首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
The results of the studies devoted to the distribution of radionuclides 90Sr, 137Cs, 238Pu, 239 + 240Pu and 241Am in 1998-2003 in main components of Glubokoe Lake and Dalekoe-1 Lake located within Krasnensky flood lands of the Pripyat River (inner exclusion zone of the Chernobyl NPP) were analysed. The data about the radionuclide content in bottom sediments, in water, in seston, in macrozoobenthos (including bivalvia molluscs), in gasteropods molluscs, in higher aquatic plants and in fish are presented.  相似文献   

2.
Evaluation of the zoogenic transfer of radionuclides from the 30-km zone around the Chernobyl NPP was necessary because of the enormous heavily polluted territory and mighty flow of migratory birds who tended to large rivers, the Dnieper and Pripyat. The integral estimate of the transferred amount was obtained as a product of three variables: the transfer factor (0.0077 m2/kg for 137Cs; 0.0107 m2/kg for 90Sr), the density of birds (0.002 kg/m2, at the mass of migrants about 5000 t per year), and the total fund of radionuclides throughout the territory. The upper estimated limit of the annual transfer rate was 5.5 Ci (2E + 11 Bq) for 137 Cs and 1.8 Ci (6.7E + 10 Bq) for 90 Sr. Restrictions of hunting are recommended within the northern part of the Kiev reservoir.  相似文献   

3.
The biogeochemical processes of methane production and oxidation were studied in the upper horizons of tundra and taiga soils and of raised bogs and lake bottom sediments nearby the Tarkosalinsk gas field in western Siberia. Both in dry and water-logged soils, the total methane concentration (in soil particles and gaseous phase) was an order of magnitude higher than in the soil gaseous phase alone (22 and 1.1 nl/cm3, respectively). In bogs and lake bottom sediments, methane concentration was as high as 11 microliters/cm3. Acetate was the major precursor of the newly formed methane. The rate of aceticlastic methanogenesis reached 55 ng C/(cm3 day), whereas that of autotrophic methanogenesis was an order of magnitude lower. The most active methane production and oxidation were observed in bogs and lake sediments where the delta 13C values of CO2 were inversely related to the intensity of bacterial methane oxidation. Methane diffusing from bogs and lake bottom sediments showed delta 13C values ranging from -78 to -47@1000, whereas the delta 13C value of carbon dioxide ranged from -18 to -6@1000. In these ecosystems, methane emission comprised from 3 to 206 mg CH4/(m2 day). Conversely, the dry and water-logged soils of tundra and taiga took up atmospheric methane at a rate varying from 0.3 to 5.3 mg CH4/(m2 day). Methane consumption in soils was of biological rather than of adsorptive nature. This was confirmed by the radioisotopic method and chamber experiments, in which weighting of methane carbon was observed (the delta 13C value changed from -51 to -41@1000).  相似文献   

4.
The long-term (1986-2005) gamma-activity dynamics in dominating zoobenthos species and the bottom sediments in the inlet of Pripyat river and the non-flowing Perstok lake within the Chernobyl alienation zone was determined. Immediately after the accident (1986-1987) zoonehthos y-activity achieved the maximal values (up to 300-1100 kBq/kg) and after that began to decline steadily due to natural decay of man-caused radionuclides of "Chernobyl origin". Up to summer 2005 gastropod mollusks gamma-activity (Lymnaea stagnalis, Viviparus viviparus) approached to the natural level (less than 6 Bq/kg) in the inlet of Pripyat river, but it remained at the very high level up to 979-1638 Bq/kg in the Perstok lake. The positive correlation between gamma-activity of mollusks and bottom sediments has been established. In turn, the long-term variations of atmospheric precipitate amounts which wash down radionuclides from surrounding territories to water bodies and the amounts of annual flow of the Pripyat river as well as shoreline position changes in water bodies within the Chernobyl alienation zone influence on these values too.  相似文献   

