首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hyun MH  Cho YJ  Song Y  Choi HJ  Kang BS 《Chirality》2007,19(1):74-81
A new doubly tethered chiral stationary phase (CSP 5) based on (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid was developed by attaching the second tethering group to silica gel through a carbon atom of the first tethering group of the corresponding singly tethered CSP (CSP 2) containing an N-CH3 tertiary amide linkage, which was previously developed in our laboratory, in order to enhance the CSP stability without the loss of chiral recognition efficiency. The new CSP was quite effective in the resolution of various racemic alpha-amino acids, amines, and amino alcohols, and the chiral recognition efficiency of the new CSP was even greater than that of the corresponding singly tethered CSP especially in terms of the resolution factors (RS). The stability of the new CSP was greater than that of the corresponding singly tethered CSP. The chromatographic resolution behaviors of the new CSP were generally consistent with those of the corresponding singly tethered CSP.  相似文献   

2.
Hyun MH  Song Y  Cho YJ  Choi HJ 《Chirality》2008,20(3-4):325-329
A doubly tethered chiral stationary phase (CSP) prepared by bonding (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid to doubly tethered primary aminoalkyl silica gel was used for the resolution of various beta-amino acids. All the beta-amino acids tested were resolved quite well, the separation (alpha) and the resolution factors (RS) being in the ranges 1.34-2.09 and 2.52-7.45, respectively, with a mobile phase of methanol-water (50:50, v/v) containing 10 mM acetic acid. The chiral recognition efficiency of the doubly-tethered CSP was found to be generally superior to that of the corresponding singly-tethered CSP in the resolution of beta-amino acids. The chiral recognition behaviors for the resolution of beta-amino acids on the doubly tethered CSP were examined by varying the type and content of organic and acidic modifiers in the aqueous mobile phase and the column temperature.  相似文献   

3.
The application of 3,5-dimethylphenyl-carbamoylated-beta-cyclodextrin (Cyclobond I 2000 DMP) and 2,6-dinitro-4-trifluoromethylphenyl-ether-beta-cyclodextrin-based (Cyclobond DNP) chiral stationary phases for the high-performance liquid chromatographic enantioseparation of unusual beta-amino acids is reported. The investigated amino acids were saturated or unsaturated alicyclic beta-3-homo-amino acids and bicyclic beta-amino acids. Prior to chromatographic analyses, all amino acids were transformed to N-3,5-dinitrobenzoyl- or N-3,5-dimethylbenzoyl form to ensure a pi-acidic or pi-basic function and to enhance the pi-acidic-pi-basic interactions between analytes and chiral selectors. Chromatographic results are given as retention, separation and resolution factors. The chromatographic conditions were varied to achieve optimal separation. The sequence of elution of the enantiomers was determined in some cases.  相似文献   

4.
A residual silanol group-protecting chiral stationary phase (CSP) based on optically active (3,3'-diphenyl-1,1'-binaphthyl)-20-crown-6 was successfully applied to the resolution of racemic cathinone and it analogue aryl alpha-amino ketones. The separation factors (alpha) and the resolutions (Rs) for 12 analytes were in the ranges of 2.85-16.12 and 6.49-19.64, respectively. The chromatographic resolution behaviors were investigated as a function of the content and type of organic and acidic modifiers and the ammonium acetate concentration in aqueous mobile phase. The practical usefulness of the CSP in the determination of the enantiomeric purity of optically active cathinone and in the preparative resolution of racemic cathinone was demonstrated.  相似文献   

5.
Choi HJ  Jin JS  Hyun MH 《Chirality》2009,21(1):11-15
Optically active (3,3'-diphenyl-1,1'-binaphthyl)-20-crown-6-based chiral stationary phase (CSP) containing residual silanol protecting n-octyl groups on silica surface was applied to the liquid chromatographic direct resolution of tocainide and its analogs. The chiral recognition ability of the CSP was excellent, the separation (alpha) and the resolution factors (R(S)) for 15 analytes including tocainide being in the range of 3.02-22.92 and 3.94-20.41, respectively. In addition, the chiral recognition ability of the CSP was much greater than that of (3,3'-diphenyl-1,1'-binaphthyl)-20-crown-6-based CSP containing residual silanol groups on the silica surface. The chromatographic behaviors for the resolution of tocainide and its analogs were found to be dependent on the content and the type of organic and acidic modifiers and the ammonium acetate concentration in aqueous mobile phase.  相似文献   

