首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Summary Incubation experiments with eggs of a population of Isotoma viridis, which is exposed to annual long-term flooding from about April to July, as well as field observations show that temperature controls both, underwater egg dormancy and immediate postflood hatching. The population is located at the Eder Freshwater Reservoir in Germany.If constant experimental temperatures are above 14°C, almost all eggs are nondormant. Dormancy is established at temperatures below 15°C, but embryonic development is completed. Experiments indicate that of the environmental factors that change drastically at the end of submergence (light, turgor pressure, oxygen, a.o.), only temperature acts as a hatching trigger. Hatching of the previously dormant eggs occurs at a constant threshold temperature of 16°C, mainly within 2 to 20 days after temperature elevation, but most of these eggs need even higher temperatures to hatch. Remaining eggs were partly stimulated to hatch by recooling them at 7°C for some days and then rewarming them again.The threshold temperatures observed are unusually high for Collembola and seem to be the result of selection by the special floodplain conditions. During normal years, the surface temperatures of submerged soil usually do not exceed threshold limits before summer drainage. This allows both, protection from under-water hatching and an optimal timing of hatching at the very beginning of the main terrestrial period. The experiments show that above the threshold temperature (in warm summers), individuals can hatch under water and survive submerged for 10–15 days. They can survive even longer in the water habitat, if emergent structures enable them to climb onto the water surface. Furthermore, a considerable polymorphism observed in some hatching properties improves the chance to survive under the unpredictable floodplain conditions.  相似文献   

2.
This study examined the effects of temperature and phase polyphenism on egg hatching time in the desert locust, Schistocerca gregaria, and the migratory locust, Locusta migratoria. The two species exhibited differences and similarities in hatching behavior when exposed to different temperature conditions. In 12-h thermocycles of various temperatures, the S. gregaria eggs hatched during the cryoperiod (low temperature period), whereas L. migratoria eggs hatched during the thermoperiod (high temperature period). The eggs of both species hatched during the species-specific period of the thermoperiod in response to a temperature difference as small as 1 °C. Furthermore, the locusts adjusted hatching time to a new thermal environment that occurred shortly before the expected hatching time. In both species, the hatching of the eggs was synchronized to a specific time of the day, and two hatching peaks separated by approximately 1 day were observed at a constant temperature after the eggs were transferred from thermocycles 3 days before hatching. Eggs laid by gregarious females hatched earlier than those laid by solitarious females in S. gregaria but this difference was not observed in L. migratoria.  相似文献   

3.
1. The hypothesis that a 3 °C elevation in temperature and doubled CO2 concentration would have no effect on the synchronization of winter moth egg hatch with budburst in oak was tested by comparing the separate and interactive effects of ambient and elevated (+ 3 °C) temperature and ambient and elevated (doubled to 340 p.p.m.) CO2 in eight experimental Solardomes. In addition, an outdoor control was compared with the ambient temperature/CO2 treatment combination.
2. Elevated temperature accelerated darkening (preceding egg hatch by about 5–10 days) and hatching of eggs developing off the trees; elevated CO2 had no effect. The same effects were observed in eggs developing on the trees.
3. Within treatments, date of egg hatch was the same on trees with early or late budburst.
4. Egg darkening and budburst were closely synchronized at both ambient and elevated temperatures.
5. Both eggs and trees required fewer cumulative heat units (day degrees > 4 °C), for hatching and budburst, respectively, at ambient than elevated temperatures. The requirements in the outdoor control treatment were similar to those in the ambient Solardome treatment.
6. Egg hatch between 10 and 25 °C, on a temperature gradient in the laboratory, required a constant number of heat units; fewer were required below 10 °C.
7. Elevated temperatures, in the Solardomes and the field, delayed adult emergence from the pupae.
8. The results suggest that a general increase in temperature with climatic change would not affect the closeness of the synchronization between egg hatch of winter moth and budburst of oak.  相似文献   

4.
Egg hatch was greatest (78.33%) for eggs not previously desiccated. A reduction in numbers hatched occurred as the relative humidity at which they were dried decreased. Some eggs hatched (0.67–79.33%) at pH levels of 3.10–10.01 with the highest hatch at pH 5.60. Water temperature greatly affected egg hatch. No hatch occurred until temperatures were above 14°C. A constant 29°C significantly inhibited hatching. Egg hatch increased 13.00 to 43.42% as salinity decreased from 2200 to 9.24 micromhos/cm. As little as 13 mm of flooded soil covering the eggs prevented them from hatching for 14 days. Eighteen percent hatch resulted when soil and eggs were redistributed to a 1 mm soil layer. Egg samples from the same parent, even though treated similarly, often hatched at greatly varying rates and only rarely was hatching 100% within a replication.  相似文献   

