首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We analysed quantity and quality of particulate organic matter during the austral summer 1994/1995 at a coastal station in Terra Nova Bay (Ross Sea, Antarctica). Our main aims were to investigate the origin and biochemical composition of particulate organic matter (POM), to measure its availability for consumers through the study of its digestible fraction (measured by using different enzymes separately) and to highlight the role of hydrolizable compounds in the organic matter diagenesis in the coastal waters at Terra Nova Bay. Temporal and spatial patterns of chlorophyll-a concentrations were reflected by the particulate organic carbon, nitrogen and total biopolymeric carbon concentrations, suggesting that most POM originated directly from phytoplankton. The most evident feature of POM in the coastal waters at Terra Nova Bay was the dominance of proteins (on average 57% of total biopolymeric particulate carbon), followed by carbohydrates (25%) and lipids (18%). We found that about 30% of the refractory particulate organic carbon (assumed to be present only after the complete exploitation of particulate organic nitrogen) did not originate from biopolymeric carbon (as sum of carbohydrate, protein and lipid carbon). This allows us to suggest the use of the digestible fraction of particulate biopolymeric carbon as a more accurate measure of the food availability of POM for consumers. In Terra Nova Bay coastal waters, most of the particulate protein pool was associated with large phytoplankton cells or phytodetritus. As a result, the protein pool appeared less available (i.e. less digestible) than the one present in oligotrophic waters where, conversely, most particulate organic nitrogen is sequestered into bacteria. The relative low availability of the protein pool, together with the rapid sinking of POM and the low remineralization rates of benthic heterotrophic microbes, are suggested as possible factors in determining the “inefficiency” in organic matter recycling of coastal waters at Terra Nova Bay, which behaves as a “loss type” system. Received: 17 June 1997 / Accepted 25 September 1997  相似文献   

2.
We investigated organic carbon quantity and biochemical composition, prokaryotic abundance, biomass and carbon production in the annual and platelet sea ice of Terra Nova Bay (Antarctica), as well as the downward fluxes of organic matter released by melting ice during early spring. Huge amounts of biopolymeric C accumulated in the bottom layer of the ice column concomitantly with the early spring increase in sympagic algal biomass. Such organic material, mostly accounted for by autotrophic biomass, was characterised by a high food quality and was rapidly exported to the sea bottom during sea ice melting. Prokaryote abundance (up to 1.3 × 109 cells L−1) and extracellular enzymatic activities (up to 24.3 μM h−1 for amino-peptidase activity) were extremely high, indicating high rates of organic C degradation in the bottom sea ice. Despite this, prokaryote C production values were very low (range 5–30 ng C L−1 h−1), suggesting that most of the degraded organic C was not channelled into prokaryote biomass. In the platelet ice, we found similar organic C concentrations, prokaryote abundance and biomass values and even higher extracellular enzymatic activities, but values of prokaryote C production (range 800–4,200 ng C L−1 h−1) were up to three orders of magnitude higher than in the intact bottom sea ice. Additional field and laboratory experiments revealed that the dissolved organic material derived from algae accumulating in the bottom sea ice significantly reduced prokaryote C production, suggesting the presence of a potential allopathic control of sympagic algae on prokaryote growth. This article belongs to a special topic: Five articles on Sea-ice communities in Terra Nova Bay (Ross Sea), coordinated by L. Guglielmo and V. Saggiomo, appear in this issue of Polar Biology. The studies were conducted in the frame of the National Program of Research in Antarctica (PNRA) of Italy.  相似文献   