5.
利用美国环境预测中心的再分析气象资料和由GIMMS NDVI 资料生成的叶面积指数对BEPS生态模型进行驱动,模拟分析了2000-2005年亚洲东部地区总初级生产力(GPP)和总净初级生产力(NPP)的时空变化特征.在进行区域模拟计算前,使用15个站点不同生态系统的GPP观测数据及1300个样点的NPP观测数据对模型进行验证.结果表明: BEPS模型能较好地模拟不同生态系统的GPP和NPP变化,模拟的GPP与观测数据之间的R2为0.86~0.99,均方根误差(RMSE)为0.2~1.2 g C·m-2·d-1;BEPS模拟值能够解释78%的年NPP变化,其RMSE为118 g C·m-2·a-1.2000-2005年,亚洲东部地区GPP和NPP总量平均值分别为21.7和10.5 Pg C·a-1.NPP和GPP具有相似的时空变化特征.研究期间,NPP总量的变化范围为10.2~10.7 Pg C·a-1, 变异系数为2.2%.NPP由东南向西北显著减少,高值区〖JP2〗(>1000 g C·m-2·a-1)出现在东南亚海岛国家,我国的西北干旱沙漠地区为低值区(<30 g C·m-2·a-1),〖JP〗其空间格局主要由气候因子决定.不同国家的人均NPP差异很大,其中,蒙古最高,达70217 kg C·a-1,远高于中国的人均NPP(1921 kg C·a-1),印度的人均NPP最小,为757 kg C·a-1.  相似文献   

6.
The genetic effects of 238Pu incorporated into male mice were estimated by several tests. The activity of the administered 238Pu nitrate varied from 7 to 1850 Bq/g of body weight. The average alpha-radiation dose absorbed in the testes ranged from 2 to 96 cGy, with a dose rate of 0.004-1 cGy/day. alpha-Radiation from 238Pu was shown to induce dominant lethal mutations (DLM) and reciprocal translocation (RT), chromosomal fragmentation and formation of abnormal sperm heads (ASH). The effect does not depend on the average alpha-radiation dose absorbed in the testis. The relative genetic efficiency of alpha-radiation, as compared with that of chronic alpha-radiation for the indices under study, was about 10-20.  相似文献   

7.
Macroalgae are important primary producers in many subtidal habitats, yet little information exists on the temporal and spatial dynamics of net primary production (NPP) by entire subtidal assemblages. This knowledge gap reflects the logistical challenges in measuring NPP of diverse macroalgal assemblages in shallow marine habitats. Here, we couple a simple primary production model with nondestructive estimates of taxon‐specific biomass on subtidal reefs off Santa Barbara, California to produce a 4‐year time series of net primary production by intact assemblages of understory macroalgae in giant kelp forests off Santa Barbara, California, USA. Daily bottom irradiance varied significantly throughout the year, and algal assemblages were on average exposed to saturating irradiance for only 1.3–4.5 h per day, depending on the time of year. Despite these variable light‐limiting conditions, biomass rather than irradiance explained the vast majority of variation observed in daily NPP at all times of the year. Measurements of peak biomass in spring and summer proved to be good predictors of NPP for the entire year, explaining as much as 76% of the observed variation. In contrast, bottom irradiance was a poor predictor of NPP, explaining <10% of the variation in NPP when analyzed seasonally and ~2% when evaluated annually. Our finding that annual NPP by macroalgal assemblages can be predicted from a single, nondestructive measurement of biomass should prove useful for developing time series data that are necessary to evaluate natural and anthropogenic changes in NPP by one of the world's most productive ecosystems.  相似文献   

