首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Artesunate (ART)—a well-known hydrophobic anti-malarial agent was incorporated in a polymer-lipid hybrid nanocolloidal system for anti-cancer therapeutic. The lipid negatively charged nanoemulsion was formulated by modified hot homogenization method then covered with positively charged chitosan via electrostatic interaction to obtain chitosan-coated lipid nanocapsule (ART-CLN). Physical properties of the system were characterized in terms of size, charge, morphology, drug loading capacity, and physical state. In addition, anti-cancer activities were confirmed by conducting MTT assay for ART and ART-CLN on different cancer cell lines. Obtained ART-CLN after coating chitosan revealed positive charge (13.2 ± 0.87 mV), small particle size (160.9 ± 3.5 nm), and spherical shape. High drug entrapment efficiency (95.49 ± 1.13%) and sustained release pattern were observed. Moreover, the good cellular uptake was recorded by flow cytometry as well as confocal image. Finally, ART-CLN exhibited stronger anti-cancer activity than free ART on breast cancer cell lines (MCF-7, MDA-MB-231). These results suggested that by loading ART into lipid core of polymer-lipid hybrid carrier, the activity and physical stability of ART can be significantly increased for cancer chemotherapy.KEY WORDS: anti-cancer, artesunate, breast cancer, chitosan, lipid nanoparticles  相似文献   

2.
The aim of this study was to formulate salbutamol sulfate (SS), a model drug, as mucoadhesive in situ gelling inserts having a high potential as nasal drug delivery system bypassing the first-pass metabolism. In situ gelling inserts, each containing 1.4% SS and 2% gel-forming polymer, hydroxypropyl methylcellulose (HPMC), carboxymethylcellulose sodium (CMC Na), sodium alginate (AL), and chitosan (CH) were prepared. The inserts were investigated for their different physicochemical properties. The weight of inserts was 16–27 mg, drug content was 3.9–4.2 mg, thickness ranged between 15 and 28 μm and surface pH was 5–7. Cumulative drug released from the inserts exhibited extended release for more than 10 h following the decreasing order: CH > AL > CMC Na > HPMC. The drug release from CMC Na and AL inserts followed zero-order kinetics while HPMC and CH inserts exhibited non-Fickian diffusion mechanism. The inserts exhibited different water uptake (7–23%) with the smallest values for CH. Differential scanning calorimetry study pointed out possible interaction of SS and oppositely charged anionic polymers (CMC Na and AL). The mucoadhesive in situ gelling inserts exhibited satisfactory mucoadhesive and extended drug release characteristics. The inserts could be used for nasal delivery of SS over about 12 h; bypassing the hepatic first-pass metabolism without potential irritation.KEY WORDS: in situ gelling inserts, mucoadhesion, nasal delivery, salbutamol sulfate  相似文献   

3.
There are many studies about the synthesis of chitosan microparticles; however, most of them have very low production rate, have wide size distribution, are difficult to reproduce, and use harsh crosslinking agents. Uniform microparticles are necessary to obtain repeatable drug release behavior. The main focus of this investigation was to study the effect of the process and formulation parameters during the preparation of chitosan microparticles in order to produce particles with narrow size distribution. The technique evaluated during this study was emulsion crosslinking technique. Chitosan is a biocompatible and biodegradable material but lacks good mechanical properties; for that reason, chitosan was ionically crosslinked with sodium tripolyphosphate (TPP) at three different ratios (32, 64, and 100%). The model drug used was acetylsalicylic acid (ASA). During the preparation of the microparticles, chitosan was first mixed with ASA and then dispersed in oil containing an emulsifier. The evaporation of the solvents hardened the hydrophilic droplets forming microparticles with spherical shape. The process and formulation parameters were varied, and the microparticles were characterized by their morphology, particle size, drug loading efficiency, and drug release behavior. The higher drug loading efficiency was achieved by using 32% mass ratio of TPP to chitosan. The average microparticle size was 18.7 μm. The optimum formulation conditions to prepare uniform spherical microparticles were determined and represented by a region in a triangular phase diagram. The drug release analyses were evaluated in phosphate buffer solution at pH 7.4 and were mainly completed at 24 h.  相似文献   

