首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Two phage display antibody libraries (Tomlinson I and J) were screened against the whole oocysts of Cryptosporidium parvum to select for scFv (single chain variable fragment) antibodies. Three scFv antibodies were selected that bound to C. parvum oocysts as determined by monoclonal phage ELISA. DNA sequencing revealed that clone A11 lacked the majority of its V (H) chain. Clone B10 had a stop codon in the first framework region of the V (H) chain. We changed this stop codon to Gly by site-directed mutagenesis, and designated the variant mutB10. Clone B9 had a complete scFv gene with no internal stop codons. These antibody genes were individually subcloned into the pET-20b expression vector for soluble scFv antibody production. C. parvum infectivity was determined by infection of HCT-8 tissue culture monolayers and quantified by the foci detection method. By incubating C. parvum oocysts with individual scFv antibodies for 1 h at 37 degrees C prior to infecting the HCT-8 cells with the oocyst-scFv mixture, the infectivity of C. parvum was reduced in a dose-dependant manner. At the highest soluble scFv concentration tested (4 nmol), the mean number of infectious foci was reduced by 82%, 73% and 94% for the A11, B9 and mutB10 scFv, respectively. This inhibition of oocyst infectivity was abolished when the scFvs were exposed to boiling water. The results showed that the 3 selected scFvs bound to C. parvum oocysts, and their ability to neutralize infectivity may have potential therapeutic potential against cryptosporidiosis.  相似文献   

2.
Pavoni E  Monteriù G  Cianfriglia M  Minenkova O 《Gene》2007,391(1-2):120-129
We report the development of a novel phagemid vector, pKM19, for display of recombinant antibodies in single-chain format (scFv) on the surface of filamentous phage. This new vector improves efficacy of selection and reduces the biological bias against antibodies that can be harmful to host bacteria. It is useful for generation of large new antibody libraries, and for the subsequent maturation of antibody fragments. In comparison with commonly used plasmids, this vector is designed to have relatively low expression levels of cloned scFv antibodies due to the amber codon positioned in a sequence encoding for the PhoA leader peptide. Moreover, fusion of antibodies to the carboxy terminal part only of the gene III protein improves display of scFv on bacteriophage surface in this system. Despite the lower antibody expression, the functional test performed with a new scFv library derived from human peripheral blood lymphocytes demonstrates that specific antibodies can be easily isolated from the library, even after the second selection round. The use of the pKM19 vector for maturation of an anti-CEA antibody significantly improves the final results. In our previous work, an analogous selection through the use of a phagemid vector, with antibody expression under the control of a lacP promoter, led to isolation of anti-CEA phage antibodies with improved affinities, which were not producible in soluble form. Probably due to the toxicity for E. coli of that particular anti-CEA antibody, 70% of maturated clones contained suppressed stop codons, acquired during various selection/amplification rounds. The pKM19 plasmid facilitates an efficient maturation process, resulting in selection of antibodies with improved affinity without any stop codons.  相似文献   

3.
Screening randomly mutagenized proteins displayed on a phage surface by biopanning is a powerful strategy to obtain evolved clones with improved properties such as higher stability and functionality. We utilized this method to overcome the problem that functional single-chain antibodies against active gibberellins, a class of plant hormones, can not be prepared by some of the conventional methods. Single-chain antibody libraries with random mutations were constructed from two independent anti-bioactive gibberellin monoclonal antibody lines in a phagemid vector, so that the mutagenized scFvs were expressed in a phage-displayed form upon helper phage infection. From both libraries, scFv clones with binding activity to GA(4) were successfully obtained by successive rounds of biopanning against BSA-GA(4), the original immunogen. The results are highly suggestive that this approach might be a general solution when a single-chain antibody does not show binding activity. We found further that a ribosomal frameshift to complement a nonsense mutation frequently occurred in an amber suppressor strain of E. coli TG1, resulting in the display of a functional antibody, while such a nonsense mutant failed to produce a soluble antibody in a non-amber suppressor strain. This result explains at least partly why single-chain antibodies are sometimes functional only in a phage-displayed form, not in a soluble form.  相似文献   

