首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
In this work, the inhibitory activity of Voriconazole was measured against some metabolic enzymes, including human carbonic anhydrase (hCA) I and II isoenzymes, acetylcholinesterase (AChE), and α‐glycosidase; the results were compared with standard compounds including acetazolamide, tacrine, and acarbose. Half maximal inhibition concentration (IC50) values were obtained from the enzyme activity (%)‐[Voriconazole] graphs, whereas Ki values were calculated from the Lineweaver‐Burk graphs. According to the results, the IC50 value of Voriconazole was 40.77 nM for α‐glycosidase, while the mean inhibition constant (Ki) value was 17.47 ± 1.51 nM for α‐glycosidase. The results make an important contribution to drug design and have pharmacological applications. In addition, the Voriconazole compound demonstrated excellent inhibitory effects against AChE and hCA isoforms I and II. Voriconazole had Ki values of 29.13 ± 3.57 nM against hCA I, 15.92 ± 1.90 nM against hCA II, and 10.50 ± 2.46 nM against AChE.  相似文献   

2.
The carbonic anhydrases (CAs, EC 4.2.1.1) represent a superfamily of widespread enzymes, which catalyze a crucial biochemical reaction, the reversible hydration of carbon dioxide to bicarbonate and protons. Human CA isoenzymes I and II (hCA I and hCA II) are ubiquitous cytosolic isoforms. In this study, a series of hydroperoxides, alcohols, and acetates were tested for the inhibition of the cytosolic hCA I and II isoenzymes. These compounds inhibited both hCA isozymes in the low nanomolar ranges. These compounds were good hCA I inhibitors (Kis in the range of 24.93–97.99?nM) and hCA II inhibitors (Kis in the range of 26.04–68.56?nM) compared to acetazolamide as CA inhibitor (Ki: 34.50?nM for hCA I and Ki: 28.93?nM for hCA II).  相似文献   

3.
Benzothiazepine compounds have a wide range of applications such as antibacterial, antidepressants, anticonvulsants, antihypertensives, antibiotics, antifungal, hypnotic, enzyme inhibitors, antitumor, anticancer and anti‐HIV agents. In this study, the synthesis of novel tetralone‐based benzothiazepine derivatives ( 1–16 ) and their in vitro antibacterial activity and human carbonic anhydrase isoenzymes I and II (hCA I and II) inhibitory effects were investigated. Both isoenzymes were purified by sepharose‐4B‐l ‐tyrosine‐sulfanilamide affinity chromatography from fresh human red blood cells. All compounds demonstrated the low nanomolar inhibitory effects on both isoenzymes using esterase activity. Benzothiazepine derivative 2 demonstrated the best hCA I inhibitory effect with Ki value of 18.19 nM. Also, benzothiazepine derivative 7 showed the best hCA II inhibitory effect with Ki value of 11.31 nM. On the other hand, acetazolamide clinically used as CA inhibitor, showed Ki value of 19.92 nM against hCA I and 33.60 nM against hCA II, respectively.  相似文献   

4.
Sulfonamide compounds known as human carbonic anhydrase (hCA) inhibitors are used in the treatment of many diseases such as epilepsy, antibacterial, glaucoma, various diseases. 1,3-diaryl-substituted triazenes and sulfaguanidine are used for therapeutic purposes in many drug structures. Based on these two groups, the synthesis of new compounds is important. In the present study, the novel 1,3-diaryltriazene-substituted sulfaguanidine derivatives ( SG1-13 ) were synthesized and fully characterized by spectroscopic and analytic methods. Inhibitory effect of these compounds on the hCA I and hCA II was screened as in vitro. All the series of synthesized compounds have been identified as potential hCA isoenzymes inhibitory with KI values in the range of 6.44±0.74-86.85±7.01 nM for hCA I and with KI values in the range of 8.16±0.40-77.29±9.56 nM for hCA II. Moreover, the new series of compounds showed a more effective inhibition effect than the acetazolamide used as a reference. The possible binding positions of the compounds with a binding affinity to the hCA I and hCA II was demonstrated by in silico studies. In conclusion, compounds with varying degrees of affinity for hCA isoenzymes have been designed and as selective hCA inhibitors. These compounds may be potential alternative agents that can be used to treat or prevent diseases associated with glaucoma and hCA inhibition.  相似文献   