4.
Frequent instillation of terbinafine hydrochloride (T HCl) eye drops (0.25%, w/v) is necessary to maintain effective aqueous humor concentrations for treatment of fungal keratitis. The current approach aimed at developing potential positively charged controlled-release polymeric nanoparticles (NPs) of T HCl. The estimation of the drug pharmacokinetics in the aqueous humor following ocular instillation of the best-achieved NPs in rabbits was another goal. Eighteen drug-loaded (0.50%, w/v) formulae were fabricated by the nanopreciptation method using Eudragit® RS100 and chitosan (0.25%, 0.5%, and 1%, w/v). Soybean lecithin (1%, w/v) and Pluronic® F68 (0.5%, 1%, and 1.5%, w/v) were incorporated in the alcoholic and aqueous phases, respectively. The NPs were evaluated for particle size, zeta potential, entrapment efficiency percentage (EE%), morphological examination, drug release in simulated tear fluid (pH 7.4), Fourier-transform IR (FT-IR), X-ray diffraction (XRD), physical stability (2 months, 4°C and 25°C), and drug pharmacokinetics in the rabbit aqueous humor relative to an oily drug solution. Spherical, discrete NPs were successfully developed with mean particle size and zeta potential ranging from 73.29 to 320.15 nm and +20.51 to +40.32 mV, respectively. Higher EE% were achieved with Eudragit® RS100-based NPs. The duration of drug release was extended to more than 8 h. FT-IR and XRD revealed compatibility between inactive formulation ingredients and T HCl and permanence of the latter’s crystallinity, respectively. The NPs were physically stable, for at least 2 months, when refrigerated. F5-NP suspension significantly (P < 0.05) increased drug mean residence time and improved its ocular bioavailability; 1.657-fold.Key words: aqueous humor, chitosan, Eudragit® RS100, nanoparticles, terbinafine hydrochloride  相似文献   

5.
Drug-polymer microparticles produced by supercritical assisted atomization   总被引:4,自引:0,他引:4  
The supercritical assisted atomization (SAA) was proposed as a new technique to produce composite microparticles for drug controlled release. Ampicillin trihydrate and chitosan were selected as model drug and carrier, respectively, and 1% v/v acetic acid aqueous solution was used as solvent. The effect of the polymer/drug ratio on particle morphology and drug release rate was evaluated. SEM analysis indicated that non-coalescing spherical microparticles formed by chitosan/ampicillin were produced by SAA. All coprecipitates produced have a sharp particle distribution, with diameters ranging between about 0.1 and 6 microm. SAA composite microparticles were characterized by X-ray, DSC, EDX and UV-vis analysis. A solid solution of the chitosan and ampicillin was produced and a stabilizing effect of the polymer on the drug has resulted that protects ampicillin from thermal degradation. A prolonged release from SAA coprecipitates with respect to raw drug and physical mixtures of chitosan and ampicillin was obtained; moreover, the polymer/drug ratio has revealed to be a controlling parameter for drug release. Drug release mechanisms characteristic of swelling-controlled systems were observed, with ampicillin release depending on both relaxation and diffusive mechanisms. An empirical binomial equation was used to describe experimental data, showing a fair good agreement with ampicillin release data if both the relaxational and the diffusional parameters are function of the polymer/drug ratio.  相似文献   

6.
In this study, liquid crystalline nanoparticles (LCN) have been proposed as new carrier for topical delivery of finasteride (FNS) in the treatment of androgenetic alopecia. To evaluate the potential of this nanocarrier, FNS-loaded LCN was prepared by ultrasonication method and characterized for size, shape, in vitro release, and skin permeation–retention properties. The particle size ranged from 153.8 to 170.2 nm with a cubical shape and exhibited controlled release profile with less than 20% of the drug released in the first 24 h. The release profile was significantly altered with addition of different additives. Formulation with lower monoolein exhibited higher skin permeation with a flux rate of 0.061 ± 0.005 μg cm−2 h−1 in 24 h. The permeation however, significantly increased with glycerol, propylene glycol, and polyethylene glycol 400, while it declined for the addition of oleic acid. A similar trend was observed with skin retention study. In conclusion, FNS-loaded LCN could be advocated as a viable alternative for oral administration of the drug.Key words: androgenetic alopecia, finasteride, liquid crystalline nanoparticles, release, skin permeation–retention  相似文献   