4.
We have previously observed that all known HIV-1 broadly neutralizing antibodies (bnAbs) are highly divergent from germline antibodies in contrast to bnAbs against Hendra virus, Nipah virus and SARS coronavirus (SARS CoV). We have hypothesized that because the germline antibodies are so different from the mature HIV-1-specific bnAbs they may not bind the epitopes of the mature antibodies and provided the first evidence to support this hypothesis by using individual putative germline-like predecessor antibodies. To further validate the hypothesis and understand initial immune responses to different viruses, two phage-displayed human cord blood-derived IgM libraries were constructed which contained mostly germline antibodies or antibodies with very low level of somatic hypermutations. They were panned against different HIV-1 envelope glycoproteins (Envs), SARS CoV protein receptor-binding domain (RBD), and soluble Hendra virus G protein (sG). Despite a high sequence and combinatorial diversity observed in the cord blood-derived IgM antibody repertoire, no enrichment for binders of Envs was observed in contrast to considerable specific enrichments produced with panning against RBD and sG; one of the selected monoclonal antibodies (against the RBD) was of high (nM) affinity with only few somatic mutations. These results further support and expand our initial hypothesis for fundamental differences in immune responses leading to elicitation of bnAbs against HIV-1 compared to SARS CoV and Hendra virus. HIV-1 uses a strategy to minimize or eliminate strong binding of germline antibodies to its Env; in contrast, SARS CoV and Hendra virus, and perhaps other viruses causing acute infections, can bind germline antibody or minimally somatically mutated antibodies with relatively high affinity which could be one of the reasons for the success of sG and RBD as vaccine immunogens.  相似文献   

5.
Single-chain Fv fragments (scFvs) against a corticosteroid, 11-deoxycortisol (11-DC), have been generated as a template antibody fragment from which a comprehensive mutated antibody library containing various anti-steroid antibodies could be constructed. The cDNAs encoding variable heavy (V(H)) and light (V(L)) domains of a mouse anti-11-DC antibody (CET-M8), were amplified by RT-PCR, combined via a common linker to construct the sequence of 5'-V(H)-(Gly(4)Ser)(3)-V(L)-3', and cloned into a phagemid vector, pEXmide 5. The phage clones exhibiting binding activity to 11-DC were isolated after single panning against a hapten-immobilizing immunotube. The scFv gene in one of these clones was reamplified to introduce the ochre codons, and then expressed in the bacterial periplasm as the soluble antibody fragment. Two different scFvs (#6 and #12) were cloned, whose binding characteristics were examined by a radioimmunoassay using a tritium-labeled 11-DC. Both of them showed high affinity (K(a)=1.3x10(10)M(-1)) and practical specificity (cross-reactivity: cortisol, <0.2%; cortisone, <0.3%) to 11-DC, and furthermore, strong reactivity with an anti-idiotype antibody which recognizes the paratope of CET-M8. These results suggest that the present scFvs retain the three-dimensional structure of the paratope of the original monoclonal antibody.  相似文献   