5.
A series of carbamate derivatives were synthesized and their carbonic anhydrase I and II isoenzymes and acetylcholinesterase enzyme (AChE) inhibitory effects were investigated. All carbamates were synthesized from the corresponding carboxylic acids via the Curtius reactions of the acids with diphenyl phosphoryl azide followed by addition of benzyl alcohol. The carbamates were determined to be very good inhibitors against for AChE and hCA I, and II isoenzymes. AChE inhibition was determined in the range 0.209–0.291?nM. On the other hand, tacrine, which is used in the treatment of Alzheimer’s disease possessed lower inhibition effect (Ki: 0.398?nM). Also, hCA I and II isoenzymes were effectively inhibited by the carbamates, with inhibition constants (Ki) in the range of 4.49–5.61?nM for hCA I, and 4.94–7.66?nM for hCA II, respectively. Acetazolamide, which was clinically used carbonic anhydrase (CA) inhibitor demonstrated Ki values of 281.33?nM for hCA I and 9.07?nM for hCA II. The results clearly showed that AChE and both CA isoenzymes were effectively inhibited by carbamates at the low nanomolar levels.  相似文献   

6.
A series of twenty four hydroxy-trifluoromethylpyrazoline-carbonyl-1,2,3-triazoles and four hydrazones bearing benzenesulfonamide moieties was obtained by condensation of carboxyhydrazides with substituted 1,3-diketones. All the newly synthesized compounds were investigated as inhibitors of physiologically and pharmacologically relevant human (h) carbonic anhydrsae (CA, EC 4.2.1.1) cytosolic isoforms hCA I and II, as well as transmembrane tumor-assosciated isoforms hCA IX and XII. These compounds exhibited excellent CA inhibitory potency against the four CA isoenzymes as compared to clinically used reference drug acetazolamide (AAZ). Some compounds bearing bulkier group at C-5′ position of 1,2,3-triazoles ring were weaker inhibitors of hCA I. Inhibition assay against hCA II indicates, that several derivatives exhibited upto 27-fold more effective inhibitory activity compared to AAZ. Five of the assayed compounds displayed low nanomolar potency (Ki ≤ 10 nM) against hCA IX, whereas five compounds were found to be endowed with excellent inhibitory potencies (Ki 5 nM) against hCA XII. The biological activity profile presented herein will be useful for designing new leads and provide candidates for preclinical investigations.  相似文献   

7.
A series of 1,3‐bis‐chalcone derivatives ( 3a‐i, 6a‐i and 8 ) were synthesized and evaluated antimicrobial, antibiofilm and carbonic anhydrase inhibition activities. In this evaluation, 6f was found to be the most active compound showing the same effect as the positive control against Bacillus subtilis and Streptococcus pyogenes in terms of antimicrobial activity. Biofilm structures formed by microorganisms were damaged by compounds at the minimum inhibitory concentration value between 0.5% and 97%.1,3‐bis‐chalcones ( 3a‐i, 6a‐i and 8 ) showed good inhibitory action against human (h) carbonic anhydrase (CA) isoforms I and II. hCA I and II were effectively inhibited by these compounds, with K i values in the range of 94.33 ± 13.26 to 787.38 ± 82.64 nM for hCA I, and of 100.37 ± 11.41 to 801.76 ± 91.11 nM for hCA II, respectively. In contrast, acetazolamide clinically used as CA inhibitor showed K i value of 1054.38 ± 207.33 nM against hCA I, and 983.78 ± 251.08 nM against hCA II, respectively.  相似文献   