7.
The main objective of the present study was to investigate the influence of various formulation parameters on the preparation of zein nanoparticles. 6,7-dihydroxycoumarin (DHC) was used as a model hydrophobic compound. The influence of pH of the aqueous phase, buffer type, ionic strength, surfactant, and zein concentration on particle size, polydispersity index, and zeta potential of DHC-loaded zein nanoparticles were studied. Smaller nanoparticles were formed when the pH was close to the isoelectric point of zein. DHC-loaded zein nanoparticles prepared using citrate buffer (pH 7.4) was better than phosphate buffer in preventing particle aggregation during lyophilization. The ionic strength did not have a significant influence on the particle size of DHC-loaded zein nanoparticles. A combination of Pluronic F68 and lecithin in 2:1 ratio stabilized the zein nanoparticles. An increase in zein concentration led to increase in particle size of DHC-loaded zein nanoparticles. The use of optimal conditions produced DHC-loaded nanoparticles of 256 ± 30 nm and an encapsulation efficiency of 78 ± 7%. Overall, the study demonstrated the optimal conditions to prepare zein nanoparticles for drug encapsulation.KEY WORDS: drug delivery, particle size distribution, pH nanoprecipitation, protein polymers, zein, zeta potential  相似文献   

8.
The current study aims to develop a stable pH-sensitive drug delivery system. First, cleavable polyethylene glycol-α-tocopherol hemisuccinate (PEG-THS) was synthesized. Conventional pH-sensitive vesicles composed of the Tris salt of α-tocopherol hemisuccinate (THST) were then prepared using the detergent removal technique. The vesicles had a mean particle size of (163.8 ± 5.5) nm and a zeta potential of −74.5 ± 6.4 mV. The THST vesicles were then modified using PEG-THS or uncleavable PEG-cholesterol (PEG-CHOL) (THST/PEG-lipids, 100:6 molar ratio). The mean vesicle particle size and absolute zeta potential decreased with increasing PEG-THS proportion. When the pH was decreased, the vesicle particle size and calcein release rate increased. The THST vesicles were initially Ca2+-unstable but exhibited significantly improved stability after modification with PEG-THS, especially at PEG-lipid ratios above 6%. Incubation in an acid serum increased the calcein release rate of conventional THST vesicles to 45 ± 1.98% at 10 min. However, the release rate of the PEG-CHOL vesicles remained low. The calcein release rate of PEG-THS vesicles was between those of conventional and PEG-CHOL-V. Therefore, PEG-THS can protect vesicles in serum and reconstitute their pH sensitivity in acidic conditions. Cleavable PEG-THS can be used in stable pH-sensitive preparations without loss of pH sensitivity. Free calcein and conventional vesicles eliminated from the plasma soon after injection, as well as the half-life (t1/2) and area under the curve of PEG-THS-V encapsulating calcein, were dramatically increased. This phenomenon indicates that the use of PEG-lipid derivatives has gained a favorably long circulation effect in mice.Key words: cleavage, long circulation, PEG-α-tocopherol hemisuccinate, pH-sensitive, vesicles  相似文献   

9.
The aim of this study was to investigate olanzapine (OZ) systemic absolute bioavailability after intranasal (i.n.) administration in vivo to conscious rabbits. Furthermore, the study investigated the potential use of chitosan nanoparticles as a delivery system to enhance the systemic bioavailability of olanzapine following intranasal administration. Olanzapine-loaded chitosan nanoparticles were prepared through ionotropic gelation of chitosan with tripolyphosphate anions and studied in terms of their size, drug loading, and in vitro release. The OZ nanoparticles were administered i.n. to rabbits, and OZ plasma concentration at predetermined time points was compared to i.n. administration of OZ in solution. The concentrations of OZ in plasma were analyzed by ultra performance liquid chromatography mass spectroscopy (UPLC/MS). OZ-loaded chitosan nanoparticles significantly (p < 0.05) enhanced systemic absorption with 51 ± 11.2% absolute bioavailability as compared to 28 ± 6.7% after i.n. administration of OZ solution. The results of the present study suggest that intranasal administration of OZ-loaded chitosan nanoparticles formulation could be an attractive modality for delivery of OZ systemically.KEY WORDS: bioavailability, intranasal, nanoparticles, olanzapine, pharmacokinetic  相似文献   