6.
Cheng M  Chan SY  Zhao Q  Chan EY  Au SW  Lee SS  Cheung WT 《PloS one》2011,6(11):e27406
Antibody repertoires for library construction are conventionally harvested from mRNAs of immune cells. To examine whether germline rearranged immunoglobulin (Ig) variable region genes could be used as source of antibody repertoire, an immunized phage-displayed scFv library was prepared using splenocytic genomic DNA as template. In addition, a novel frame-shifting PCR (fsPCR) step was introduced to rescue stop codon and to enhance diversity of the complementarity-determining region 3 (CDR3). The germline scFv library was initially characterized against the hapten antigen phenyloxazolone (phOx). Sequence analysis of the phOx-selective scFvs indicated that the CDRs consisted of novel as well as conserved motifs. In order to illustrate that the diversity of CDR3 was increased by the fsPCR step, a second scFv library was constructed using a single scFv clone L3G7C as a template. Despite showing similar binding characteristics towards phOx, the scFv clones that were obtained from the L3G7C-derived antibody library gave a lower non-specific binding than that of the parental L3G7C clone. To determine whether germline library represented the endogenous immune status, specific scFv clones for nucleocapsid (N) protein of SARS-associated coronavirus (SCoV) were obtained both from naïve and immunized germline scFv libraries. Both libraries yielded specific anti-N scFvs that exhibited similar binding characteristics towards recombinant N protein, except the immunized library gave a larger number of specific anti-N scFv, and clones with identical nucleotide sequences were found. In conclusion, highly diversified antibody library can be efficiently constructed using germline rearranged immunoglobulin variable genes as source of antibody repertoires and fsPCR to diversify the CDR3.  相似文献   

7.
Phage display technology allows for the rapid isolation and characterization of monoclonal antibodies that have vast potential for therapeutic and diagnostic applications. However, the panning process, which utilizes a host strain that suppresses termination by the amber codon, has an inherent bias toward clones containing randomly generated amber stop codons, complicating identification of positive binding antibodies when the antibody genes are finally expressed in a nonsupressor host. Here, we perform biopanning against a Histone 2A peptide using streptavidin- or anti-biotin-coated beads. After four rounds, a dominant clone is characterized but contains a spurious amber stop codon. A protocol is given that readily corrects the amber codon, allowing for soluble antibody production once the phagemid is transformed into a nonsuppressor bacterial strain. This work also highlights the ability to isolate antibodies against a protein antigen by using only a small peptide (15 amino acids) representing a portion of the antigen.  相似文献   

8.
目的:从天然的大容量噬菌体抗体库中筛选特异的抗结核分枝杆菌晶体蛋白( alpha-crystallin Acr)的人源抗体.方法:以结核分枝杆菌Acr蛋白包被免疫管,通过对噬菌体抗体库进行4轮“吸附-洗脱-扩增”的过程从大容量抗体库中筛选特异性抗结核分枝杆菌Acr蛋白的抗体,并对可变区序列进行了测序分析.将特异性的噬菌体抗体感染HB2151菌,经IPTG诱导表达,制备了抗结核分枝杆菌Acr蛋白的可溶性单链抗体;对其序列和抗原结合活性进行分析鉴定.结果:经过4轮筛选,获得了43个与结核分枝杆菌Acr蛋白结合的阳性克隆,其中29个特异结合的克隆;测序分析有26不同的可变区片段;通过可溶性单链抗体(scFv)表达筛选到14株特异性结合Acr蛋白的可溶性单链抗体克隆;经过基因测序,分析了可变区基因的亚群.成功制备了可溶性单链抗体.Westren blotting分析证实筛选的人源单链抗体能与天然蛋白结合.结论:利用单链大容量抗体库获得抗结核分枝杆菌Acr蛋白的噬菌体抗体并且成功制备抗结核分枝杆菌Acr天然蛋白的可溶性单链抗体,为今后的研究和应用奠定基础.  相似文献   

9.
Polyclonal antibodies, as well as monoclonal antibodies are efficacious in providing protective immunity against Francisella tularensis. This study demonstrates the application of phage display libraries for the construction of monoclonal antibodies against F. tularensis. Novel single-chain fragment variable (scFv) antibodies were generated against a whole bacterial lysate of F. tularensis live vaccine strain using the human single fold scFv libraries I (Tomlinson I + J). A total of 20 clones reacted with the bacterial cell lysate. Further, the library contains two clones responsive to recombinant lipoprotein FTT1103Δsignal (F. tularensis subsp. tularensis Schu S4), which was constructed without a signal sequence. These positively-binding scFvs were evaluated by scFv-phage enzyme-linked immunosorbent assay (ELISA). Then, positive scFvs were expressed in a soluble form in Escherichia coli HB2151 and tested for positive scFvs by using scFv-ELISA.  相似文献   

