首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 909 毫秒
1.
In an effort to simultaneously enantioseparate racemic unfunctionalized alkanes and racemic alpha-amino acid derivatives by gas chromatography (GC) in forthcoming experiments related to the search for extraterrestrial homochirality, the two versatile modified cyclodextrin (CD) selectors octakis(6-O-methyl-2,3-di-O-pentyl)-gamma-cyclodextrin (Lipodex G) and heptakis(2,3-di-O-methyl-6-O-tert-butyldimethylsilyl)-beta-cyclodextrin were dissolved in a polysiloxane and the mixed binary chiral selector system was coated onto a 50m x 0.25 mm i.d. fused silica capillary column. Whereas the former CD selector enantioseparates racemic unfunctionalized alkanes the latter CD selector preferentially resolves N-(O,S)-trifluoroacetyl-alpha-amino acid alkyl esters. With both CD selectors employed as mixed binary chiral selector system present in one chiral stationary phase (CSP), the simultaneous gas chromatographic enantioseparation of racemic alkanes and of racemic derivatized alpha-amino acids is achieved in a single temperature-programmed run. Also for other classes of racemic compounds, the scope of enantioseparation could be extended as compared to the conventional use of the single CD selectors in GC.  相似文献   

2.
Enantioseparation through liquid extraction technology is an emerging field, e.g., enantioseparations of amino acids (and derivatives thereof), amino alcohols, amines, and carboxylic acids have been reported. Often, when a new selector is developed, the versatility of substrate scope is investigated. From an industrial point of view, the problem is typically approached the other way around, and for a target racemate, a selector needs to be found in order to accomplish the desired enantioseparation. This study presents such a screening approach for the separation of the enantiomers of dl ‐α‐methyl phenylglycine amide (dl ‐α‐MPGA), a model amide racemate with high industrial relevance. Chiral selectors that were reported for other classes of racemates were investigated, i.e., several macrocyclic selectors and Pd‐BINAP complexes. It appeared very challenging to obtain both high extraction yields and good enantioselectivity for most selectors, but Pd‐BINAP‐based selectors performed well, with enantioselectivities up to 7.4 with an extraction yield of the desired enantiomer of 95.8%. These high enantioselectivities were obtained using dichloromethane as solvent. Using less volatile chlorobenzene or 1‐chloropentane, reasonable selectivities of up to 1.7 were measured, making these the best alternative solvents for dichloromethane. Chirality 27:123–130, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

3.
New brush-type chiral stationary phases (CSP I-IV) comprising N-3,5,6-trichloro-2,4-dicyanophenyl-L-alpha-amino acids (1-4) were prepared by binding of chiral selectors 1-4 to gamma-aminopropyl silica gel. To check the role of excess free aminopropyl groups, CSP V was prepared by binding N-3,5,6-trichloro-2,4-dicyanophenyl-L-alanyl-(3-triethoxysilyl)propylamide to unmodified silica gel. The best separation of racemic 2-aryloxypropionic acids (TR-1-13) was obtained with CSP I; the -(-)-S enantiomer were regularly eluted first, as determined by a CD detector. The mechanism of chiral recognition implies a synergistic interaction of carboxylic acid analyte with the chiral selector and achiral free gamma-aminopropyl units on silica. In fact, CSP V, which is lacking an achiral aminopropyl spacer, shows a lower separation ability for 2-aryloxypropionic acids, but a similar enantioselective discrimination of esters TR-19-20, in comparison with CSP I. CSP I-IV retain unaltered separation ability after a few months of continuous work using a large number of various mobile phases.  相似文献   

4.
Heo KS  Hyun MH  Cho YJ  Ryoo JJ 《Chirality》2011,23(4):281-286
(R)-N-3,5-dinitrobenzoyl (DNB) leucine derived chiral selector was used as an HPLC chiral stationary phase for the resolution of various racemic amino acids derivatives. In this study, determination of optical purity of an amino acid derivative was performed by chiral high performance liquid chromatography and 1H and 13C NMR spectroscopy by using the DNB leucine derived chiral selector. The accuracy and precision of each optical purity value are calculated and the data are compared to each other.  相似文献   