5.
The present study showed that the eggs of the desert locust, Schistocerca gregaria, and the migratory locust, Locusta migratoria, responded to photoperiod by hatching when placed on sand in the laboratory. S. gregaria mainly hatched during the dark phase and L. migratoria during the light phase. The importance of light as a hatching cue depended on the magnitude of the temperature change during the thermoperiod; photoperiod played a more important role in the control of hatching time in both species when the magnitude of the temperature change was small. In addition, the eggs of the two species that were covered with sand did not respond to photoperiod and hatched during both the light and dark phases, indicating that light did not penetrate through the sand. Because locust eggs are normally laid as egg pods and a foam plug is deposited between the egg mass and the ground surface, we tested a possibility that naturally deposited eggs perceived light through the foam plug. The eggs that were deposited and left undisturbed in the sand hatched during the light and dark phases at similar frequencies. These results suggest that the eggs of both locust species responded to light and controlled their hatching timing accordingly but would not use light as a hatching cue in the field. The evolutionary significance of the ability of eggs to respond to light in these locusts was discussed.  相似文献   

6.
The timing of egg hatching in Cryptotympana facialis was examined in relation to short-term weather conditions. The brief underwater submergence, once a week, of dead twigs bearing cicada egg nests resulted in high hatching rates both at 25 degrees C and under outdoor conditions protected from rainfall. Under outdoor conditions with natural rainfall, most eggs hatched on rainy days. There was a significant positive correlation between the number of hatching eggs and daily relative humidity (RH). When eggs picked from twigs were exposed to various humidity levels, many eggs hatched quickly at higher humidity without direct contact with liquid water. Newly hatched nymphs showed a low tolerance to desiccation; at 81% RH at 25 degrees C, most of them died within 6 h. Under outdoor conditions, most nymphs died within 2 h on sunny days, whereas nymphs survived longer on rainy days. When newly hatched nymphs were released on dry ground, only 24% of them succeeded in burrowing into the soil, and many were killed by ants or desiccation. However, 92% of nymphs released onto wet ground successfully burrowed into it. The direct induction of hatching by high humidity ensures the survival and establishment in the soil of newly hatched nymphs in this species.  相似文献   

7.
Most eggs of M. javanica hatch within several days when incubated in water. Those that do not are said to show delayed hatching. Several experiments were conducted to determine the effect of specific conditions on the percentage of eggs with delayed hatch. Six initial inoculum densities ranging from 100 to 20,000 eggs per pot did not influence egg hatch within a 45-day incubation period. In a 60-day test, the percentage of eggs hatching after more than 20 days was low for egg masses removed from carrot and okra and high for those from pepper and bean. Increasing exposure to cold temperature (8 C) from 7 to 30 days tended to delay hatch.  相似文献   

8.
Abstract. The daily hatching rhythm of Rhodnius prolixus eggs is established under an LD 12 : 12 h photoperiod. The endogenous nature of this rhythm is demonstrated under continuous darkness. Hatching takes place during the last half of the night, when the maximum environmental relative humidity (RH) and minimum temperature (i.e. the combination that yields the lower water vapour saturation deficits) occur in wild habitats. This temporal window of approximately 7 h recurs at 24‐h intervals, producing a hatching rhythm in the population. The effects of the RH upon egg‐hatching are analysed. In agreement with previous studies, hatching success is strongly affected by environmental RH. Although 88% of eggs hatch at 75% RH, only 4% and 10% hatch at 0% or 100% RH, respectively. These results support the hypothesis that temporal synchronization is related to the avoidance of low environmental RHs, high environmental temperatures, or high water vapour saturation deficit during hatching, thus minimizing their deleterious effects. Given that eggs cannot choose optimum microclimatic conditions, selective pressures appear to have originated from an adaptive temporal rather than spatial hygropreference.  相似文献   