10.
Pneumocystis carinii pneumonia (PCP) is a major opportunistic infection that affects patients with human immunodeficiency virus. Although orally administered dapsone leads to high hepatic metabolism, decreasing the therapeutic index and causing severe side effects, this drug is an effective alternative for the treatment of PCP. In this context, microencapsulation for pulmonary administration can offer an alternative to increase the bioavailability of dapsone, reducing its adverse effects. The aim of this work was to develop novel dapsone-loaded chitosan microcapsules intended for deep-lung aerosolized drug delivery. The geometric particle size (D4,3) was approximately 7 μm, the calculated aerodynamic diameter (daero) was approximately 4.5 μm, and the mass median aerodynamic diameter from an Andersen cascade impactor was 4.7 μm. The in vitro dissolution profile showed an efficient dapsone encapsulation, demonstrating the sustained release of the drug. The in vitro deposition (measured by the Andersen cascade impactor) showed an adequate distribution and a high fine particles fraction (FPF = 50%). Scanning electron microscopy of the pulmonary tissues demonstrated an adequate deposition of these particles in the deepest part of the lung. An in vivo toxicity experiment showed the low toxicity of the drug-loaded microcapsules, indicating a protective effect of the microencapsulation process when the particles are microencapsulated. In conclusion, the pulmonary administration of the novel dapsone-loaded microcapsules could be a promising alternative for PCP treatment.KEY WORDS: dapsone, dry powders inhalers, in vivo toxicity, microparticles, pulmonary drug delivery  相似文献   

11.
Li S  Ji Z  Zou M  Nie X  Shi Y  Cheng G 《AAPS PharmSciTech》2011,12(3):1011-1018
Tetrandrine (TET) is a poorly water-soluble bisbenzylisoquinoline alkaloid. In this study, TET solid lipid nanoparticles (SLNs) were prepared by a melt–emulsification and ultrasonication technique. Precirol® ATO 5, glyceryl monostearate, and stearic acid were used as the lipid matrix for the SLNs, while Lipoid E80, Pluronic F68, and sodium deoxycholate were used as emulsifying and stabilizing agents. The physicochemical characteristics of the TET–SLNs were investigated when it was found that the mean particle size and zeta potential of the TET–SLNs were 134 ± 1.3 nm and −53.8 ± 1.7 mV, respectively, and the entrapment efficiency (EE) was 89.57% ± 0.39%. Differential scanning calorimetry indicated that TET was in an amorphous state in SLNs. TET–SLNs exhibited a higher release rate at a lower pH and a lower release rate at a higher pH. The release pattern of the TET–SLNs followed the Weibull model. The pharmacokinetics of TET–SLNs after intravenous administration to male rats was studied. TET–SLN resulted in a higher plasma concentration and lower clearance. The biodistribution study indicated that TET–SLN showed a high uptake in reticuloendothelial system organs. In conclusion, TET–SLNs with a small particle size, and high EE, can be produced by the method described in this study. The SLN system is a promising approach for the intravenous delivery of tetrandrine.Key words: characterization, pharmacokinetics, preparation, solid lipid nanoparticles, tetrandrine  相似文献   

12.
Liposomes (LIP), nanoparticles (NP), dendrimers (DEN), and carbon nanotubes (CNTs), represent eminent classes of drug delivery devices. A study was carried out herewith by employing docetaxel (DTX) as model drug to assess their comparative drug delivery potentials. Under optimized conditions, highest entrapment of DTX was observed in CNT-based formulation (DTX-CNTs, 74.70 ± 4.9%) followed by nanoparticles (DTX-NP, 62.34 ± 1.5%), liposome (49.2 ± 1.51%), and dendrimers (28.26 ± 1.74%). All the formulations were found to be of nanometric size. In vitro release studies were carried out in PBS (pH 7.0 and 4.0), wherein all the formulations showed biphasic release pattern. Cytotoxicity assay in human cervical cancer SiHa cells inferred lowest IC50 value of 1,235.09 ± 41.93 nM with DTX-CNTs, followed by DTX-DEN, DTX-LIP, DTX-NP with IC50 values of 1,571.22 ± 151.27, 1,653.98 ± 72.89, 1,922.75 ± 75.15 nM, respectively. Plain DTX showed higher hemolytic toxicity of 22.48 ± 0.94%, however loading of DTX inside nanocarriers drastically reduced its hemolytic toxicity (DTX-DEN, 17.22 ± 0.48%; DTX-LIP, 4.13 ± 0.19%; DTX-NP, 6.43 ± 0.44%; DTX-CNTs, 14.87 ± 1.69%).KEY WORDS: carbon nanotubes, dendrimer, drug delivery, liposomes, nanoparticles, nanotechnology  相似文献   