6.
A new chiral stationary phase (CSP) based on macrocyclic amide receptor was prepared starting from (1R,2R)‐1,2‐diphenylethylenediamine. The new CSP was successfully applied to the resolution of various N‐(substituted benzoyl)‐α‐amino amides with reasonably good separation factors and resolutions (α = 1.75 ~ 2.97 and RS = 2.89 ~ 6.82 for 16 analytes). The new CSP was also applied to the resolution of 3‐substituted 1,4‐benzodiazepin‐2‐ones and some diuretic chiral drugs including bendroflumethiazide and methylchlothiazide and metolazone. The resolution results for 3‐substituted 1,4‐benzodiazepin‐2‐ones and some diuretic chiral drugs were also reasonably good. Chirality 28:253–258, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

7.
Chen S  Ward T 《Chirality》2004,16(5):318-330
A variety of compounds containing amines (i.e., amino acids, amino alcohols, etc.) were chemically derivatized with a variety of electrophilic tagging reagents to elucidate the chiral recognition sites on a teicoplanin-bonded chiral stationary phase (CSP) and on R-naphthylethylcarbamate-beta-cyclodextrin (RN-beta-CD)-bonded CSP. Solutes were separated under optimum chromatographic conditions on teicoplanin and RN-beta-CD CSPs for comparison using an acetonitrile-based mobile phase. It was noted that the size of the analyte or tagging reagent exerted a greater influence on compounds separated on teicoplanin than on RN-beta-CD when using the polar organic mode. This suggests that chiral recognition on teicoplanin CSP is more sensitive to size and indicates that the hydrophobic pocket of teicoplanin plays a significant role in chiral recognition in this mode. However, the type of functional groups had a greater impact than the size of analyte on separations obtained from RN-beta-CD phase in the polar-organic mode. Specifically, the pi-pi interaction was enhanced by derivatizing the aromatic ring of the tagging reagent with electron-withdrawing groups and thus altered the resolution substantially. For both phases, chiral recognition is most pronounced when the stereogenic center of the analyte is near the tagging moiety and surrounded by functional groups (e.g., carboxylic, etc.) which are favorable for hydrogen bonding.  相似文献   

8.
Regioselective functionalization of 2,4,5,6-tetrachloro-1, 3-dicyanobenzene (TCDCB) by nucleophilic substitution of the chlorine at C(4) with L-Ala, L-Phe or L-Pro, followed by amide-bond formation to lipophilic amines containing strong pi-donor group, and by final introduction of the spacer 3-aminopropyltriethoxysilyl (APTES), provided a number of new brush-type chiral selectors in the form of 1-2:1 mixture of 2,4 and 4,6-di(alkyl)amino regioisomers (8/9, 10/11, 12/13, 14/15, 20/21, 23/24). Linking these to silica gel (Nucleosil 100-5) gave new chiral stationary phases for HPLC columns (CSP I-CSP VI). Being strong pi-basic selectors, most of these columns exhibited good resolution properties for pi-acid test racemates (TR 1-TR 9), specifically rac 3, 5-dinitrobenzoyl-alpha-amino acid isopropyl-esters (DNB-AA). CSP V [1,3-dicyano-2,5(5,6)-dichloro-6(2)-(gamma'-silica bound propylamino)-4-N-?[N-butyl]-N'-[(1R)-cyclohexylethyl]-N'-[napht hylmet hyl]acetamido?-aminobenzene] and particularly the dipeptide-containing CSP VI [2,5(5,6)-dichloro-6(2)-(gamma'-silica bound propylamino)-4-N-(3', 5'-dimethylanilido)-L-alanyl-L-prolyl-aminobenzene] proved to have the highest efficiency, comparable with the best commercial brush-type columns with pi-donor properties. Further evidence revealed that multiple hydrogen bonding via the amide group in the chiral environment and pi-pi interaction play a major role in chiral recognition, whereas steric perturbations via nonbonding VDW interactions contribute substantially only to the resolution of CSP III [2,5(5,6)-dichloro-6(2)-(gamma'-silica bound propylamino)-4-N-(cyclohexylamido)-L-alanyl-aminobenzene]. This contribution is minor for the other CSPs.  相似文献   