9.
Summary There is a range of egg size phenotypes in Mallards (Anas platyrhynchos) that has a large genetic component. It was hypothesized that egg size variation could play an important role in survival of newly hatched ducklings during their first few days out of the nest when they are most susceptible to thermal stress and starvation. Precocial young must be physiologically capable of maintaining homeothermy in order to spend adequate time foraging. Duckling size at hatching was highly correlated with egg mass, and those hatching from heavier eggs were able to maintain homeothermy at colder environmental temperatures than those from lighter eggs. Heavy ducklings had significantly lower mass-specific cooling rates, but lower critical temperature did not vary significantly among ducklings of different size. Although insulation and energy reserves were not proportionally greater in larger ducklings, those hatching from heavier eggs can survive starvation longer than those from lighter eggs. The relative cold tolerance of young from light and heavy eggs will affect the ratio of time spent foraging to time spent being brooded by the female parent. Although there is no direct evidence that selection is acting on egg size, variation in this trait within a population could be maintained by fluctuating environmental conditions at hatch.  相似文献   

10.
Temperature and photoperiod play major roles in insect ecology. Many insect species have fixed degree‐days for embryogenesis, with minimum and maximum temperature thresholds for egg and larval development and hatching. Often, photoperiodic changes trigger the transfer into the next life‐cycle stadium. However, it is not known whether this distinct pattern also exist in a species with a high level of phenotypic plasticity in life‐history traits. In the present study, eggs of the dragonfly Sympetrum striolatum Charpentier (Odonata: Libellulidae) are reared under different constant and fluctuating temperatures and photoperiodic conditions in several laboratory and field experiments. In general, and as expected, higher temperatures cause faster egg development. However, no general temperature or light‐days for eyespot development and hatching are found. The minimum temperature thresholds are distinguished for survival (2 °C), embryogenesis (6 °C) and larval hatching (above 6 °C). Low winter temperatures synchronize hatching. Above 36 °C, no eyespots are visible and no larvae hatch. In laboratory experiments, light is neither necessary for eyespot development, nor for hatching. By contrast to the laboratory experiments, the field experiment show that naturally changing temperature and photoperiod play a significant role in the seasonal regulation of embryonic development. The post‐eyespot development is more variable and influenced by temperature and photoperiod than the pre‐eyespot development. This developmental plasticity at the end of the embryogenesis might be a general pattern in the Libellulidae, helping them to cope with variation in environmental conditions.  相似文献   

11.
Larvae of the bean blister beetle Epicauta gorhami Marseul (Coleoptera: Meloidae) feed on grasshopper eggs in soil and undergo hypermetamorphosis. This beetle undergoes larval diapause in the fifth instar as a pseudopupa, a form characteristic of hypermetamorphosis in meloid beetles. The effects of temperature, photoperiod and soil humidity on larval development of E. gorhami are examined in a population in Miyazaki, Japan, using egg pods of Locusta migratoria L. as food. At lower temperatures (20 and 22.5 °C), all larvae become pseudopupae, regardless of the photoperiod. By contrast, at higher temperatures (27.5 and 30 °C), almost all larvae pupate at the end of the fourth instar, again regardless of the photoperiod. A long‐day photoperiodic response occurs only at an intermediate temperature (25 °C): under an LD 12 : 12 h photocycle, all larvae enter diapause, although the diapause incidence tends to decrease as the day length becomes longer. Pseudopupae are immobile and remain in diapause for ≥120 days when they are kept under the same conditions, except that diapause terminates within a relatively short time at 30 °C. Although lower soil humidity retards post‐feeding development, soil humidity has no effect on the diapause incidence. On the basis of the short developmental period and diapause avoidance under summer conditions, it is suggested that this beetle partially produces two generations a year in southwestern Japan.  相似文献   

12.
Laboratory‐validated data on the survival, development and hatching responses of fertilized Pacific cod Gadus macrocephalus eggs from the northern Japan stock were determined through an incubation experiment. The optimum temperature for survival until hatching ranged from 4 to 8° C. No significant difference in development rates was found between the populations from Mutsu Bay, Japan, and western Canadian coastal waters even though the samples may belong to different G. macrocephalus stocks. Gadus macrocephalus larvae hatched asynchronously from egg batches despite incubation under the same environment during their development. Both incubation temperature and temperature‐mediated hatch rank affect size and yolk reserve. These data suggest that variations in water temperatures within an ecological range markedly influence the development rates, survival and hatching of the eggs, as well as the stage at hatch larvae of G. macrocephalus. Asynchronous hatching and the production of offspring with variable sizes and yolk reserves are considered evolutionary bet‐hedging strategies that enable the species to maximize their likelihood of survival in an environment with variable temperatures.  相似文献   