13.
Polymeric coating materials have been widely used to modify release rate of drug. We compared physical properties and release-controlling efficiency of polymeric coating materials using matrix-type casted film and diffusion-controlled coated tablet. Hydroxypropylmethyl cellulose (HPMC) with low or high viscosity grade, ethylcellulose (EC) and Eudragit® RS100 as pH-independent polymers and Eudragit S100 for enteric coatings were chosen to prepare the casted film and coated tablet. Tensile strength and contact angle of matrix-type casted film were invariably in the decreasing order: EC> Eudragit S100> HPMC 100000> Eudragit RS100>HPMC 4000. There was a strong linear correlation between tensile strength and contact angle of the casted films. In contrast, weight loss (film solubility) of the matrix-type casted films in three release media (gastric, intestinal fluid and water) was invariably in the increasing order: EC < HPMC 100000 < Eudragit RS100 < HPMC 4000 with an exception of Eudragit S100. The order of release rate of matrix-type casted films was EC > HPMC 100000 > Eudragit RS100 > HPMC 4000 > Eudragit S100. Interestingly, diffusion-controlled coated tablet also followed this rank order except Eudragit S100 although release profiles and lag time were highly dependent on the coating levels and type of polymeric coating materials. EC and Eudragit RS100 produced sustained release while HPMC and Eudragit S100 produced pulsed release. No molecular interactions occurred between drug and coating materials using 1H-NMR analysis. The current information on release-controlling power of five different coating materials as matrix carrier or diffusion-controlled film could be applicable in designing oral sustained drug delivery.Key words: diffusion-controlled coated tablet, drug release rate, matrix-type casted film, polymeric coating materials, release-controlling power  相似文献   

14.
The purpose of this work was to evaluate the potential of grewia gum (GG) as a suspending agent in pharmaceutical oral formulation using ibuprofen as model drug. Ibuprofen pediatric suspension (25 mg/5 mL) was formulated with grewia gum (0.5% w/v) as the suspending agent. Similar suspensions of Ibuprofen containing either sodium carboxymethylcellulose (Na-CMC) or hydroxymethylpropylcellulose (HPMC) were also produced. The suspensions were evaluated for ease of redispersion, sedimentation, rheological properties, and the effect of aging on the rheological properties at 25°C. The particle size and particle size distributions of the dispersed solute were determined. The redispersion time was 19, 11, and 0.5 min, respectively, for formulation containing Na-CMC, HPMC, and GG .The sedimentation volumes were 0.05, 0.05, and 0.125 mL, respectively, for Na-CMC, HPMC, and GG . Viscosities of suspensions at spindle speed of 25 rpm were of the order: GG > HPMC > Na-CMC when freshly prepared and of the order: HPMC > GG > Na-CMC within 6 months of storage. The particles size was 72.72, 73.82, 81.93, and 83.41 μm, respectively, for suspensions containing Na-CMC, ibuprofen alone, HPMC, and GG. Greatest hysteresis was observed in formulation containing HPMC. All the formulations were stable. It was our conclusion that the difference in the physicochemical properties of ibuprofen pediatric formulations was influenced more by the suspending agent used in the formulations than the drug. GG combined better redispersion with minimal changes in viscosity on storage compared to Na-CMC and HPMC as suspending agent. Thus GG may serve as a good suspending agent requiring no further aid in suspension redispersibility.KEY WORDS: grewia gum, oral pharmaceutical formulations, physicochemical properties, potential suspending agent  相似文献   