8.
Human carbonic anhydrase I and II isoenzymes (hCA I and II) and acetylcholinesterase (AChE) are important metabolic enzymes that are closely associated with various physiological and pathological processes. In this study, we investigated the inhibition effects of some sulfonamides on hCA I, hCA II, and AChE enzymes. Both hCA isoenzymes were purified by Sepharose‐4B‐L‐Tyrosine‐5‐amino‐2‐methylbenzenesulfonamide affinity column chromatography with 1393.44 and 1223.09‐folds, respectively. Also, some inhibition parameters including IC50 and Ki values were determined. Sulfonamide compounds showed IC 50 values of in the range of 55.14 to 562.62 nM against hCA I, 55.99 to 261.96 nM against hCA II, and 98.65 to 283.31 nM against AChE. Ki values were in the range of 23.40 ± 9.10 to 365.35 ± 24.42 nM against hCA I, 45.87 ± 5.04 to 230.08 ± 92.23 nM against hCA II, and 16.00 ± 45.53 to 157.00 ± 4.02 nM against AChE. As a result, sulfonamides had potent inhibition effects on these enzymes. Therefore, we believe that these results may contribute to the development of new drugs particularly in the treatment of some disorders.  相似文献   

9.
Various 1,2,4 trisubstituted imidazolin-5-one derivatives were synthesized and evaluated for their inhibitory activity against p38 mitogen-activated protein kinase (p38MAPK) and carbonic anhydrase (CA) enzymes aiming to explore potential dual inhibitors. Results revealed that compounds 3c, 3g, 3h, 4a, 6c and 6d were the most effective derivatives against p38αMAPK (IC50 = 0.14, 0.14, 0.056, 0.14, 0.13 and 0.14 μM, respectively) compared to sorafenib (IC50 = 1.58 μM) as standard drug. On the other hand, compound 4a revealed the best inhibitory activity against all the tested carbonic anhydrase isoforms CA I, II, IV and IX with Ki values of 95.0, 0.83, 6.90 and 12.4 nM, respectively compared to acetazolamide with Ki values 250, 12.1, 74 and 12.8 nM, respectively. Therefore, compound 4a can be considered as a potent dual p38αMAPK/CA inhibitor.  相似文献   

10.
In this study, a series of novel β-benzylphenethylamines and their sulfamide derivatives were synthesized starting from (Z)-2,3-diphenylacrylonitriles. Pd-C catalysed hydrogenation of diphenylacrylonitriles, reduction of propanenitriles with LiAlH4 in the presence of AlCl3 followed by addition of conc. HCl afforded β-benzylphenethylamine hydrochloride salts. The reactions of these amine hydrochloride salts with chlorosulfonyl isocyanate (CSI) in the presence of tert-BuOH and excess Et3N gave sulfamoylcarbamates. Removing of Boc group from the synthesized sulfamoylcarbamates with trifluoroacetic acid (TFA) yielded novel sulfamides in good yields. These novel sulfamides derived from β-benzylphenethylamines were effective inhibitors of the cytosolic carbonic anhydrase I and II isoenzymes (hCA I and II), acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with Ki values in the range of 0.278–2.260 nM for hCA I, 0.187–1.478 nM for hCA II, 0.127–2.452 nM for AChE and 0.494–1.790 nM for BChE. The inhibitory effects of the synthesized novel sulfamides derived from β-benzylphenethylamines were compared to those of acetazolamide and dorzolamide as clinical hCA I and II isoenzymes inhibitors and tacrine as a clinical AChE and BChE enzymes inhibitors. In addition to in vitro tests, molecular modeling approaches are implemented not only for prediction of the binding affinities of the compounds but also to study their inhibition mechanisms in atomic level at the catalytic domains.  相似文献   

11.
A set of sulfamides and sulfamates were synthesized and tested against several isoforms of carbonic anhydrase: CA I, CA II, CA VII, CA XII and CA XIV. The biological assays showed a broad range of inhibitory activity, and interesting results were found for several compounds in terms of activity (Ki <1 μm) and selectivity: some aromatic sulfamides are active against CA I, CA II and/or CA VII; while they are less active in CA XII and CA XIV. On the other hand, bulky sulfamides are selective to CA VII. To understand the origin of the different inhibitory activity against each isozyme we used molecular modeling techniques such as docking and molecular dynamic simulations.  相似文献   