5.
Chiral recognition mechanisms with macrocyclic glycopeptide selectors   总被引:2,自引:0,他引:2  
Berthod A 《Chirality》2009,21(1):167-175
Macrocyclic glycopeptide selectors are naturally occurring antibiotics produced by microorganisms. They were found to be excellent chiral selectors for a wide range of enantiomers, including amino acids. Four selectors are commercialized as chiral stationary phases (CSP) for chromatography. They are ristocetin, teicoplanin, vancomycin, and the teicoplanin aglycone (TAG). The key docking interaction for amino acid recognition was established to be a charge-charge interaction between the anionic carboxylate group of the amino acid and a cationic amine group of the macrocyclic peptidic selector basket. The carbohydrate units are responsible for secondary interactions. However, they hinder somewhat the charge-charge docking interaction. The TAG selector is more effective for amino acid enantioseparations than the other CSPs. The "sugar" units are however useful allowing for chiral recognitions of other analytes, e.g., beta-blockers, not possible with the aglycone. Thermodynamic studies established that normal phase and reversed phase enantioseparations were enthalpy-driven. With polar waterless mobile phases used in the polar ionic mode, some separations were enthalpy-driven and others were entropy-driven. The linear solvation energy method was tentatively used to gain knowledge about the chiral recognition mechanism. It appeared to be a viable approach with neutral molecules but it failed with ionizable solutes. With molecular solutes and the teicoplanin CSP, the study showed a significant role of the surface charge-induced dipole interaction and steric effects. The remarkable complementary enantioselectivity effect observed with the four CSPs is discussed.  相似文献   

6.
The application of a chiral ligand-exchange column (CLEC) for the direct high-performance liquid chromatographic enantioseparation of unusual secondary amino acids using D-penicillamine-Cu(II) complex as chiral selector is reported. The amino acids investigated were pyrrolidine-2-carboxylic acid, piperidine-2-carboxylic acid, piperazine-2-carboxylic acid, morpholine-3-carboxylic acid, and thiomorpholine-3-carboxylic acid analogs. Chromatographic results are given as the retention, separation, and resolution factors. The chromatographic conditions were varied to achieve optimal separation. The elution sequence of the enantiomers was determined and in most cases the S isomer eluted before R.  相似文献   

7.
The present work reports on the investigation of a mixed binary chiral stationary phase (CSP) prepared by simultaneous attachment of permethylated‐β‐cyclodextrin ( D selector) and resorcinarene with pendant l ‐ or d ‐valine diamide groups ( L′ and D′ selectors, respectively) to a polysiloxane matrix via platinum‐catalyzed hydrosilylation. The gas‐chromatographic investigation of a number of racemates on the four different CSPs ( D, D′, DD′, and DL′ ) showed that the enantioselectivity of the individual chiral selectors was retained in the mixed binary CSPs. As a consequence, hydrocarbons, underivatized alcohols, ketones, and almost all proteinogenic amino acid derivatives could be separated simultaneously on each of the mixed CSPs. Matched and mismatched cases of enantioseparation on the mixed binary CSPs were observed but turned out to be of minor importance for enantiomeric separation. In general, more racemates were separated with α ≥ 1.02 on the mixed phases as compared to the single phases. In order to analyze the influence of the presence of the diamide selector on the enantioselectivity of the cyclodextrin selector, a mixed ternary CSP containing the selector D and a racemic mixture of the selectors D′ and L′ [ D ( D′L′ )] was prepared and investigated. Merits and limitations of the approach of mixed binary CSPs are discussed. © 2005 Wiley‐Liss, Inc. Chirality  相似文献   