9.
Novel chiral selectors based on 3,5-dimethyl phenylcarbamoylated β-cyclodextrin connecting quinine (QN) or quinidine (QD) moiety were synthesized and immobilized on silica gel. Their chromatographic performances were investigated by comparing to the 3,5-dimethyl phenylcarbamoylated β-cyclodextrin (β-CD) chiral stationary phase (CSP) and 9-O-(tert-butylcarbamoyl)-QN-based CSP (QN-AX). Fmoc-protected amino acids, chiral drug cloprostenol (which has been successfully employed in veterinary medicine), and neutral chiral analytes were evaluated on CSPs, and the results showed that the novel CSPs characterized as both enantioseparation capabilities of CD-based CSP and QN/QD-based CSPs have broader application range than β-CD-based CSP or QN/QD-based CSPs. It was found that QN/QD moieties play a dominant role in the overall enantioseparation process of Fmoc-amino acids accompanied by the synergistic effect of β-CD moiety, which lead to the different enantioseparation of β-CD-QN-based CSP and β-CD-QD-based CSP. Furthermore, new CSPs retain extraordinary enantioseparation of cyclodextrin-based CSP for some neutral analytes on normal phase and even exhibit better enantioseparation than the corresponding β-CD-based CSP for certain samples.  相似文献   

10.
A Micelle-enhanced ultrafiltration (MEUF) separation process was investigated that can potentially be used for large-scale enantioseparations. Copper(II)-amino acid derivatives dissolved in nonionic surfactant micelles were used as chiral selectors for the separation of dilute racemic amino acids solutions. For the alpha-amino acids phenylalanine, phenylglycine, O-methyltyrosine, isoleucine, and leucine good separation was obtained using cholesteryl L-glutamate and Cu(II) ions as chiral selector with an operational enantioselectivity (alpha(op)) up to 14.5 for phenylglycine. From a wide set of substrates, including four beta-amino acids, it was concluded that the performance of this system is determined by two factors: the hydrophobicity of the racemic amino acid, which results in a partitioning of the racemic amino acid over micelle and aqueous solution, and the stability of the diastereomeric complex formed upon binding of the amino acid with the chiral selector. The chiral hydrophobic cholesteryl anchor of the chiral selector also plays an active role in the recognition process, since inversion of the chirality of the glutamate does not yield the reciprocal enantioselectivities. However, if the cholesteryl group is replaced by a nonchiral alkyl chain, reciprocal operational enantioselectivities are found with enantiomeric glutamate selectors.  相似文献   

11.
Some of the chemistry of amino acids going on in our laboratory (Laboratoire des Amino acides Peptides et Protéines) is described as well as some mass spectrometry methodology for their characterization particularly on solid supports. Several aspects are presented including: (i) the stereoselective synthesis of natural and unnatural amino acids using 2-hydroxypinan-3-one as chiral auxiliary; (ii) the stereoselective synthesis of natural and unnatural amino acids by deracemization of alpha-amino acids via their ketene derivatives; (iii) the synthesis of alpha-aryl-alpha-amino acids via reaction of organometallics with a glycine cation; (iv) the diastereoselective synthesis of glycosyl-alpha-amino acids; (v) the synthesis of beta-amino acids using alpha-aminopyrrolidinopiperazinediones as chiral templates; (vi) the reactivity of urethane-N-protected N-carboxyanhydrides. To characterize natural and non natural amino acids through their immonium ions by mass spectrometry, some methodology is also described.  相似文献   