12.
Carbonic anhydrase (CA) is an important metabolic enzyme family closely related to many physiological and pathological processes. Currently, carbonic anhydrase inhibitors are the target molecules in the treatment and diagnosis of many diseases. In present study, we investigated the inhibitory effects of some indazole molecules on the CA‐I and CA‐II isoenzymes isolated from human erythrocytes. We showed that human CA‐I and CA‐II activities were reduced by of some indazoles at low concentrations. IC50 values, Ki constants, and inhibition types for each indazole molecule were determined. The indazoles showed Ki constants in a range of 0.383 ± 0.021 to 2.317 ± 0.644 mM, 0.409 ± 0.083 to 3.030 ± 0.711 mM against CA‐I and CA‐II, respectively. Each indazole molecule exhibited a noncompetitive inhibition effect. Bromine‐ and chlorine‐bonded indazoles were found to be more potent inhibitory effects on carbonic anhydrase isoenzymes. In conclusion, we conclude that these results may be useful in the synthesis of carbonic anhydrase inhibitors.  相似文献   

13.
The conversion reactions of pyrimidine‐thiones with nucleophilic reagent were studied during this scientific research. For this purpose, new compounds were synthesized by the interaction between 1,2‐epoxy propane, 1,2‐epoxy butane, and 4‐chlor‐1‐butanol and pyrimidine‐thiones. These pyrimidine‐thiones derivatives ( A–K ) showed good inhibitory action against acetylcholinesterase (AChE), and human carbonic anhydrase (hCA) isoforms I and II. AChE inhibition was in the range of 93.1 ± 33.7–467.5 ± 126.9 nM. The hCA I and II were effectively inhibited by these compounds, with Ki values in the range of 4.3 ± 1.1–9.1 ± 2.7 nM for hCA I and 4.2 ± 1.1–14.1 ± 4.4 nM for hCA II. On the other hand, acetazolamide clinically used as CA inhibitor showed Ki value of 13.9 ± 5.1 nM against hCA I and 18.1 ± 8.5 nM against hCA II. The antioxidant activity of the pyrimidine‐thiones derivatives ( A–K ) was investigated by using different in vitro antioxidant assays, including Cu2+ and Fe3+ reducing, 1,1‐diphenyl‐2‐picrylhydrazyl (DPPH?) radical scavenging, and Fe2+ chelating activities.  相似文献   

14.
The novel N‐propylphthalimide‐substituted and 4‐vinylbenzyl‐substituted N‐heterocyclic carbene (NHC) precursors were synthesized by N‐substituted benzimidazolium with aryl halides. The novel N‐propylphthalimide‐substituted and 4‐vinylbenzyl‐substituted NHC precursors have been characterized by using 1H NMR, 13C NMR, FTIR spectroscopy, and elemental analysis techniques. They were tested for the inhibition of AChE and hCA enzymes and demonstrated efficient inhibition profiles with Ki values in the range of 351.0–1269.9 nM against hCA I, 346.6–1193.1 nM against hCA II, and 19.0–76.3 nM against AChE. On the other hand, acetazolamide, a clinically used molecule, utilized as CA inhibitor, obtained a Ki value of 1246.7 nM against hCA I and 1407.6 nM against hCA II. Additionally, tacrine inhibited AChE and obtained a Ki value of 174.6 nM.  相似文献   

15.
In continuation of our previous studies to optimise potent carbonic anhydrase inhibitors, two new series of isatin N-phenylacetamide based sulphonamides were synthesised and screened for their human (h) carbonic anhydrase (EC 4.2.1.1) inhibitory activities against four isoforms hCA I, hCA II, hCA IX and hCA XII. The indole-2,3-dione derivative 2h showed the most effective inhibition profile against hCAI and hCA II (KI = 45.10, 5.87 nM) compared to acetazolamide (AAZ) as standard inhibitor. Moreover, 2h showed appreciable inhibition activity against the tumour-associated hCA XII, similar to AAZ showing KI of 7.91 and 5.70 nM, respectively. The analogs 3c and 3d showed good cytotoxicity effects, and 3c revealed promising selectivity towards lung cell line A549. Molecular docking was carried out for 2h and 3c to predict their binding conformations and affinities towards the hCA I, II, IX and XII isoforms.  相似文献   