3.
Studies on the chemical and biological properties of annual pack ice at a coastal station in Terra Nova Bay (74°41.72′S, 164°11.63′E) were carried out during austral spring at 3-day intervals from 5 November to 1 December 1997. Temporal changes of nutrient concentrations, algal biomasses, taxonomic composition, photosynthetic pigment spectra and P–E relationships were studied. Quantity, composition and degradation rates of organic matter in the intact sea ice were also investigated. In addition, microcosm experiments were carried out to evaluate photosynthetic and photo-acclimation processes of the sympagic flora in relation to different light regimes. High concentrations of ammonia were measured in four ice-cores (weighted mean values of the cores ranged from 4.3 ± 1.9 μM to 7.2 ± 3.4 μM), whereas nitrate and phosphate displayed high concentrations (up to 35.9 μM and 7.6 μM, respectively) only in the bottom layer (135–145 cm depth). Particulate carbohydrate and protein concentrations in the intact sea ice ranged from 0.5 to 2.3 mg l−1 and 0.2 to 2.0 mg l−1, respectively, displaying a notable accumulation of organic matter in the bottom colored layer, where bacterial enzymatic activities also reached the highest values. Aminopeptidase activity was extremely high (up to 19.7 μM l−1 h−1 ± 0.05 in the bottom layer), suggesting a rapid turnover rate of nitrogen–enriched organic compounds (e.g. proteins). By contrast, bacterial secondary production was low, suggesting that only a very small fraction of mobilized organic matter was converted into bacterial biomass (<0.01‰). The sympagic autotrophic biomass (in terms of chlorophaeopigments) of the bottom layer was high, increasing during the sampling period from 680 to 2480 μg l−1. Analyses of pigments performed by HPLC, as well as microscope observations, indicated that diatoms dominated bottom communities. The most important species were Amphiprora sp. and Nitschia cfr. stellata. Bottom sympagic communities showed an average P B max of 0.12 mgC mg Chl−1 and low photoadaptation index (E k=18 μE m−2 s−1, E m=65 μE m−2 s−1). Results of the microcosm experiment also indicated that communities were photo-oxidized when irradiance exceeded 100 μE m−2 s−1. This result suggests that micro- autotrophs inhabiting sea ice might have a minor role in the pelagic algal blooms. Accepted: 4 August 1999  相似文献   

4.
We illustrate the spatial and vertical distribution of sediment phytopigments and organic matter biochemical composition at Terra Nova Bay (Ross Sea) during summer 1995. Coastal sediments displayed high phytopigments concentrations associated with huge amounts of labile organic matter largely dominated by proteins. This result was opposite to previous observations in the same area. Such comparison suggested that whilst organic matter quantity in the sediments depended upon the vertical input from the water column, temporal changes in its biochemical composition were related to benthic processes. As considerably high concentrations of biopolymeric organic carbon were found even at 6-cm depth and according to the “loss type” functioning of the coastal waters of the Ross Sea, we stress the summer time occurrence in coastal sediments of an important organic matter burial. Accepted: 24 October 1999  相似文献   

5.
The sympagic (=ice-associated) amphipod Gammarus wilkitzkii usually lives attached to the underside of Arctic sea ice. During an expedition to the Greenland Sea in May/June 1997, high numbers of this species were found in pelagic Rectangular Midwater Trawl catches (0–500 m water depth) in an ice-free area, 35–42 km away from the ice edge. The amphipods seemed to have maintained position in the water column for at least 4 days. Mean biomass data (length: 2.9 cm, organic content: 73% dry mass), gut fullness (>50% in 85% of specimens) and sex ratio (females:males = 1:1.5) of these amphipods were very similar to values for under-ice populations. Due to their relatively high body density (mean: 1.134 g cm−3), the energy demand for swimming was assumed to be high. Measurements of oxygen consumption of swimming and resting amphipods (8.8 and 4.0 J g wet mass−1 day−1, respectively) suggested that, from an energetic point of view, G. wilkitzkii would maintain position in an ice-free water column for the time period. Accepted: 11 January 1999  相似文献   