15.
The intramuscular administration of the injectable suspension betamethasone sodium phosphate (BSP) and betamethasone dipropionate (BD) has immediate therapeutic activity due to solubilized BSP and prolonged activity resulting from the slow release of BD micro-crystals. The purpose of this study was to develop and validate a dissolution method for BD in intramuscular injectable suspensions with detection by high-performance liquid chromatography (HPLC) method. Five commercial products presented a distribution of particle sizes, ranging between 7.43 and 40.25 μm as measured by laser diffraction. It was also found that particle sizes differed between batches of the same product. The different products were tested using the paddle apparatus, with stirring speeds of 25 and 50 rpm in 300 mL of phosphate buffer; simulated body fluid, muscle fluid, and synovial fluid were used as biorelevant dissolution media at 37 ± 0.5°C. It was verified that not only does average particle size affect the dissolution rate, but also the mode and the polydispersity index of the particles. Discriminatory power was obtained using the in vitro dissolution method with 0.1 M sodium phosphate buffer pH 7.4 containing 0.1% sodium lauryl sulfate and a stirring speed of 50 rpm. The HPLC-method is linear, precise, selective, and accurate for the quantification of BSP and BD in dissolution profile testing. This dissolution method can be utilized as a method to control the quality of these injectable suspensions.Key words: dipropionate betamethasone, dissolution test, intramuscular injectable suspensions, simulated muscular fluid, sodium phosphate betamethasone  相似文献   

16.
The objective of this study is to formulate lyophilized oral sustained release polymeric nanoparticles of nateglinide in order to decrease dosing frequency, minimize side effects, and increase bioavailability. Nateglinide-loaded poly Ɛ-caprolactone nanoparticles were prepared by emulsion solvent evaporation with ultrasonication technique and subjected to various studies for characterization including scanning electron microscopy (SEM), Fourier transform infrared spectroscopy, photon correlation spectroscopy and evaluated for in vitro drug release and pharmacodynamic studies. The influence of increase in polymer concentration, ultrasonication time, and solvent evaporation rate on nanoparticle properties was investigated. The formulations were optimized based on the above characterization, and the formulation using 5% polymer, 3-min sonication time, and rota-evaporated was found to have the best drug entrapment efficiency of 64.09 ± 4.27% and size of 310.40 ± 11.42 nm. Based on SEM, nanoparticles were found to be spherical with a smooth surface. In vitro drug release data showed that nanoparticles sustained the nateglinide release for over 12 h compared to conventional tablets (Glinate 60 mg), and drug release was found to follow Fickian mechanism. In vivo studies showed that nanoparticles prolonged the antidiabetic activity of nateglinide in rats significantly (p ≤ 0.05) compared to the conventional tablets (Glinate 60 mg) over a period of 12 h. Accelerated stability data indicated that there was minimal to no change in drug entrapment efficiency.KEY WORDS: drug encapsulation efficiency, nanoparticles, poly Ɛ-caprolactone (PCL), probe sonication  相似文献   

17.
The aim was to develop a liposomal oxymatrine conjugating d-alpha tocopheryl polyethylene glycol 1000 succinate (OMT-LIP) for enhanced therapeutics of hepatic fibrosis. OMT-LIP was prepared using the remote loading method. The influences of formulation compositions on the encapsulation efficiency of OMT-LIP were investigated. Mean particle size, zeta potential, morphology, in vitro release, fibrotic liver targeting, and therapeutics of OMT-LIP were thoroughly assessed. The intraliposomal buffer composition and concentration, extraliposomal phase composition and pH, types of phospholipid, lipid molar ratio composition, and theoretical drug loading are crucial factors to entrap OMT into liposomes. The optimum OMT-LIP presented spherically unilamellar microstructures with entrapment efficiency of 79.7 ± 3.9%, mean particle size of 121.6 ± 52.9 nm, and zeta potential of −5.87 mV. OMT-LIP significantly increased the accumulation of OMT in the fibrotic liver with an 11.5-fold greater AUC than OMT solution in the dimethylnitrosamine (DMN)-induced hepatic fibrosis animals. OMT-LIP could be a potential strategy to improve treatment outcomes for hepatic fibrosis, showing the protective effects to mice given CCl4 and the enhanced therapeutics to mice with either DMN or CCl4-induced hepatic fibrosis.KEY WORDS: fibrotic liver targeting, hepatic fibrosis, liposomes, oxymatrine, therapeutics  相似文献   

