at 70 degrees C resulted in a rapid appearance of a brown color and sharp increase in AGE (advanced glycation end products)-associated fluorescence (excitation 320 nm/emmision 420 nm) as well as in distinctly higher amounts of fragmentation products. The obtained data indicated that the shorter the peptide chain the more degradation products were formed. These studies have also helped to identify a new chemical transformation of the peptide backbone in the Maillard reaction that lead to beta-scission of N-terminal tyrosine side chain and p-hydroxybenzaldehyde formation under both aqueous and nonaqueous conditions.  相似文献   

15.
Glycation of peptides and proteins is a slow chemical reaction of reducing sugars modifying the amino groups. The first intermediates of this nonenzymatic glycosylation are the Amadori products that can undergo further chemical reactions, finally leading to advanced glycation end products (AGEs). The formation of AGEs was not only linked to aging of tissues and organs in general but also to several diseases such as diabetes mellitus and Alzheimer's disease. Because of the importance of these modifications and their potential use as diagnostic markers, a global postsynthetic approach on solid phase was developed. The peptides were synthesized by Fmoc/(t)Bu-chemistry, with the lysine residue to be modified being protected with the very acid-labile methyltrityl group. Incubation of the peptides with D-glucose in DMF at elevated temperatures resulted in product yields of 35%. Neighboring residues with bulky protecting groups reduced the yields only slightly. The major by-products were the unmodified peptide and an oxidation product. Whereas the unmodified peptide eluted before the glycated peptide, all other by-products eluted later in RP-HPLC, allowing simple purification.  相似文献   

16.
吡哆胺-一种天然的AGEs/ALEs抑制剂   总被引:2,自引:0,他引:2  
衰老及老年相关疾病,如:糖尿病、动脉粥状硬化、各种神经退行性疾病等,与组织蛋白氧化修饰密切相关.在造成蛋白质氧化修饰的反应中,非酶糖基化和脂质过氧化是最重要的两类,它们最终形成非酶糖基化终产物(AGEs)和脂过氧化终产物(ALEs).基于羰基毒害衰老理论,具有强烈反应活性的羰基类化合物是非酶糖基化和脂质过氧化的共同中间产物,它们是造成蛋白修饰的直接原因之一.吡哆胺是维生素B6的一种天然成分;由于它能直接清除羰基类化合物,从而抑制AGEs/ALEs的生成;又因为吡哆胺对人体副作用很小.因此吡哆胺有望成为一种新型的防治多种老年相关疾病的药物.  相似文献   

17.
The chemistry of Maillard or browning reactions of glycated proteins is being studied in model systems in vitro in order to characterize potential reaction pathways and products in biological systems. In previous work with the Amadori rearrangement product N alpha-formyl-N epsilon-fructoselysine (fFL), an analog of glycated lysine residues in proteins, we showed that fFL was oxidatively cleaved between C-2 and C-3 of the carbohydrate chain to yield N epsilon-carboxymethyllysine (CML) and D-erythronic acid. We then detected CML in proteins glycated in vitro, as well as in human lens proteins and collagen in vivo (Ahmed, M. U., Thorpe, S. R., and Baynes, J. W. (1986) J. Biol. Chem. 261, 4889-4894). This work provided an explanation for the origin of CML in human urine and evidence for non-browning pathways of the Maillard reaction in vivo. In this report we describe the identification of a second set of products resulting from oxidative cleavage of fFL between C-3 and C-4 of the sugar chain, i.e. 3-(N epsilon-lysino)-lactic acid (LL) and D-glyceric acid. The formation of LL from fFL was increased at slightly acid pH, representing about 30% of the yield of CML at pH 6.4, compared with 4% at pH 7.4 in phosphate buffer. By gas chromatography-mass spectroscopy, LL was detected in proteins glycated in vitro and then identified as a natural product in human lens proteins and urine. Our results indicate that oxidative degradation of Amadori adducts to proteins occurs in vivo, leading to formation and excretion of CML and LL. These non-browning pathways for reaction of Amadori compounds may be physiologically relevant mechanisms for averting potentially damaging consequences of the Maillard reaction.  相似文献   

18.
Glycation reactions, such as those seen in late diabetes, can be mimicked in purely chemical systems. The glycation is time-dependent, and in in vitro systems it can continue for days. Ascorbate seems to enhance the reactions. The reactions are associated with free-radical formation through transformation of an Amadori product to (deoxy-)glycoson, catalysed by heavy metals. Ascorbate enhances the reaction by a factor of 5-10 compared with in vitro systems without ascorbate. In vitro systems containing bovine serum albumin retard the formation of free-radicals, because of the formation of advanced glycation products.  相似文献   

19.
A nonenzymatic reaction of reducing sugars with the free amino group located at the N terminus of the polypeptide chain or in the lysine side chain results in glycation of proteins. The fragments of glycated proteins obtained by enzymatic hydrolysis could be considered as the biomarkers of both the aging process and diabetes mellitus. Here we propose a new method for the identification of peptide-derived Amadori products in the enzymatic digest of glycated proteins. The products of enzymatic hydrolysis of the model protein ubiquitin were incubated with H218O under microwave activation. We observed that at these conditions the Amadori compounds selectively exchange one oxygen atom in the hexose moiety. The characteristic isotopic pattern of Amadori products treated with H218O allows fast and convenient identification of this group of compounds, whereas nonglycated peptides are not susceptible to isotopic exchange.  相似文献   

20.
Protein glycation through Maillard reaction (MR) is a fundamental reaction both in foods and in the human body. The first step of the reaction is the formation of Amadori product (AP) that is converted into intermediate and advanced MR products during reaction development. Although the MR is not an enzymatic reaction, a certain degree of specificity in the glycation site has been observed. In the present study, we have monitored the glycation of different lysine-containing dipeptides to evaluate the influence on the NH(2) reactivity of the neighboring amino acid.Lysine dipeptides were reacted with glucose, galactose, lactose and maltose. The formation and identification of glycated compounds were monitored by mass spectrometry (MALDI-TOF and ESI-MS/MS) and by HPLC of their Fmoc derivatives. MS/MS analysis showed that the glucose APs formed on dipeptides have a characteristic fragmentation pattern: the fragment at [M - 84](+) due to the formation of pyrylium and furylium ion is mainly present in the monoglucosylated form, while the [M - 162](+) and the [M - 324](+) are more evident in the fragmentation pattern of the diglucosylated forms.The nature of the vicinal amino acids strongly affects lysine reactivity towards the different carbohydrates: the presence of hydrophobic residues such as Ile, Leu, Phe strongly increases lysine reactivity. Contrasting results were obtained with basic residues. The Lys-Arg dipeptide was among the most reactive while the Lys-Lys was not.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号