10.
ABSTRACT: BACKGROUND: In 2009, a novel influenza A/H1N1 virus (H1N1pdm) quickly spread worldwide and co-circulated with then-existing seasonal H1N1 virus (sH1N1). Distinguishing between these 2 viruses was necessary to better characterize the epidemiological properties of the emergent virus, including transmission patterns, pathogenesis, and anti-influenza drug resistance. This situation prompted us to develop a point-of-care virus differentiation system before entering the 2009--2010 influenza season. Aiming to establish H1N1pdm-specific detection tools rapidly, we employed phage display libraries to select H1N1pdm-specific single-chain variable fragments (scFvs). FINDINGS: Human single-fold scFv libraries (Tomlinson I + J) underwent selection for the ability to bind H1N1pdm virus particles. Three rounds of panning brought 1152 phage-bound scFvs, of which 58 clones reacted with H1N1pdm specifically or preferentially over sH1N1 in an enzyme-linked immunosorbent assay (ELISA). After conversion of the scFvs to soluble form, 7 clones demonstrating high/stable expression were finally obtained. However, all the soluble scFvs except No. 29 were found to have lost their specificity/preference for H1N1pdm in ELISA. The specificity/preference of No. 29 was also confirmed by immunofluorescence assay and immunoprecipitation, and the viral nucleoprotein was identified by ELISA as its target protein. The change in specificity associated with scFv conversion from phage-bound to soluble form could be due to loss of phage scaffold pIII protein, which likely provides structural support for the scFv antigen-binding site. It is also possible that the similar antigenic properties of H1N1pdm and sH1N1 led to the observed alterations in scFv specificity. DISCUSSION: Using a phage display library, we obtained 7 soluble scFv clones reactive against H1N1pdm; however, only 1 showed specificity/preference toward H1N1pdm. Our results confirmed that using phage display libraries was highly advantageous for the rapid development of molecules to detect target antigens. However, our results also indicated that this strategy might not have been effective for selecting H1N1pdm-specific antibodies during the 2009 pandemic, where the co-circulating sH1N1 virus shared similar antigenic properties. This suggests that it might be advisable to use a synthetic scFv phage display library by strategically considering the characteristics of target antigens and the potential situations.  相似文献   

11.
The Thomsen-Friedenreich disaccharide (TF) is a promising target antigen for tumor immunotherapy, since it is almost exclusively expressed in carcinoma tissues. The TF-specific antibodies generated so far are IgMs of mouse origin with limited therapeutic potential. Phage-displayed scFv repertoires are an established source for recombinant antibodies; however, we were unable to identify scFvs binding to TF when applying libraries in the standard monovalent display format of phagemid systems. Here, we report on the successful selection of TF-specific antibody fragments using a multivalent scFv phagemid library format based on shortened linkers (one amino acid residue). The libraries were constructed from mice immunized with asialoglycophorin and selected using TF displayed on two different carrier molecules in combination with the proteolytically cleavable helper phage KM13. All isolated clones encoded the same framework genes and the same complementarity-determining regions. After affinity maturation only scFv with the founder sequence were selected from secondary repertoires. This indicates a very narrow sequence window for TF-specific antibodies. Investigating other linker-length formats revealed a clear inverse correlation between linker length and binding activity both as soluble proteins and displayed on phages. The highest affinity was obtained with the tetrameric format. The selected scFv was specific for TF on various carrier molecules and tumor cells and performed well in ELISA and immunohistochemistry. We postulate that scFv phagemid library formats with short linkers (i.e. multimeric scFvs) may, in general, be advantageous in selections for the generation of scFvs against carbohydrate epitopes or other epitopes associated with low intrinsic affinity per binding site), and expect that they will be superior in applications for diagnosis or therapy.  相似文献   