13.
Globodera spp. eggs go through a diapause, which remains dormant until favorable hatching conditions are reached. Because of the regulatory concerns with cyst nematodes, it is often only possible to rear eggs for research in the greenhouse. However, hatch is often lower for greenhouse-produced eggs than for eggs obtained from the field. The goal of this research was to determine storage conditions for Globodera ellingtonae eggs produced in the greenhouse that would increase percentage hatch. Over 3 yr, G. ellingtonae greenhouse-produced eggs were stored in different environments (−20°C, 4°C, room temperature, and the field) in either dry or moist soil. Percentage hatch after exposure to the different environments was determined in potato root diffusate. Across two experiments, field-produced eggs had higher hatch rates (65.2%) than greenhouse-produced eggs (10.4%). Temperature did not have an appreciable influence on hatch of eggs stored dry in two experiments (2.8% to 8.4% and 3.8% to 8.6%), but hatch of eggs stored in moist soil was significantly higher than in dry soil at all temperatures except −20°C (26.8% and 28.7%). However, the ability of G. ellingtonae greenhouse-, microplot-, and field-produced eggs to reproduce on potato in field microplots was not different. Although it may not be possible to produce G. ellingtonae eggs in the greenhouse that have the magnitude of hatch as those produced in the field, hatching can be greatly increased by storing eggs in moist soil at either 4°C or room temperature.  相似文献   

14.
This study examined the time of hatching of the desert locust Schistocerca gregaria Forskål (Orthoptera: Acrididae) in the laboratory to test the effect of eggs within a pod versus individualized eggs. The pod organization of eggs is thought to play a role in controlling hatching time and to facilitate synchronous hatching at constant temperatures. In the present study, we examined the hatching times of eggs in a pod and individualized eggs under 24-h thermocycles and simulated field temperatures. We tested two patterns of thermocycles consisting of a 12-h thermoperiod (35 or 30 °C) and 12-h cryoperiod (low temperature period; 30 or 25 °C), and two patterns of field temperatures observed in a natural habitat, Mauritania, in May and September. The majority of eggs hatched during low temperature periods in all patterns tested. In addition, the variances of hatching times for individualized eggs were significantly greater than for egg pods in which a clear peak of time of hatching was observed. We show that egg condition influences hatching time under thermocycles of constant and fluctuating temperatures in the laboratory, and may play a role in the adaptive time of hatching.  相似文献   

15.
We used a path analysis procedure to examine the influence of environmental effects on the egg hatching response of the container breeding mosquito, Aedes triseriatus. A. triseriatus eggs were collected from 22 different sites across the eastern US, and exposed to repeated hatch stimuli in the laboratory. The resulting data were used to construct hatch indexes for each site. Structural equation modeling was used to discriminate among hypotheses relating to the functional relationships between population hatch trait and local climatic conditions. The results suggest that the delayed hatch pattern is an adaptive bet-hedging strategy that allows the species to manage desiccation risks. The selected model indicates that environmental variables differentially affect the immediate and the delayed, long term hatch patterns. High temperatures directly reduce the number of egg hatching on the first stimulus, but only indirectly affect the delayed hatch pattern. Low precipitation and high variability in precipitation directly increase the delaying pattern. The hatch trait appears to be a critical adaptation that allows the species to occupy a broad range in east North America.  相似文献   

16.
为了探究高温逆境条件下加州新小绥螨的生存特性对其种群发育的影响,利用短时高温刺激试验,研究加州新小绥螨卵、幼螨、雌成螨在35、38、42、45 ℃等4个温度下、处理1~8 h后的孵化率、存活率、后期发育历期及繁殖的影响.结果表明: 处理温度越高,时间越长,卵和幼螨的存活率越低,其后续发育历期随处理温度升高和时间增加先缩短后延长.当温度为38 ℃,处理8 h后,卵的后续发育历期最短,为4.1 d.卵在45 ℃下处理2 h以上将不能正常孵化,而幼螨在45 ℃下处理8 h后不能存活;雌成螨产卵期和产卵量基本随温度升高先增加后降低,35 ℃处理8 h后,单雌产卵量最高,为38.9粒;38 ℃处理8 h后,单雌产卵量为36.7粒;45 ℃处理8 h后,单雌产卵量仅为14.5粒.短时高温主要影响加州新小绥螨的孵化率、存活率和后续发育历期,对雌成螨的产卵前期和存活率影响较小.  相似文献   