8.
地形对草甸草原植被生产力分布格局的影响   总被引:4,自引:0,他引:4  
常学礼  吕世海  冯朝阳  叶生星 《生态学报》2015,35(10):3339-3348
草原植被生产力在陆地生态系统碳平衡分析中扮演重要角色,而地形作为影响植被生产力(NPP)分布格局的重要环境因子在已有的草原遥感监测研究中没有被充分重视。以USGS和GLCF共享MODIS和DEM数据为数据源,选取呼伦贝尔辉河湿地保护区草甸草原核心区为研究对象,在地面光谱生物量模型构建的基础上,采用ARCGIS的空间分析功能对呼伦贝尔草甸草原2000—2012年的NPP分布格局进行了分析。研究结果表明,地形对草甸草原植被生产力分布格局有显著的影响。在海拔高度、坡度和坡向等3个地形因子中,海拔高度引起的NPP变化幅度最大,坡度次之,坡向最小。在总体特征上,海拔高度每升高10m,生产力增加4.78 g/m2;坡度每增加1°生产力增加-1.42 g/m2;N坡向植被生产力水平最高(184.8 g/m2),西南(SW)坡向最低(173.3 g/m2)。从不同地形因子的分布面积特点判断,地形对草甸草原NPP的影响尺度介于土壤环境异质性和草场类型异质性之间。不同生产力水平年份对生产力分布格局的影响趋势一致,但变化幅度不同,在中等生产力水平年份NPP变幅最大。  相似文献   

9.
The estimates of plutonium concentration in soils of Western regions of Bryansk (Krasnogorsky, Novozybkovsky, Zlynkovsky and Klintsovsky) are presented. The levels of soil contamination with plutonium within the regions examined vary by 4-5 times, although no definite geographical direction of pollution intensity within the territory examined is noted. The cumulative concentration of isotopes (238Pu, 239Pu, and 240Pu) varies within 21-112 Bq/kg.  相似文献   

10.
The radioecological research of Irtysh-river and Ob-river was held. The content of 137Cs in Irtysh water was compounded 0.62-1.23 Bq/m3, in Ob-- 0.24-0.27 Bq/m3, and the one of 90Sr in Irtysh-- 10-20 Bq/m3, and in Ob-- 5-10 Bq/m3, that is much lower than the permissible sanitary-hygienic norms for the population. The 137Cs stores density on Irtysh-river input lease was compounded 2.7 kBq/m2, is almost in 11 times slashed downstream and is peer 245 kBq/m2 before the Irtysh-river lockin. The 90Sr stores density also was slashed in surveyed leases with 212 down to 106 Bq/m2. Two variants of integrated stores of 137Cs and of 90Sr in flood of the Irtysh-river was held. The balance calculation of annual radionuclides sinks confirms the dominant amount of 137Cs and of 90Sr in downstream Ob-river leases acts now on the Ob's sleeve, instead of from the Irtysh-river as it was supposed earlier. The 137Cs medial annual inflow from the Ob's sleeve almost is in 2 times, and the 90Sr inflow is in 2.3 times more, than are acts from Irtysh-river sleeve.  相似文献   

11.
Grassland ecosystems play important roles in the global carbon cycle. The net primary productivity (NPP) of grassland ecosystems has become the hot spot of terrestrial ecosystems. To simulate the NPP in the grasslands of southern China, we built a land portfolio assessment (LPA) model. The LPA model was named according to the framework and principle of this model. From the framework of the model aspect, it was mainly driven by two parameters: leaf area index (LAI) and photosynthesis accumulation (PA). LAI is an extremely important structural characteristic of grassland and directly related to the exchange of energy, CO2 and mass at a variety of scales. PA is represented by the amount of net photosynthetic production based on fixed-point observation. From the principle of the model aspect, it is represented by the inherent implication of NPP and a part of land portfolio assessment. The results showed that the NPP values in the study area had a decreasing trend from east to west and south to north and that the mean NPP was 320 g C m?2 year?1 from 2001 to 2010. Correlations analysis showed that the correlation coefficient (r) between NPP and highest monthly mean temperature of a year was the maximum (0.6422), and the r value between NPP and annual precipitation was the minimum (0.3821). Using trial and error, the LPA model accurately simulated the NPP dynamics of southern China’s grassland ecosystem, and the results were biologically realistic.  相似文献   