16.
In this study, we aimed to determine the inhibition effects of novel synthesized sulfamates ( 2a–g ), sulfonamides ( 3b–f ), carbonyl sulfonamides ( 3h and i ), and carbonyl sulfamates ( 4h and 4i ), which were tested against two human cytosolic carbonic anhydrase I and II isozymes (hCA I and II) and acetylcholinesterase (AChE) enzyme. For inhibition properties of allylic sulfamates, the half maximal inhibitory concentration (IC50) and inhibition constant (Ki) were calculated for each novel compounds. The allylic sulfamates showed that Ki values are in the range of 187.33–510.31 pM for hCA I, 104.22–290.09 pM against hCA II, and 12.73–103.63 pM against AChE. The results demonstrated that all newly synthesized compounds had shown effective inhibition against hCA I and II isoenzymes and AChE enzyme.  相似文献   

17.
A set of N,N′-disubstituted sulfamides and sodium cyclamate have been tested for their inhibitory action against six isoforms of carbonic anhydrase (CA, EC 4.2.1.1) found in the brain, that is, CA I, CA II, CA VII, CA IX, CA XII and CA XIV, some of which are involved in epileptogenesis. The biological data showed interesting results for CA VII inhibition, the isozyme thought to be a novel antiepileptic target. Strong CA VII inhibitors, with Ki values in the low nanomolar–subnanomolar range were identified. Some of these derivatives showed selectivity for inhibition of CA VII versus the ubiquitous isoform CA II, for which the Ki values were in the micromolar range. Molecular modeling approaches were employed to understand the binding interactions between these compounds and the two CA isoforms, since the mechanism of action of such disubstituted sulfamides was not yet investigated by means of X-ray crystallography.  相似文献   

18.
In this study, a series of sulfamoyl carbamates and sulfamide derivatives were synthesized. Six commercially available benzyl amines and BnOH were reacted with chlorosulfonyl isocyanate (CSI) to give sulfamoyl carbamates. Pd–C catalyzed hydrogenolysis reactions of carbamates afforded sulfamides. The inhibition effects of novel benzylsulfamides on the carbonic anhydrase I, and II isoenzymes (CA I, and CA II) purified from fresh human blood red cells were determined by Sepharose-4B-L-Tyrosine-sulfanilamide affinity chromatography. In vitro studies were shown that all of novel synthesized benzylsulfamide analogs inhibited, concentration dependently, both hCA isoenzyme activities. The novel benzylsulfamide compounds investigated here exhibited nanomolar inhibition constants against the two isoenzymes. Ki values were in the range of 28.48 ± 0.01–837.09 ± 0.19 nM and 112.01 ± 0.01–268.01 ± 0.22 nM for hCAI and hCA II isoenzymes, respectively. Molecular modeling approaches were also applied for studied compounds.  相似文献   

19.
This study explores the correlation between human carbonic anhydrase (CA, EC 4.2.1.1) isoforms I and II (hCA I, II) and the inhibitory features of some spirobisnaphthalene derivatives. A group of spirobisnaphthalenes was synthesized and their hCA I and II inhibitory effects was investigated. The Ki values were similar for both CA isoenzymes, the compounds showing good inhibitory activity. Ki values ranged between 1.60 and 460.42?µM for hCA I and between 0.39 and 419.42?µM for hCA II, respectively. The spirobisnaphthalenes derivatives might be useful for designing CA inhibitors belonging to novel chemotypes compared to the highly investigated sulfonamides, sulfamates or coumarins.  相似文献   

20.
Compounds containing nitrogen and sulfur atoms can be widely used in various fields, including industry, medicine, biotechnology, and chemical technology. Among them, amides of acids and heterocyclic compounds have an important place. These amides and thiazolidine‐4‐ones showed good inhibitory action against butyrylcholinesterase (BChE), acetylcholinesterase (AChE), and human carbonic anhydrase isoforms. AChE exists at high concentrations in the brain and red blood cells. BChE is an important enzyme that is plentiful in the liver, and it is released into the blood in a soluble form. They were demonstrated to have effective inhibition profiles with Ki values of 23.76–102.75 nM against hCA I, 58.92–136.64 nM against hCA II, 1.40–12.86 nM against AChE, and 9.82–52.77 nM against BChE. On the other hand, acetazolamide showed Ki value of 482.63 ± 56.20 nM against hCA I, and 1019.60 ± 163.70 nM against hCA II. Additionally, Tacrine inhibited AChE and BChE, showing Ki values of 397.03 ± 31.66 and 210.21 ± 15.98 nM, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号