8.
Particle-loaded monoliths containing a polymethacrylamide backbone were prepared by suspending a silica-based chiral phase in the mixture of the monomers followed by in-situ polymerization in the capillary. As chiral selector l-4-hydroxyproline chemically bonded to 3 microm silica particles was used following the separation principle of ligand-exchange. Electrolytes containing Cu(II) ions were used. Amino acid enantiomers were separated by capillary-LC and CEC, whereby the latter showed the better resolution properties. For the chiral separation of alpha-hydroxy acids the EOF was reversed by copolymerizing diallyldimethylammonium chloride instead of vinylsulfonic acid as charge providing agent. Short columns of 6 cm were found to be sufficient in the case of CEC for baseline separations of amino acids with alpha values up to 5.  相似文献   

9.
Capillary zone electrophoresis (CZE) and micellar capillary electrophoresis (MCE) were applied for the enantiomeric separation of nine mononuclear tris(diimine)ruthenium(II) complexes as well as the separation of all stereoisomers of a dinuclear tris(diimine)ruthenium(II) complex. Nine cyclodextrin (CD) based chiral selectors were examined as run buffer additives to evaluate their effectiveness in the enantiomeric separation of tris(diimine)ruthenium(II) complexes. Seven showed enantioselectivity. Sulfated gamma-cyclodextrin (SGC), with four baseline and three partial separations, was found to be the most useful chiral selector. In CZE mode, the derivatized gamma-CDs were more effective than beta-CDs while sulfated CDs work better than carboxymethyl CDs. In MCE mode, hydroxypropyl beta-CD separated the greatest number of tris(diimine) ruthenium(II) complexes. The effects of chiral selector concentration, run buffer pH and concentration, the concentration ratio between chiral selector and other factors were investigated.  相似文献   

10.
Particle-loaded monoliths containing a polymethacrylamide backbone were prepared by suspending a silica-based chiral phase in the mixture of the monomers followed by in-situ polymerization in the capillary. As chiral selector l-4-hydroxyproline chemically bonded to 3 μm silica particles was used following the separation principle of ligand-exchange. Electrolytes containing Cu(II) ions were used. Amino acid enantiomers were separated by capillary-LC and CEC, whereby the latter showed the better resolution properties. For the chiral separation of α-hydroxy acids the EOF was reversed by copolymerizing diallyldimethylammonium chloride instead of vinylsulfonic acid as charge providing agent. Short columns of 6 cm were found to be sufficient in the case of CEC for baseline separations of amino acids with α values up to 5.  相似文献   

11.
12.
The preconditions are outlined for enantioselective separations in capillary electrophoresis (CE) with chiral selectors as additives to the background electrolyte. Free solution capillary electrophoresis conditions are characterised by a single solution phase. Chiral separations are reviewed by selector type (chiral ligand exchange, cyclodextrins, crown ethers, glycoproteins) with the extensive studies on cyclodextrins grouped into sections on amino acids, pharmaceuticals, and speciality chemicals, optimisation, biological fluids, and quantitative aspects. In micellar electrokinetic capillary chromatography, enantioselective discrimination occurs by partition in a two-phase system, with a chiral micellar phase as selector. Optimum separation conditions can be readily predicted for a given selector–selectand combination, and absolute values of binding constants determined by CE. Advantages of CE in comparison with HPLC using a chiral stationary phase include robust, rapid assays and the use of small volumes of aqueous solutions; disadvantages include less favourable detection limits. © 1994 Wiley-Liss, Inc.  相似文献   