12.
Hyun MH  Lee GS  Han SC  Cho YJ  Baik IK 《Chirality》2002,14(6):503-508
A chiral stationary phase (CSP 1) derived from N-(3,5-dinitrobenzoyl)leucine N-phenyl N-alkylamide was used for the liquid chromatographic resolution of anilide derivatives of N-acyl-alpha-amino acids and the chromatographic resolution results were compared with those from four other commercial CSPs. The chromatographic resolution results showed that CSP 1 was most effective among five CSPs used in this study. The chiral recognition mechanism exerted by CSP 1 for the resolution of anilide derivatives of N-acyl-alpha-amino acids is proposed to involve a face-to-face pi-pi interaction and two hydrogen bonding interactions between the CSP and the analytes from the chromatographic resolution behaviors of slightly modified anilide derivatives of N-acyl-alpha-amino acids. The chiral recognition mechanism proposed is quite similar to that advanced previously for the resolution of N-(3,5-methoxybenzoyl)-alpha-amino acids on CSP 1, even though the interaction sites of the two types of analytes were totally different from each other. The apparent similarity of the two chiral recognition mechanisms was assumed to stem from the identical interaction modes of the two types of analytes with the CSP. In addition, the dependence of the enantioselectivity of anilide derivatives of N-acyl-alpha-amino acids on the length of the alkyl tail of the N-acyl group of analytes was rationalized to stem from the intercalation of the N-acyl group of the (R)-enantiomer of analytes between the tethers of the CSP.  相似文献   

13.
Mimetics of phosphotyrosine (pTyr) such as phosphonomethylphenylalanine (Pmp) have traditionally retained alpha-amino functionality. However, beta-amino acids represent isomeric variants, which may exhibit properties that are distinct from the parent. Reported herein is the first beta-amino pTyr mimetic (Pmp(beta)) bearing protection suitable for peptide synthesis. Preparation of Pmp(beta) was accomplished enantioselectively in 43% overall yield from commercially available 4-vinylbenzyl chloride.  相似文献   

14.
Mexiletine, an effective class IB antiarrhythmic agent, and its analogs were resolved on three different crown ether‐based chiral stationary phases (CSPs), one (CSP 1 ) of which is based on (+)‐(18‐crown‐6)‐2,3,11,12‐tetracarboxylic acid and the other two (CSP 2 and CSP 3 ) are based on (3,3’‐diphenyl‐1,1’‐binaphthyl)‐20‐crown‐6. Mexiletine was resolved with a resolution (RS) of greater than 1.00 on CSP 1 and CSP 3 containing residual silanol group‐protecting n‐octyl groups on the silica surface, but with a resolution (RS) of less than 1.00 on CSP 2 . The chromatographic behaviors for the resolution of mexiletine analogs containing a substituted phenyl group at the chiral center on the three CSPs were quite dependent on the phenoxy group of analytes. Namely, mexiletine analogs containing 2,6‐dimethylphenoxy, 3,4‐dimethylphenoxy, 3‐methylphenoxy, 4‐methylphenoxy, and a simple phenoxy group were resolved very well on the three CSPs even though the chiral recognition efficiencies vary with the CSPs. However, mexiletine analogs containing 2‐methylphenoxy group were not resolved at all or only slightly resolved. Among the three CSPs, CSP 3 was found to show the highest chiral recognition efficiencies for the resolution of mexiletine and its analogs, especially in terms of resolution (RS). Chirality 26:272–278, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

15.
New catalysts and reaction conditions have been developed for the dynamic kinetic resolution or deracemisation of racemic mixtures of chiral compounds. Specific functional groups that lend themselves particularly well to this approach include chiral secondary alcohols, alpha-amino acids, amines and carboxylic acids. A general theme of these processes is the combination of an enantioselective enzyme with a chemical reagent, the latter being used either to racemise the unreactive enantiomer or alternatively recycle an intermediate in the deracemisation process. In some examples of dynamic kinetic resolution, a second enzyme (racemase) is used to interconvert the enantiomers of the starting material.  相似文献   