6.
During the Italian Antarctic Expedition of 1987–1988 zooplankton was collected in Terra Nova Bay (Ross Sea) by a multinet BIONESS (250-μm or 500-μm net mesh size). The early life history of Pleuragramma antarcticum was described from 268 samples. More than 98% of a total of 34,436 fish larvae belonged to P. antarcticum. The mean relative abundance in the whole area for positive 0 to 150-m hauls was 434 ind./100 m3 (±720 SD). Postlarvae were most abundant and frequent in the samples (99.8%) while low concentrations of juveniles were found (n=67). Length of age group 0 ranged from 8 to 20 mm and age group 1+ were from 36 to 53 mm. Average growth rate over a period of 1 year was 0.08 mm per day. Based on modal values, the mean daily increment of P. antarcticum postlarvae in the period 5 January to 2 February (29 days) was about 0.21 mm. Highest abundances occurred near Cape Washington (mean: 2,108 ind./100 m3) while lower densities were recorded in the northern basin of the self (31 ind./100 m3). Horizontal and vertical distribution patterns in Terra Nova Bay seem to be strictly correlated to hydrographic features and different water masses with highest densities associated with the westward flowing current of the limb of the Antarctic coastal current and southern limb of the Ross Sea Gyre. These currents become part of the clockwise gyre in Terra Nova Bay. More than 62% of the postlarvae were collected in well-stratified warm surface water (0–50 m) near the summertime thermocline (20–70 m). The northern part of Terra Nova Bay seems to represent nursery ground of early stages of P. antarcticum and the presence of permanent polynya could provide favourable food conditions for development of the first stages of life. Differing distribution patterns probably reflect an interaction of various parameters including bathymetry, floating ice shelf, hydrographic features such as currents, local eddies and frontal systems, with P. antarcticum postlarval biology (spawning) and ecology (feeding, horizontal and vertical distribution patterns). Received: 10 June 1996 / Accepted: 19 July 1997  相似文献   

7.
Spatial changes of small nanoplankton (2–10 μm) were investigated in relation to sea-ice conditions, hydrography and receding ice processes in the Ross Sea (Antarctica) during spring 1994. Abundance and biomass of heterotrophic and autotrophic nanoplankton, as well as bacterioplankton, were determined along a south-north transect from the open waters polynya towards the pack ice. Autotrophic and heterotrophic nanoplankton biomass ranged from 758 to 4570 mgC m−2 and from 3 to 387 mgC m−2, respectively. Heterotrophic nanoplankton accounted, on average, for about 9% of the total (i.e. autotrophic plus heterotrophic) nanoplankton biomass. The size structure of both auto- and heterotrophic nanoplankton in the Ross Sea continental shelf receding ice edge was different from that of nanoplankton associated with the shelf break and open Antarctic ice-edge area. Generally, the highest heterotrophic biomass was found in the pack-ice zone on the continental shelf, while the highest heterotrophic contribution to the total nanoplankton biomass (up to 25%) was encountered at the shelf break where phytoplankton was largely dominated by 2- to 3-μm-size cells. Accepted: 2 May 1999  相似文献   

8.
Spatial distributions of particulate organic matter (POM) and microbes were investigated during the summer of 1989–1990 in the coastal waters of Terra Nova Bay (Antarctica). The elemental (organic carbon and nitrogen) and biochemical (lipids, proteins, carbohydrates, DNA and RNA) composition of organic matter was related to bacterioplankton abundance, and pico-phytoplankton density. The ATP concentrations were also measured to gather information about the relationships between particulate matter composition and microbial distribution in Antarctic waters. Total seston was characterized by little spatial variation and was unrelated to the distance from the coast. Suspended particulate matter included some terrestrial components but was mostly composed of autochthonous material. POM was characterized by a uniform distribution and homogeneous composition (mostly of phytoplanktonic origin), and was associated with a relatively scarce microbial community characterized at the surface by high picophytoplankton density. The increase with depth of the living carbon fraction suggested an increase in the microheterotrophic community in the deeper water layers. A significant positive relationship between total bacterioplankton density, and carbohydrate and RNA concentrations was found. Similar significant relationships between pico-phytoplankton abundance and lipids, proteins, carbohydrates and nucleic acids were observed. On the basis of the close coupling found between microbiological and chemical compartments, it seems that, in Terra Nova Bay, bacterial distribution depends on suspended matter and in particular to the labile fraction of the organic detritus.  相似文献   