17.
为了探究高温逆境条件下加州新小绥螨的生存特性对其种群发育的影响,利用短时高温刺激试验,研究加州新小绥螨卵、幼螨、雌成螨在35、38、42、45 ℃等4个温度下、处理1~8 h后的孵化率、存活率、后期发育历期及繁殖的影响.结果表明: 处理温度越高,时间越长,卵和幼螨的存活率越低,其后续发育历期随处理温度升高和时间增加先缩短后延长.当温度为38 ℃,处理8 h后,卵的后续发育历期最短,为4.1 d.卵在45 ℃下处理2 h以上将不能正常孵化,而幼螨在45 ℃下处理8 h后不能存活;雌成螨产卵期和产卵量基本随温度升高先增加后降低,35 ℃处理8 h后,单雌产卵量最高,为38.9粒;38 ℃处理8 h后,单雌产卵量为36.7粒;45 ℃处理8 h后,单雌产卵量仅为14.5粒.短时高温主要影响加州新小绥螨的孵化率、存活率和后续发育历期,对雌成螨的产卵前期和存活率影响较小.  相似文献   

18.
Successful hatching of large numbers of artificially incubated eggs from the green iguana, Iguana iguana, are reported. Gravid females were captured at a nesting site in Summit Gardens, Soberania, Parque Nacional, Panama, and released into an enclosure with an artificial nesting area. Females dug their own tunnels and nest chambers or used artificial nest chambers for egg deposition. Eggs (n = 829) from 21 clutches were removed from the nests and artificially incubated. Average hatching success per clutch was 94.6% and the mean clutch incubation time was 92.1 days. A distinct odor was noticed in the incubation containers several days before the eggs began to hatch. At this time, the substrate layer was removed exposing the top surface of all eggs, and the eggs desiccated to some degree prior to hatching. High incubation temperature, hydric conditions, and egg arrangement are all implicated as contributing factors in low hatching success in previous studies using artificial incubation techniques.  相似文献   

19.
Abstract: There has been limited research examining the role that terrestrial habitat characteristics play in influencing persistence of amphibian populations. In this study we investigated the influence of a terrestrial habitat attribute on the distribution of the terrestrial egg‐laying toadlet, Pseudophryne bibronii. Eggs of this species are deposited in depressions, or under leaf litter, and develop to a stage where they can hatch to free swimming tadpoles when water covers breeding sites or embryos are washed into water. Because rainfall can be intermittent, eggs may sit for extended periods in terrestrial nests before sufficient rainfall initiates hatching. Appropriate egg‐laying sites must be chosen by both males and females to ensure embryos survive these periods. A study of 20 sites found that soil pH at sites where P. bibronii were recorded as present was significantly lower than pH at sites where P. bibronii were recorded as absent. To determine whether soil pH influenced the hatching success in P. bibronii, experiments were conducted in which batches of eggs were translocated to local areas with different soil pH. Survival rate of eggs was significantly influenced by relatively small changes in pH, with hatching success higher at lower pH. In a laboratory trial survival of eggs raised on sterilized soil was not affected by soil pH. Fungal infection of eggs was observed in the field and laboratory suggesting that hatching success might be affected via a complex interaction between soil pH, fungi and other soil biota. Choice trials using P. bibronii metamorphs indicated that individuals were capable of distinguishing between small differences in pH. Therefore, distribution of P. bibronii may be influenced by either differential mortality of embryos, or habitat choice by post metamorphic individuals, and further experiments are required to determine the relative importance of these factors.  相似文献   

20.
The timing of oviposition and hatching of Ixodes pacificus was investigated in the field and at constant temperatures in the laboratory. Replete females held at temperatures between 9 and 29°C began depositing eggs a mean of 9–70 days after drop off. Egg masses held between 12 and 25°C commenced hatching 25–178 days after the onset of oviposition. Eggs held at 9 or 29°C did not hatch. The lower temperature thresholds for development (LTD) for oviposition and hatching were 6.5 and 9°C, respectively. The number of degree days required for oviposition and hatching was 173 and 588, respectively. Replete females placed in the field on 2 December through to 8 March deposited eggs from 2 February through to 24 April; the eggs commenced hatching between 2 July and 21 August. Unfed larvae from two of 20 egg masses survived through the winter and fed readily when exposed to deer mice (Peromyscus maniculatus) on 22 April. Replete larvae were returned to the field and moulted between 9 and 21 August. Larvae exposed to deer mice in August, 4 weeks after hatching, also fed readily. Although further studies are needed to clarify the timing of nymphal development, the present study suggests that I. pacificus requires more than 1 year to complete its life cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号