12.
Aim To examine the global pattern of the net primary production (NPP)/gross primary production (GPP) ratio of the Earth's land area along geographical and climatic gradients. Location The global planetary ecosystem. Methods The 4‐year average annual NPP/GPP ratio of the Earth's land area was calculated using 2000–03 Moderate Resolution Imaging Spectroradiometer (MODIS) data. The global pattern of the NPP/GPP ratio was investigated by comparing it among each typical terrestrial ecosystem and plotting it along a geographical and climatic gradient, including latitude, altitude, temperature and precipitation. Results The global terrestrial ecosystem had an average NPP/GPP ratio value of 0.52 with minor variation from 2000 to 2003. However, the NPP/GPP ratio showed considerable spatial variation associated with ecosystem type, geographical location and climate. Densely vegetated ecosystems had a lower NPP/GPP ratio than sparsely vegetated ecosystems. Forest ecosystems had a lower NPP/GPP ratio than shrub and herbaceous ecosystems. Geographically, the NPP/GPP ratio increased with altitude. In the Southern Hemisphere, the NPP/GPP ratio decreased along latitude from 30° to 10° and it exhibited high fluctuation in the Northern Hemisphere. Climatically, the NPP/GPP ratio exhibited a decreasing trend along enhanced precipitation when it was less than 2300 mm year?1 and a static trend when the annual precipitation was over 2300 mm. The NPP/GPP ratio showed a decreasing trend along temperature when it was between –20 °C and 10 °C, and showed an increasing trend along rising temperature when it was between –10 °C and 20 °C. Within each ecosystem, the NPP/GPP ratio revealed a similar trend to the global trend along temperature and precipitation. Conclusions The NPP/GPP ratio exhibited a pattern depending on the main climatic characteristics such as temperature and precipitation and geographical factors such as latitude and altitude. The findings of this research challenge the widely held assumption that the NPP/GPP ratio is consistent regardless of ecosystem type.  相似文献   

13.
Microbiological and biogeochemical studies of the meromictic saline Lake Shira (Khakasia) were conducted. In the upper part of the hydrogen-sulfide zone, at a depth of 13.5-14 m, there was a pale pink layer of water due to the development of purple bacteria (6 x 10(5) cells/ml), which were assigned by their morphological and spectral characteristics to Lamprocystis purpureus (formerly Amoebobacter purpurea). In August, the production of organic matter (OM) in Lake Shira was estimated to be 943 mg C/(m2 day). The contribution of anoxygenic photosynthesis was insignificant (about 7% of the total OM production). The share of bacterial chemosynthesis was still less (no more than 2%). In the anaerobic zone, the community of sulfate-reducing bacteria played a decisive role in the terminal decomposition of OM. The maximal rates of sulfate reduction were observed in the near-bottom water (114 micrograms S/(1 day)) and in the surface layer of bottom sediments (901 micrograms S/(dm3 day)). The daily expenditure of Corg for sulfate reduction was 73% of Corg formed daily in the processes of oxygenic and anoxygenic photosynthesis and bacterial chemosynthesis. The profile of methane distribution in the water column and bottom sediments was typical of meromictic reservoirs. The methane content in the water column increased beginning with the thermocline (7-8 m), and reached maximum values in the near-bottom water (17 microliters/l). In bottom sediments, the greatest methane concentrations (57 microliters/l) were observed in the surface layer (0-3 cm). The integral rate of methane formation in the water column and bottom sediments was almost an order of magnitude higher than the rate of its oxidation by aerobic and anaerobic methanotrophic microorganisms.  相似文献   