9.
During the austral summer of 1995, distributions of phytoplankton biomass (as chlorophyll a), primary production, and nutrient concentrations along two north-south transects in the marginal ice zone of the northwestern Weddell Sea were examined as part of the 8th Korean Antarctic Research Program. An extensive phytoplankton bloom, ranging from 1.6 to 11.2 mg m−3 in surface chlorophyll a concentration, was encountered along the eastern transect and extended ca. 180 km north of the ice edge. The spatial extent of the bloom was closely related to the density field induced by the input of meltwater from the retreating sea ice. However, the extent (ca. 200 km) of the phytoplankton bloom along the western transect exceeded the meltwater-influenced zone (ca. 18 km). The extensive bloom along the western transect was more closely related to local hydrography than to the proximity of the ice edge and the resulting meltwater-induced stability of the upper water column. In addition, the marginal ice zone on the western transect was characterized by a deep, high phytoplankton biomass (up to 8 mg Chl a m−3) extending to 100-m depth, and the decreased nutrient concentration, which was probably caused by passive sinking from the upper euphotic zone and in situ growth. Despite the low bloom intensity relative to the marginal ice zone in both of the transects, mean primary productivity (2.6 g C m−2 day−1) in shelf waters corresponding to the northern side of the western transect was as high as in the marginal ice zone (2.1 g C m−2 day−1), and was 4.8 times greater than that in open waters, suggesting that shelf waters are as highly productive as the marginal ice zone. A comparison between the historical productivity data and our data also shows that the most productive regions in the Southern Ocean are shelf waters and the marginal ice zone, with emerging evidence of frontal regions as another major productive site. Accepted: 27 September 1998  相似文献   

10.
The sub-ice habitat and fauna in the Laptev Sea and the adjacent Arctic Ocean were investigated during the “Polarstern” cruise ARK XI/1 in summer 1995. At the ice-water interface a thin thermo- and halocline developed at many stations due to melting processes. In the lower centi- to decimetres of the ice, an accumulation of organic matter was found (particulate organic carbon: 1.9 mg l−1, chl a: 3.3 μg l−1) that may have provided a food source for the fauna. The water layer directly beneath the ice was inhabited by high numbers of various nauplii (130–23911 ind. m−3), and two ecological groups, the pelagic sub-ice fauna that originates from the surface water plankton, and the sympagic sub-ice fauna that migrates into this boundary layer from the ice interior. The pelagic fauna dominated the sub-ice community both in terms of species number and abundance. Both groups mainly comprised small copepods (e.g. Oithona similis, Oncaea borealis, Pseudocalanus spp., Halectinosoma spp., Tisbe spp.), but foraminifers and pteropods, for example, also occurred regularly. Diversity was generally low. Factors influencing the composition and abundance of the sub-ice fauna were most likely water depth, salinity and sea-ice sediments. Accepted: 6 July 1998  相似文献   

11.
Algal communities and export of organic matter from sea ice were studied in the offshore marginal ice zone (MIZ) of the northern Barents Sea and Nansen Basin of the Arctic Ocean north of Svalbard by means of ice cores and short-term deployed sediment traps. The observations cover a total of ten stations within the drifting pack ice, visited over a period of 3 years during the period of ice melt in May and July. Maximum flux of particulate organic carbon and chlorophyll a from the ice at 1 m depth (1,537 mg C m−2 per day and 20 mg Chl a m−2 per day) exceeded the flux at 30 m by a factor of 2 during spring, a pattern that was reversed later in the season. Although diatoms dominated the ice-associated algal biomass, flagellates at times revealed similarly high biomass and typically dominated the exported algal carbon. Importance of flagellates to the vertical flux increased as melting progressed, whereas diatoms made the highest contribution during the early melting stage. High export of ice-derived organic matter and phytoplankton took place simultaneously in the offshore MIZ, likely as a consequence of ice drift dynamics and the mosaic structure of ice-covered and open water characteristic of this region.  相似文献   