13.
Chen J  Li MZ  Xiao YH  Chen W  Li SR  Bai ZW 《Chirality》2011,23(3):228-236
(2S,3S)-2,3-Bis(3,5-dimethylphenylcarbonyloxy)-3-(benzyloxycarbonyl)-propanoic acid and (2S,3S)-2,3-bis(1-naphthalenecarbonyloxy)-3-(benzyloxycarbonyl)-propanoic acid were synthesized from D-tartaric acid. These two compounds were chlorinated to afford two chiral selectors for chiral stationary phases (CSPs). The selectors were separately immobilized on aminated silica gel to give two single selector CSPs; and were simultaneously immobilized to obtain a mixed selector CSP. Comparing to the single selector CSPs, the mixed selector CSP bears the enhanced enantioseparation ability, suggesting that the two selectors in the mixed selector CSP are consistent for chiral recognition in most mobile phase conditions.  相似文献   

14.
Capillary electrophoresis (CE) coupled to tandem mass spectrometry was applied to the chiral separation of baclofen using sulfobutylether-beta-cyclodextrin chiral selector in partial filling counter current mode. On-line UV detection was simultaneously used. Method optimization was performed by studying the effect of cyclodextrin and BGE concentration as well as sheath liquid composition on analyte migration time and enantiomeric resolution. The cyclodextrin showed stereoselective complexation towards baclofen enantiomers, allowing chiral resolution at low concentration. The CE capillary protrusion from the ESI needle relevantly affected the chiral resolution and the analyte migration time. Complete enantiomeric separation was obtained by using 0.25 M formic acid BGE containing 1.75 mM of chiral selector and water/methanol (30:70, v/v) 3% formic acid as sheath liquid. The method exhibited a LOD of 0.1 microg/mL (racemic concentration) in MS3 product ion scan mode of detection and was applied to the analysis of racemic baclofen in pharmaceutical formulations.  相似文献   

15.
Preparative enantioseparation of four β‐substituted‐2‐phenylpropionic acids was performed by countercurrent chromatography with substituted β‐cyclodextrin as chiral selectors. The two‐phase solvent system was composed of n‐hexane‐ethyl acetate‐0.10 mol L‐1 of phosphate buffer solution at pH 2.67 containing 0.10 mol L‐1 of hydroxypropyl‐β‐cyclodextrin (HP‐β‐CD) or sulfobutylether‐β‐cyclodextrin (SBE‐β‐CD). The influence factors, including the type of substituted β‐cyclodextrin, composition of organic phase, concentration of chiral selector, pH value of the aqueous phase, and equilibrium temperature were optimized by enantioselective liquid–liquid extraction. Under the optimum separation conditions, 100 mg of 2‐phenylbutyric acid, 100 mg of tropic acid, and 50 mg of 2,3‐diphenylpropionic acid were successfully enantioseparated by high‐speed countercurrent chromatography, and the recovery of the (±)‐enantiomers was in the range of 90–91% for (±)‐2‐phenylbutyric acid, 91–92% for (±)‐tropic acid, 85–87% for (±)‐2,3‐diphenylpropionic acid with purity of over 97%, 96%, and 98%, respectively. The formation of 1:1 stoichiometric inclusion complex of β‐substituted‐2‐phenylpropionic acids with HP‐β‐CD was determined by UV spectrophotometry and the inclusion constants were calculated by a modified Benesi‐Hildebrand equation. The results showed that different enantioselectivities among different racemates were mainly caused by different enantiorecognition between each enantiomer and HP‐β‐CD, while it might be partially caused by different inclusion capacity between racemic solutes and HP‐β‐CD. Chirality 27:795–801, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

16.
(+)-18-crown-6 tetracarboxylic acid (18C6H(4)) has been used as a chiral selector for various amines and amino acids. To further clarify the structural scaffold of 18C6H(4) for chiral separation, single crystal X-ray analysis of its glycine(+) (1), H3O+ (2), H5O2+ (3), NH4+ (4), and 2CH3NH3+ (5) complexes was performed and the guest-dependent conformation of 18C6H(4) was investigated. The crown ether ring of 18C6H4 in 3, 4, and 5 took a symmetrical C2 or C2-like conformation, whereas that in 1 and 2 took an asymmetric C1 conformation, which is commonly observed in complexes with various optically active amino acids. The overall survey of the present and related complexes suggests that the molecular conformation of 18C6H4 is freely changeable within an allowable range, depending on the molecular shape and interaction mode with the cationic guest. On the basis of the present results, we propose the allowable conformational variation of 18C6H4 and a possible transition pathway from its primary conformation to the conformation suitable for chiral separation of racemic amines and amino acids.  相似文献   