14.
To assess the variation in distribution, extent, and NPP of global natural vegetation in response to climate change in the period 1911–2000 and to provide a feasible method for climate change research in regions where historical data is difficult to obtain. In this research, variations in spatiotemporal distributions of global potential natural vegetation (PNV) from 1911 to 2000 were analyzed with the comprehensive sequential classification system (CSCS) and net primary production (NPP) of different ecosystems was evaluated with the synthetic model to determine the effect of climate change on the terrestrial ecosystems. The results showed that consistently rising global temperature and altered precipitation patterns had exerted strong influence on spatiotemporal distribution and productivities of terrestrial ecosystems, especially in the mid/high latitudes. Ecosystems in temperate zones expanded and desert area decreased as a consequence of climate variations. The vegetation that decreased the most was cold desert (18.79%), while the maximum increase (10.31%) was recorded in savanna. Additionally, the area of tundra and alpine steppe reduced significantly (5.43%) and were forced northward due to significant ascending temperature in the northern hemisphere. The global terrestrial ecosystems productivities increased by 2.09%, most of which was attributed to savanna (6.04%), tropical forest (0.99%), and temperate forest (5.49%). Most NPP losses were found in cold desert (27.33%). NPP increases displayed a latitudinal distribution. The NPP of tropical zones amounted to more than a half of total NPP, with an estimated increase of 1.32%. The increase in northern temperate zone was the second highest with 3.55%. Global NPP showed a significant positive correlation with mean annual precipitation in comparison with mean annual temperature and biological temperature. In general, effects of climate change on terrestrial ecosystems were deep and profound in 1911–2000, especially in the latter half of the period.  相似文献   

15.
2009年4-10月,通过田间试验,以传统无膜漫灌为对照,研究了膜下滴灌对我国新疆棉田生态系统净初级生产力、土壤异氧呼吸和CO2净交换通量的影响.结果表明:膜下滴灌和无膜漫灌处理下,棉田生态系统净初级生产力、土壤异氧呼吸通量和CO2净交换通量均呈先增大后减小的变化趋势.与无膜漫灌相比,膜下滴灌显著提高了棉花地上、地下生物量和净初级生产力,降低了土壤异氧呼吸通量.在整个生长季节,膜下滴灌处理的年土壤异氧呼吸通量为214 g C·m-2,低于无膜漫灌处理的317 g C·m-2;膜下滴灌处理的棉花年净初级生产力为1030 g C·m-2,显著高于无膜漫灌处理的649 g C·m-2;膜下滴灌处理比无膜漫灌处理多固定大气CO2479 g C·m-2.膜下滴灌栽培措施既提高了作物生产力,又降低了土壤CO2排放,是干旱地区一种重要的农业固碳减排措施.  相似文献   

16.
为揭示气候变化背景下我国各陆地生态系统净初级生产力(NPP)的时空分布特征与驱动机制,引入重心模型分析2000—2017年我国NPP的空间分布格局变化,并利用相关分析方法结合Thornthwaite Memorial模型定量区分气候变化与人类活动影响NPP的相对作用。结果表明:(1)2000—2017年全国NPP均值为325.86 g C/m2,整体呈现出南方高北方低,东南向西北逐渐递减的特点。(2)近18年全国与各陆地生态系统NPP均呈现增长趋势,全国NPP增长速率为4.4597 g C m-2 a-1,总净增加约0.391 Pg C。空间上全国与森林、草地、荒漠生态系统的NPP重心向东北方向移动,农田与城市生态系统的NPP重心向西北方向移动,表明NPP在该方向上的增速和增量最大。(3)全国NPP在华北、西北地区与四川盆地主要受降水的影响,在青藏高原与云贵高原的东部主要受气温的影响,各陆地生态系统之间城市生态系统NPP对降水响应的敏感度相对最高,荒漠生态系统NPP对温度响应的敏感度相对最高。(4)气候变化和人类活动对全...  相似文献   