12.
During January 1989, phytoplankton biomass and species composition were studied in a north / south transect at the Weddell / Scotia Confluence (47°W), between 57° and 61°30′S. Results showed a diatom bloom in the Scotia Sea (chlorophyll a 1.9 μg l−1, particulate organic carbon 239 μg l−1), dominated by Fragilariopsis cylindrus, Dactyliosolen antarcticus and Chaetoceros dichaeta. Low chlorophyll a / phaeopigments ratios (about 1.4) and silicate concentrations (15 μmol l−1) suggested that this was an advanced bloom phase, probably linked to high grazing pressure. Minimum chlorophyll a values of 0.1–0.2 μg l−1 and particulate organic carbon 46 μg l−1 were found at the Weddell / Scotia Front and in a subsurface layer of the Weddell Sea Water. In the southern part of the transect (61°30′S), in the Weddell Sea, a second surface maximum was found (chlorophyll a 0.9 μg l−1, particulate organic carbon 120 μg l−1), but with a different species composition, with Cryptomonas sp. dominant. Our results show a succession within the diatom community in the Weddell / Scotia Confluence Waters when comparing the three EPOS legs. In the Weddell Sea from spring to summer, nanoflagellates, with only a minor contribution from diatoms, persist over a long period with little change in the community structure. We suggest that the frontal system, together with the receding ice edge and the grazing pressure of either krill or protozooplankton, are mainly responsible for the phytoplankton distribution patterns found. Received: 3 July 1996 / Accepted: 3 November 1996  相似文献   

13.
Distribution and composition of organic matter were investigated in Antarctic pack ice in early spring and summer. Accumulation of organic compounds was observed with dissolved organic carbon (DOC) and particulate organic carbon (POC) reaching 717 and 470 μM C, respectively and transparent exopolymeric particles (TEP) up to 3,071 μg Xanthan gum equivalent l−1. POC and TEP seemed to be influenced mainly by algae. Particulate saccharides accounted for 0.2–24.1% (mean, 7.8%) of POC. Dissolved total saccharides represented 0.4–29.6% (mean, 9.7%) of DOC, while dissolved free amino acids (DFAA) accounted for only 1% of DOC. Concentrations of TEP were positively correlated with those of saccharides. Monosaccharides (d-MCHO) dominated during winter–early spring, whereas dissolved polysaccharides did in spring–summer. DFAA were strongly correlated with d-MCHO, suggesting a similar pathway of production. The accumulation of monomers in winter is thought to result from limitation of bacterial activities rather than from the nature of the substrates.  相似文献   

14.
Concentrations of plankton, suspended particles 0.74–87 μm equivalent spherical diameter and dissolved organic carbon (DOC) were measured from May to February at an Antarctic coastal site. Bacteria-sized particles 0.74–1 μm diameter, and bacterial cells and heterotrophic protists all exhibited a seasonal minimum during winter and maxima in summer. Bacteria composed <10% of the bacteria-sized particles. Release of autotrophic protists from the ice caused water column biomass of autotrophs to reach maximum concentrations in October and November, but maximum cell concentration in the water column was reached in January. Microheterotroph biomass weakly reflected the release of the ice algal community but reached maximum concentration during the water column bloom in January. Total DOC concentrations varied from 0.36 mg C l−1 in July to 3.10 mg C l−1 in October, with a yearly average of 1.51 mg C l−1. Ultrafiltration of DOC revealed that the molecular weight composition of the DOC differed greatly through the year. DOC <5 kDa molecular weight reached a maximum of 1.25 mg C l−1 in October and accounted for up to 60% of total DOC in July. Concentrations of high molecular weight DOC (>100 kDa) were highest in July and November, with the DOC (100 kDa–0.5 μm) fraction reaching a maximum of 1.22 mg C l−1 in November and composing 82% of the total DOC in January. Wet chemical oxidation and high-temperature catalytic oxidation organic carbon analyses were compared. Good correlation was observed between methods during summer but no significant correlation existed in winter, indicating that winter DOC may be refractory. Accepted: 21 March 2000  相似文献   