12.
To develop early diagnostic reagents, effective vaccines, and even drugs against SARS-associated coronavirus (SARS-CoV), the human single fold single-chain antibody fragments, (scFv) libraries I+J (Tomlinson I+J) were used to identify novel scFvs, which can specifically bind to SARS-CoV. Interestingly, two scFvs (B5 and B9) exhibited higher binding specificity to SARS-CoV with the OD(450) value 0.608 and 0.545, respectively, and their coding sequences shared the identical sequence composed of V(H) gene (351bp) and V(L) gene (327bp), so the two scFvs were uniformly named as SA59B and chosen for further analysis. SA59B scFv was expressed in soluble form in Escherichia coli HB2151 and purified by immobilized metal affinity chromatography. The soluble 30kDa SA59B scFv-antibody was verified in SDS-PAGE and Western-blot. The purified SA59B scFv-antibody was labeled with HRP by the glutaraldehyde method, and the concentration of HRP and SA59B scFv-antibody in the SA59B-HRP solution reached 2.4 and 2.28mg/ml, respectively. Then, the binding ability of SA59B-HRP to SARS-CoV was evaluated by ELISA with S/N of 11.6, indicating higher binding specificity between them. Finally, both the SA59B sequence specificity and its application for diagnosis, prophylaxis or therapy of SARS were discussed.  相似文献   

13.
A completely synthetic gene library encoding the variable light (VL) immunoglobulin domains has been constructed in vitro. The library was constructed by assembling a set of six oligodeoxyribonucleotides (oligos) using the polymerase chain reaction (PCR). Three out of the six overlapping oligonucleotides were synthesized with randomized complementarity determining regions (CDR) with the codon pattern, (NNS)n, where N is any of the four nucleotides (nt) and n is the number of codons with variation in the CDR. The framework regions, taken from the D1.3 anti-lysozyme antibody (Ab), were kept intact. Overlapping regions of approx. 20 nt, together with two additional flanking primers carrying the desired restriction sites, allowed the construction of a library in one single PCR reaction. The VL library was cloned into the phage display vector pEXmide3, and ten randomly picked clones were sequenced. These sequences exhibited complete diversity in all the three CDR and the codons for five canonical amino acid (aa) residues were kept intact and identified. Seven clones contained the full-length gene for the VL domain while deletions were observed in three clones. The restricted use of nt at the third position successfully avoided the stop codons TGA and TAA, whereas the stop codon TAG is read as Gln in an amber suppressor strain. We call this synthetic Ab diversity Domain Library, and it represents an example of syntheticlibraries with extensive, multiple randomized sequences. The use of Domain Libraries opens up the possibility for design in Ab engineering, e.g., additional CDR regions can be added or their length varied. Furthermore, the use of synthetic gene libraries, constructed with the Domain Library strategy, is not limited to the construction of synthetic Ab fragments, but can be used in the design of other types of proteins.  相似文献   

14.
B-lymphocyte stimulator (BLyS) is a member of the tumor necrosis factor (TNF) family and a key regulator of B cell response. Neutralizing single-chain fragment variable (scFv) antibody against BLyS binding to its receptor BCMA has the potential to play a prominent role in autoimmune disease therapy. A phage display scFv library constructed on pill protein of MI 3 filamentous phage was screened using BLyS.After five rounds of panning, their binding activity was characterized by phage-ELISA. Nucleotide sequencing revealed that at least two different scFv gene fragments (C305 and D416) were obtained. The two different scFv gene fragments were expressed to obtain the soluble scFv antibodies, then the soluble scFv antibodies were characterized by means of competitive ELISA and in vitro neutralization assay. The results indicated that C305 is the neutralizing scFv antibody that can inhibit BLyS binding to its receptor BCMA.  相似文献   