17.
Radioecological studies carried out in a joint co-operation between Russian, Ukrainian and Danish Laboratories are reported. The environmental impact of routine, discharges as well as accidental events, notably the Kyshtym accident in 1957 and the Karachay wind dispersion in 1968 have been studied. From measurements and based on model assumptions it has been estimated that the Ob river system outside Mayak, i.e. first of all the Techa and Iset rivers and their floodplains contain 0.1 PBq 90Sr, 0.3 PBq 137Cs and 0.8 TBq 239, 240Pu. The uncertainty of these estimates is a factor of 3-4. The present contamination from the Kyshtym accident outside the Mayak area is calculated to 0.1-0.5 PBq 90Sr and from the Karachay incident the contamination is 0.05-0.1 Bq 137Cs. The environmental contaminations with Pu from these two events are in the order of 1 TBq. The occurrence of 99Tc, 129I and 237Np in highly contaminated Techa river sediments collected outside Mayak is for the first time reported.  相似文献   

18.
The activity of methanogenic and methanotrophic bacteria was evaluated in bottom sediments of Lake Baikal. Methane concentration in Baikal bottom sediments varied from 0.0053 to 81.7 ml/dm3. Bacterial methane was produced at rates of 0.0004-534.7 microliters CH4/(dm3 day) and oxidized at rates of 0.005-1180 microliters CH4/(dm3 day). Peak methane production and oxidation were observed in Frolikha Bay near a methane vent. Methane was emitted into water at rates of 49.2-4340 microliters CH4/(m2 day). Rates of bacterial methane oxidation in near-bottom water layers ranged from 0.002 to 1.78 microliters/(1 day). Methanogens and methanotrophs were found to play an important role in the carbon cycle through all layers of sediments, particularly in the areas of methane vent and gas-hydrate occurrence.  相似文献   

19.
The response of ecosystems to different magnitudes of climate warming and corresponding precipitation changes during the last few decades may provide an important reference for predicting the magnitude and trajectory of net primary productivity (NPP) in the future. In this study, a process‐based ecosystem model, Carbon Exchange between Vegetation, Soil and Atmosphere (CEVSA), was used to investigate the response of NPP to warming at both national and subregional scales during 1961–2010. The results suggest that a 1.3°C increase in temperature stimulated the positive changing trend in NPP at national scale during the past 50 years. Regardless of the magnitude of temperature increase, warming enhanced the increase in NPP; however, the positive trend of NPP decreased when warming exceeded 2°C. The largest increase in NPP was found in regions where temperature increased by 1–2°C, and this rate of increase also contributed the most to the total increase in NPP in China's terrestrial ecosystems. Decreasing precipitation depressed the positive trend in NPP that was stimulated by warming. In northern China, warming depressed the increasing trend of NPP and warming that was accompanied by decreasing precipitation led to negative changing trends in NPP in large parts of northern China, especially when warming exceeded 2°C. However, warming stimulated the increase in NPP until warming was greater than 2°C, and decreased precipitation helped to increase the NPP in southern China.  相似文献   

20.
Warming climate could affect leaf-level carbon isotope composition (δ13C) through variations in photosynthetic gas exchange. However, it is still unclear to what extent variations in foliar δ13C can be used to detect changes in net primary productivity (NPP) because leaf physiology is only one of many determinants of stand productivity. We aim to examine how well site-mean foliar δ13C and stand NPP co-vary across large resource gradients using data obtained from the Tibetan Alpine Vegetation Transects (1900–4900 m, TAVT). The TAVT data indicated a robust negative correlation between foliar δ13C and NPP across ecosystems (NPP=−2.7224δ13C-67.738, r2=0.60, p<0.001). The mean foliar δ13C decreased with increasing annual precipitation and its covariation with mean temperature and soil organic carbon and nitrogen contents. The results were further confirmed by global literature data. Pooled δ13C data from global literature and this study explained 60% of variations in annual NPP both from TAVT-measures and MODIS-estimates across 67 sites. Our results appear to support a conceptual model relating foliar δ13C and nitrogen concentration (Nmass) to NPP, suggesting that: 1) there is a general (negative) relationship between δ13C and NPP across different water availability conditions; 2) in water-limited conditions, water availability has greater effects on NPP than Nmass; 3) when water is not limiting, NPP increases with increasing Nmass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号