16.
Park JY  Jin KB  Hyun MH 《Chirality》2012,24(5):427-431
3-Amino-5-phenyl (or 5-methyl)-1,4-benzodiazepin-2-ones, which are chiral precursors of anti-respiratory syncytial virus active agents, were resolved on three different chiral stationary phases (CSPs) based on (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid or (3,3'-diphenyl-1,1'-binaphthyl)-20-crown-6. Among the three CSPs, the CSP that is based on (3,3'-diphenyl-1,1'-binaphthyl)-20-crown-6 and containing residual silanol group-protecting n-octyl groups on the silica surface was found to be most effective with the use of 80% ethanol in water containing perchloric acid (10 mM) and ammonium acetate (1.0 mM) as a mobile phase. The separation factors (α) and resolutions (R(S) ) were in the range of 1.90-3.21 and 2.79-5.96, respectively. From the relationship between the analyte structure and the chromatographic resolution behavior, the chiral recognition mechanism on the CSP based on (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid was proposed to be different from that on the CSP based on (3,3'-diphenyl-1,1'-binaphthyl)-20-crown-6. In addition, the chromatographic resolution behavior of the most effective CSP was investigated as a function of the composition of aqueous mobile phase containing organic and acidic modifier and ammonium acetate.  相似文献   

17.
Esters of 1-(1-naphthly)ethylurea derivatives of L-valine, L-leucine, L-tert-leucine, and L-proline are examined as organic-soluble chiral nuclear magnetic resonance (NMR) resolving agents. The reagents are useful for resolving the spectra of chiral sulfoxides, amines, alcohols, and carboxylic acids. Enantiomeric resolution is caused by a combination of diastereomeric effects and the different association constants of the substrates with the resolving agents. Organic-soluble lanthanide species are added to resolving agent-substrate mixtures and often enhance the enantiomeric resolution. The enhancement occurs because the substrate that exhibits weaker binding with the resolving agent is more available to bond to the lanthanide. Broadening in the spectra with lanthanides is reduced at 50°C. Enantiomeric resolution is still observed at elevated temperatures. Chirality 9:1–9, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

18.
Flecainide, an antiarrythmic agent, and its analogs were resolved on a high performance liquid chromatographic chiral stationary phase (CSP) based on (+)‐(18‐crown‐6)‐2,3,11,12‐tetracarboxylic acid with the use of a mobile phase consisting of methanol‐acetonitrile‐trifluoroacetic acid‐triethylamine (80/20/0.1/0.3, v/v/v/v). The chiral resolution was quite successful, the separation factors (α) and the resolutions (RS) for 20 analytes including flecainide being in the range of 1.19–1.82 and 1.73–6.80, respectively. The ortho‐substituent of the benzoyl group of analytes was found to cause decrease in the retention times of analytes probably because of the conformational deformation of analytes originated from the steric hindrance exerted by the ortho‐substituent. Chirality, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
Cho EN  Li Y  Kim HJ  Hyun MH 《Chirality》2011,23(4):349-353
A new colorimetric chiral sensor material consisting of three different functional sites such as chromophore (2,4-dinitrophenylazophenol dye), binding site (crown ether), and chiral barrier (3,3'-diphenyl-1,1'-binaphthyl group) was prepared and applied to the recognition of the two enantiomers of primary amino alcohols and amines. Among five primary amino alcohols and two primary amines tested, the two enantiomers of phenylalaninol show the highest difference in the absorption maximum wavelength (Δλ(max)=43.5 nm) and in the association constants (K(S)/K(R)=2.51) upon complexation with the colorimetric chiral sensor material and, consequently, the two enantiomers of phenylalaninol were clearly distinguished from each other by the color difference.  相似文献   

20.
An overall view on some new chiral stationary phases based on (trans)-1,2-diaminocyclohexane is illustrated. The selected chiral moiety, derivatized with different aroyl groups, has been linked to a silica matrix in order to give chiral stationary phases (CSPs) enabling them to be used efficiently in the normal and reverse phase, both for analytical and preparative purposes. In addition new polymeric CSPs have been prepared by using the same selector, suitably modified, as monomer. The new chiral stationary phases have been characterised by physicochemical methods and used for the resolution of various racemic compounds classes such as α-aryloxyacetic acids, alcohols, sulfoxides, selenoxides, phosphinates, tertiaryphosphine oxides, benzodiazepines etc. without prederivatization or as amines, amino acids, amino alcohols, nonsteroidal antiinflammatory agents in a derivatized form. The separated solutes structural variety suggests that multiple interaction sites are involved in the recognition process: some thermodynamic data relative to the CSPs—selectands interactions are also illustrated. © 1992 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号