15.
Phage display is a powerful method for target discovery and selection of ligands for cancer treatment and diagnosis. Our goal was to select tumor-binding antibodies in cancer patients. Eligibility criteria included absence of preexisting anti-phage-antibodies and a Stage IV cancer status. All patients were intravenously administered 1 × 1011 TUs/kg of an scFv library 1 to 4 h before surgical resection of their tumors. No significant adverse events related to the phage library infusion were observed. Phage were successfully recovered from all tumors. Individual clones from each patient were assessed for binding to the tumor from which clones were recovered. Multiple tumor-binding phage-antibodies were identified. Soluble scFv antibodies were produced from the phage clones showing higher tumor binding. The tumor-homing phage-antibodies and derived soluble scFvs were found to bind varying numbers (0–5) of 8 tested normal human tissues (breast, cervix, colon, kidney, liver, spleen, skin, and uterus). The clones that showed high tumor-specificity were found to bind corresponding tumors from other patients also. Clone enrichment was observed based on tumor binding and DNA sequence data. Clone sequences of multiple variable regions showed significant matches to certain cancer-related antibodies. One of the clones (07-2,355) that was found to share a 12-amino-acid-long motif with a reported IL-17A antibody was further studied for competitive binding for possible antigen target identification. We conclude that these outcomes support the safety and utility of phage display library panning in cancer patients for ligand selection and target discovery for cancer treatment and diagnosis.  相似文献   

16.
High throughput screenings of single chain Fv (scFv) antibody phage display libraries are currently done as soluble scFvs produced in E.coli. Due to endotoxin contaminations from bacterial cells these preparations cannot be reliably used in mammalian cell based assays. The monovalent nature and lack of Fc in soluble scFvs prevent functional assays that are dependent on target cross linking and/or Fc functions. A convenient approach is to convert scFvs into scFv.Fc fusion proteins and express them in mammalian cell lines for screening. This approach is low throughput and is only taken after primary screening of monovalent scFvs that are expressed in bacteria. There is no platform at present that combines the benefits of both bacterial and mammalian expression system for screening phage library output. We have, therefore, developed a novel dual expression vector, called pSplice, which can be used to express scFv.Fc fusion proteins both in E.coli and mammalian cell lines. The hallmark of the vector is an engineered intron which houses the bacterial promoter and signal peptide for expression and secretion of scFv.Fc in E.coli. When the vector is transfected into a mammalian cell line, the intron is efficiently spliced out resulting in a functional operon for expression and secretion of the scFv.Fc fusion protein into the culture medium. By applying basic knowledge of mammalian introns and splisosome, we designed this vector to enable screening of phage libraries in a product like format. Like IgG, the scFv.Fc fusion protein is bi-valent for the antigen and possesses Fc effector functions. Expression in E.coli maintains the speed of the bacterial expression platform and is used to triage clones based on binding and other assays that are not sensitive to endotoxin. Triaged clones are then expressed in a mammalian cell line without the need for any additional cloning steps. Conditioned media from the mammalian cell line containing the fusion proteins are then used for different types of cell based assays. Thus this system retains the speed of the current screening system for phage libraries and adds additional functionality to it.  相似文献   

17.
We report the design, construction and use of an antibody bacteriophage display library built on the scaffold of a single-chain variable fragment (scFv) previously proven to be functionally expressed in the reducing environment of both bacterial and plant cytoplasm and endowed with intrinsic high thermodynamic stability. Four amino acid residues of the third hypervariable loop (CDR3) of both VH and VL were combinatorially mutated, generating a repertoire of approximately 5x10(7) independent scFvs, cloned in a phagemid vector. The ability of the antibody phage library to yield specific binders was tested by biopanning against several antigens. Successful selection of fully active scFvs was obtained, confirming the notion that combinatorial mutagenesis of few amino acid residues centrally located in the antigen-binding site is sufficient to provide binding specificities against virtually any target. High yields of both soluble and phage antibodies were obtained in Escherichia coli. Maintenance of the cognate scFv antibody stability in the newly selected scFv fragments was demonstrated by guanidinium chloride denaturation/renaturation studies and by soluble antibody expression in the bacterial cytoplasm. The antibody library described here allows the isolation of new stable binding specificities, potentially exploitable as immunochemical reagents for intracellular applications.  相似文献   