17.
Four diastereomeric chiral stationary phases (CSPs) based on quinine, quinidine, epiquinine, and epiquinidine tert‐butyl carbamate selectors were synthesized and evaluated under ion exchange HPLC conditions with a set of racemic N‐acylated and N‐oxycarbonylated α‐amino acids as selectands. The enantioseparation potential of quinine‐ and quinidine‐derived CSPs proved to be far superior to that of their C9‐epimeric congeners. The absolute configuration of C9 stereogenic center of the cinchonan backbone of these selectors was identified as the structural feature controlling the elution order. Guided by an X‐ray structure of a most favorable selector–selectand complex and the observed chromatographic enantioseparation data, a chiral recognition model was advanced. The contributions of ion‐pairing, π–π donor–acceptor, hydrogen bonding and steric interactions were established as crucial factors. Chirality 11:522–528, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

18.
Yu YP  Wu SH 《Chirality》2001,13(5):231-235
Among the three chiral columns, CHIROBIOTIC T, CHIRLPAK WH, and CHIRALCEL OD-R, tested for the separation of racemic amino acids and N-acetyl-amino acids, only CHIROBIOTIC T chiral column which is based on covalently bonded amphoteric glycopeptide, teicoplanin, as the stationary phase ligand could be successfully developed to enantiomerically separate racemic amino acids and N-acetyl amino acids simultaneously. This method can be used to determine the enantiomeric composition of amino acids and N-acetyl-amino acids in the catalysis of D-aminoacylase or L-aminoacylase and the conversion rate of N-acylamino acid racemases.  相似文献   

19.
Sulfated cyclofructan 6 (S‐CF6) and sulfated cyclodextrins (S‐α‐, β‐, γ‐CDs) are highly selective chiral selectors for the enantioseparation of basic solutes. In this study, S‐CF6 was introduced for the enantiomeric separation of four basic pharmaceuticals (including tamsulosin, tiropramide, bupivacaine, and norephedrine) by capillary electrophoresis (CE), and the enantiomeric separation performance was compared with S‐α‐, β‐, γ‐CDs. The effects of the chiral selector type, chiral selector concentration, operating voltage, and column temperature were examined and optimized. Excellent resolutions were obtained for all solutes on these chiral selectors. Chirality 25:735–742, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

20.
A capillary electrophoretic (CE) method for the enantioseparation of N‐protected chiral amino acids was developed using quinine and tert‐butyl carbamoylated quinine as chiral selectors added to nonaqueous electrolyte solutions (NACE). A series of various N‐derivatized amino acids were tested as chiral selectands, and in order to optimize the CE enantioseparation of these compounds, different parameters were investigated: the nature of the organic solvent, the combination of different solvents, the nature and the concentration of the background electrolyte, the selector concentration, the capillary temperature, and the applied voltage. The influence of these factors on the separation of the analyte enantiomers and the electroosmotic flow was studied. Generally, with tert‐butyl carbamoylated quinine as chiral selector, better enantioseparations were achieved than with unmodified quinine. Optimum experimental conditions were found with a buffer made of 12.5 mM ammonia, 100 mM octanoic acid, and 10 mM tert‐butyl carbamoylated quinine in an ethanol–methanol mixture (60:40 v/v). Under these conditions, DNB‐Leu enantiomers could be separated with a selectivity factor (α) of 1.572 and a resolution (Rs) of 64.3; a plate number (N) of 127,000 and an asymmetry factor (As) of 0.93 were obtained for the first migrating enantiomer. Chirality 11:622–630, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号