18.
The present research work focused on the comparative assessment of porous versus nonporous films in order to develop a suitable buccoadhesive device for the delivery of glibenclamide. Both films were prepared by solvent casting technique using the 32 full factorial design, developing nine formulations (F1–F9). The films were evaluated for ex vivo mucoadhesive force, ex vivo mucoadhesion time, in vitro drug release (using a modified flow-through drug release apparatus), and ex vivo drug permeation. The mucoadhesive force, mucoadhesion time, swelling index, and tensile strength were observed to be directly proportional to the content of HPMC K4M. The optimized porous film (F4) showed an in vitro drug release of 84.47 ± 0.98%, ex vivo mucoadhesive force of 0.24 ± 0.04 N, and ex vivo mucoadhesion time of 539.11 ± 3.05 min, while the nonporous film (NF4) with the same polymer composition showed a release of 62.66 ± 0.87%, mucoadhesive force of 0.20 ± 0.05 N, and mucoadhesive time of 510 ± 2.00 min. The porous film showed significant differences for drug release and mucoadhesion time (p < 0.05) versus the nonporous film. The mechanism of drug release was observed to follow non-Fickian diffusion (0.1 < n < 0.5) for both porous and nonporous films. Ex vivo permeation studies through chicken buccal mucosa indicated improved drug permeation in porous films versus nonporous films. The present investigation established porous films to be a cost-effective buccoadhesive delivery system of glibenclamide.KEY WORDS: buccoadhesive drug delivery, glibenclamide, in vitro release and ex vivo permeation, porous film  相似文献   

19.
Polyethylene oxide has been researched extensively as an alternative polymer to hydroxypropyl methylcellulose (HPMC) in controlled drug delivery due to its desirable swelling properties and its availability in a number of different viscosity grades. Previous studies on HPMC have pointed out the importance of particle size on drug release, but as of yet, no studies have investigated the effect of particle size of polyethylene oxide (polyox) on drug release. The present study explored the relationship between polymer level and particle size to sustain the drug release. Tablets produced contained theophylline as their active ingredient and consisted of different polyethylene oxide particle size fractions (20–45, 45–90, 90–180 and 180–425 μm). It was shown that matrices containing smaller particle sizes of polyox produced harder tablets than when larger polyox particles were used. The release studies showed that matrices consisting of large polyox particles showed a faster release rate than matrices made from smaller particles. Molecular weight (MW) of the polymer was a key determining step in attaining sustained release, with the high MW of polyox resulting in a delayed release profile. The results showed that the effect of particle size on drug release was more detrimental when a low concentration of polyox was used. This indicates that care must be taken when low levels of polyox with different particle size fractions are used. More robust formulations could be obtained when the concentration of polyox is high. Differential scanning calorimetry (DSC) traces showed that particle size had no major effect on the thermal behaviour of polyox particles.KEY WORDS: DSC traces, particle size, polyox, sustained release, theophylline  相似文献   

20.
The aim of this work was to prepare and evaluate Tadalafil nanosuspensions and their PEG 4000 solid dispersion matrices to enhance its dissolution rate. Nanosuspensions were prepared by precipitation/ultrasonication technique at 5°C where different stabilizers were screened for stabilization. Nanosuspensions were characterized in terms of particle size and charge. Screening process limited suitable stabilizers into structurally related surfactants composed of a mixture of Tween80 and Span80 at 1:1 ratio (in percent, weight/volume) in adjusted alkaline pH (named TDTSp-OH). The surfactant mixture aided the production of nanosuspensions with an average particle size of 193 ± 8 nm and with short-term stability sufficient for further processing. Solid dispersion matrices made of dried Tadalafil nanosuspensions or dried Tadalafil raw powder suspensions and PEG 4000 as a carrier were prepared by direct compression. Drying was performed via dry heat or via freeze dry. Drug release studies showed that, in general, tablet formulations made of freeze-dried product exhibited faster initial release rates than the corresponding tablets made of oven-dried products which could be attributed to possible larger crystal growth and larger crushing strengths of oven-dried formulations. At best, 60% of drug was released from solid dispersion matrices, while more than 90% of drug was released from TDTSp-OH nanosuspension within the first 5 min. In conclusion, Tadalafil nanosuspensions obtained using a mixed surfactant system provided rapid dissolution rates of Tadalafil that can theoretically enhance its bioavailability.KEY WORDS: nanosuspension, particle size, solid dispersion, stabilizer, tablets, Tadalafil  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号