15.
The aim of the study was to investigate the capacity of microalgae from the extremely low light habitat of bottom ice to acclimate to different light conditions. During austral spring 1997 the bottom layer of land-fast ice in Terra Nova Bay displayed high values of microalgal biomass up to 2,400 μg Chla L−1 concentrated in a few centimetres ice layer. The algal assemblage was dominated by benthic pennate diatoms. Photoacclimation of the microalgae was addressed in terms of pigment spectra and photosynthetic parameters. Immediate and long term (minutes to days) changes in the photoprotective pigments (DD-cycle) were analysed. Severe photodamage occurred in microalgal assemblages exposed to high light. However, part of the bottom ice algal community showed a notable ability to acclimate to high irradiance levels. Changes in photosynthetic parameters preceded the sudden abrupt changes in pigment synthesis and the rapid increase in biomass and growth rates. This article belongs to a special topic: Five articles on Sea-ice communities in Terra Nova Bay (Ross Sea), coordinated by L. Guglielmo and V. Saggiomo, appear in this issue of Polar Biology. The studies were conducted in the frame of the National Program of Research in Antarctica (PNRA) of Italy.  相似文献   

16.
In the low salinity region of the Elbe estuary in March–April 1992 the turbidity zone was characterized by high loads of suspended matter, 7% of which was organic material (750 μM C) at the surface. Particulate nitrogen, phosphorus and carbohydrates concentrations reached 55 μM N, 10 μM P and more than 15 μM glc. eq., corresponding to 13% of total C, at the surface and increasing threefold near the bottom. In spite of the peaking of particulate organic material levels in the maximum turbidity zone, there were only consistent qualitative changes in total particulate C, N, P, and carbohydrates along the Elbe estuary. Downstream, both the percentage of particulate organic material and the turbidity: organic material ratio decreased, indicating decomposition in the upper estuary and dilution with inorganic suspended matter from the lower estuary. Diatoms, the dominant phytoplankton group, decreased from the upper reaches towards the turbidity zone by 0.3 (surface) and 1.5 mg C l−1 (bottom). This corresponded to 12 and 60% of the decrease in total particulate carbon. Estimated local input of organic carbon by primary production (21 μg Cl−1d−1) was almost compensated by calculated minimum grazing (14 μg C l−1d−1). Considering net primary production and grazing, the dissimilation by zooplankton (5 μg C l−1d−1) and heterotrophic bacterial decomposition (48 μg C l−1d−1), when summed over the estimated flushing time (12 days) represented a loss of suspended organic matter of 0.6 mg Cl−1. Since this was only 20% of the observed decrease in particulate carbon, significant dilution processes must be assumed. Dissolved organic nitrogen decreased from 35 to 10 μM N and dissolvd organic phosphorus from 0.6 to 0.1 μM P towards the sea, mainly due to dilution. The distribution of phosphate, with highest loads in the turbidity maximum of 2.4 μM, suggested an interaction with the accumulated load of particulate material.  相似文献   

17.
The epilithic biomass of an outflow stream at Potter Peninsula (King George Island, Antarctica) was studied from November 1996 to February 1997 by means of chlorophyll a concentration, dry weight and ash-free dry weight. The Autotrophic Index and the Lakatos classification were also used in order to characterize the epilithic community. Several physical and chemical parameters were analyzed. Snow and ice melt greatly increased water flow through Tres Hermanos Lake and in the stream. Chlorophyll a concentrations fluctuated between undetectable and 3.5 μg cm−2 with a marked increase, which averaged 3 orders of magnitude, towards the end of the study period. Dry weight ranged between 299.9 and 13,118.7 μg cm−2 and ash-free dry weight between 70.8 and 996.9 μg cm−2. According to the Autotrophic Index and the Lakatos classification, the epilithon of the stream had a low mass with low organic component and large amount of inorganic sediment. The organic matter comprised a low proportion of chlorophyll a and a major proportion of probably detritus or bacteria, rather than fauna. Accepted: 3 June 2000  相似文献   