18.
Antibodies with enzymatic activity were named abzymes or catalytic antibodies. In the present study, the lipolytic abzymes were selected from the phage displayed antibody libraries against a transition state analog (TSA) of lipases/esterases. After three rounds of selection, four monoclonal phage particles capable of binding significantly with the TSA were obtained. The soluble scFv antibody fragments were further expressed and obtained using Escherichia coli strain HB2151. The binding capabilities and the apparent enzymatic activities of the purified antibody proteins were measured. The 3D structures of the expressed antibodies were also predicted through homology modeling and binding-site prediction algorithm. The present method demonstrates that selection from phage displayed antibody libraries is an efficient and convenient means to find new abzymes.  相似文献   

19.
Improving antibody affinity by mimicking somatic hypermutation in vitro.   总被引:15,自引:0,他引:15  
In vivo affinity maturation of antibodies involves mutation of hot spots in the DNA encoding the variable regions. We have used this information to develop a strategy to improve antibody affinity in vitro using phage display technology. In our experiment with the antimesothelin scFv, SS(scFv), we identified DNA sequences in the variable regions that are naturally prone to hypermutations, selected a few hot spots encoding nonconserved amino acids, and introduced random mutations to make libraries with a size requirement between 10(3) and 10(4) independent clones. Panning of the hot spot libraries yielded several mutants with a 15- to 55-fold increase in affinity compared with a single clone with a fourfold increased affinity from a library in which mutagenesis was done outside the hot spots. The strategy should be generally applicable for the rapid isolation of higher-affinity mutants of Fvs, Fabs, and other recombinant antibodies from antibody phage libraries that are small in size.  相似文献   

20.

Background

Most Yersinia pestis strains are known to express a capsule-like antigen, fraction 1 (F1). F1 is encoded by the caf1 gene located on the large 100-kb pFra plasmid, which is found in Y. pestis but not in closely related species such as Yersinia enterocolytica and Yersinia pseudotuberculosis. In order to find antibodies specifically binding to Y. pestis we screened a large single chain Fv antibody fragment (scFv) phage display library using purified F1 antigen as a selection target. Different forms of the selected antibodies were used to establish assays for recombinant F1 antigen and Y. pestis detection.

Methods

Phage antibody panning was performed against F1 in an automated fashion using the Kingfisher magnetic bead system. Selected scFvs were screened for F1-binding specificity by one-step alkaline phosphatase enzyme linked immunosorbant assay (ELISA), and assayed for binding to recombinant antigen and/or Y. pestis by flow cytometry and whole-cell ELISA.

Results

Seven of the eight selected scFvs were shown to specifically bind both recombinant F1 and a panel of F1-positive Yersinia cells. The majority of the soluble scFvs were found to be difficult to purify, unstable and prone to cross-reactivity with F1-negative Yersinia strains, whereas phage displayed scFvs were found to be easy to purify/label and remarkably stable. Furthermore direct fluorescent labeling of phage displaying scFv allowed for an easy one-step flow cytometry assay. Slight cross-reactivity was observed when fixed cells were used in ELISA.

Conclusions

Our high throughput methods of selection and screening allowed for time and cost effective discovery of seven scFvs specifically binding Y. pestis F1 antigen. We describe implementation of different methods for phage-based immunoassay. Based on the success of these methods and the proven stability of phage, we indicate that the use of phage-displayed, rather than phage-free proteins, might generally overcome the shortcomings of scFv antibodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号