18.
18 Swedish forest lakes covering a wide range of dystrophy were studied in order to quantify and characterize the organic matter in the water with respect to origin (allochthonous or autochthonous), physical state (particulate or dissolved) and phosphorus content. Samples were collected repeatedly during a two-year period with unusually variable hydrological conditions. Water from three different depths and from tributaries was analysed with standard monitoring methods, including water colour, Secchi disk transparency, total organic carbon (TOC), CODCr, CODMn, total phosphorus and molybdate reactive phosphorus. Interrelationships were used to compare different methods and to assess the concentration and composition of organic matter. It is estimated that in remote softwater lakes of the Swedish forest region, autochthonous carbon is typically < 5 g m−3. Most lakes in this region receive significant amounts of humic matter originating from coniferous forest soils or peatland in the catchment area. In most humic lakes with a water colour of ≥ 50 g Pt m−3, more than half of the organic carbon in the surface water is of allochthonous origin, and in polyhumic lakes (> 200 g Pt m−3) the proportion can exceed 90%. Secchi depth readings were related similarly to organic matter from both sources and provided good estimates of TOC with a single optical measurement. Water colour was used to distinguish allochthonous and autochthonous matter. High concentrations of phosphorus were found in humic waters, most of it being molybdate reactive, and probably associated with humic matter rather than as dissolved free inorganic forms. CODMn yielded only 25–60% of TOC and appears to include mainly truly dissolved substances of low molecular weight.  相似文献   

19.
Following the extreme low ice year of 2007, primary production and the sinking export of particulate and gel-like organic material, using short-term particle interceptor traps deployed at 100 m, were measured in the southeastern Beaufort Sea during summer 2008. The combined influence of early ice retreat and coastal upwelling contributed to exceptionally high primary production (500 ± 312 mg C m−2 day−1, n = 7), dominated by large cells (>5 μm, 73% ± 15%, n = 7). However, except for one station located north of Cape Bathurst, the sinking export of particulate organic carbon (POC) was relatively low (range: 38–104 mg C m−2 day−1, n = 12) compared to other productive Arctic shelves. Estimates indicate that 80% ± 20% of the primary production was cycled through large copepods or the microbial food web. Exopolymeric substances were abundant in the sinking material but did not appear to accelerate POC sinking export. The use of isotopic signatures (δ13C, δ15N) and carbon/nitrogen ratios to identify sources of the sinking material was successful only at two stations with a strong marine or terrestrial signature, indicating the limitations of this approach in hydrographically and biologically complex Arctic coastal waters such as in the Beaufort Sea. At these two stations influenced by either coastal upwelling or erosion, the composition and magnitude of particulate sinking fluxes were markedly different from other stations visited during the study. These observations underscore the fundamental role of mesoscale circulation patterns and hydrodynamic singularities on the export of particulate organic material on Arctic shelves.  相似文献   

20.
During the last few years, extensive sea ice melting in the Arctic due to climate change has been detected, which could potentially modify the organic carbon fluxes in these waters. In this study, the effect of sea ice melting on bacterial carbon channelling by phages and protists has been evaluated in the northern Greenland Sea and Arctic Ocean. Grazing on bacteria by protists was evaluated using the FLB disappearance method. Lysis of bacteria due to viral infections was measured using the virus reduction approach. Losses of bacterial production caused by protists (PMMBP) dominated losses caused by viruses (VMMBP) throughout the study. Lysogenic viral production was detected in 7 out of 21 measurements and constituted from 33.9 to 100.0% of the total viral production. Significantly higher PMMBP and lower VMMBP were detected in waters affected by ice melting compared with unaffected waters. Consequently, significantly more bacterial carbon was channelled to the higher trophic levels in affected waters (13.05 ± 5.98 μgC l−1 day−1) than in unaffected waters (8.91 ± 8.33 μgC l−1 day−1). Viruses channelled 2.63 ± 2.45 μgC l−1 day−1 in affected waters and 4.27 ± 5.54 μgC l−1 day−1 in unaffected waters. We conclude that sea ice melting in the Arctic could modify the carbon flow through the microbial food web. This process may be especially important in the case of massive sea ice melting due to climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号