首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
Abstract NO production and consumption rates as well as N2O accumulation rates were measured in a loamy cambisol which was incubated under different conditions (i.e. soil moisture content, addition of nitrogen fertilizer and/or glucose, aerobic or anaerobic gas phase). Inhibition of nitrification with acetylene allowed us to distinguish between nitrification and denitrification as sources of NO and N2O. Under aerobic conditions untreated soil showed very low release of NO and N2O but high consumption of NO. Fertilization with NH4+ or urea stimulated both NO and N2O production by nitrification. Addition of glucose at high soil moisture contents led to increased N2 and N2O production by denitrification, but not to increased NO production rates. Anaerobic conditions, however, stimulated both NO and N2O production by denitrification. The production of NO and N2O was further stimulated at low moisture contents and after addition of glucose or NO3. Anaerobic consumption of NO by denitrification followed Michaelis-Menten kinetics and was stimulated by addition of glucose and NO3. Aerobic consumption of NO followed first-order kinetics up to mixing ratios of at least 14 ppmv NO, was inhibited by autoclaving but not by acetylene, and decreased with increasing soil moisture content. The high NO-consumption activity and the effects of soil moisture on the apparent rates of anaerobic and aerobic production and consumption of NO suggest that diffusional constraints have an important influence on the release of NO, and may be a reason for the different behaviour of NO release vs N2O release.  相似文献   

2.
Abstract NO production and consumption rates as well as N2O accumulation rates were measured in a loamy cambisol which was incubated under different conditions (i.e. soil moisture content, addition of nitrogen fertilizer and/or glucose, aerobic or anaerobic gas phase). Inhibition of nitrification with acetylene allowed us to distinguish between nitrification and denitrification as sources of NO and N2O. Under aerobic conditions untreated soil showed very low release of NO and N2O but high consumption of NO. Fertilization with NH4+ or urea stimulated both NO and N2O production by nitrification. Addition of glucose at high soil moisture contents led to increased N2 and N2O production by denitrification, but not to increased NO production rates. Anaerobic conditions, however, stimulated both NO and N2O production by denitrification. The production of NO and N2O was further stimulated at low moisture contents and after addition of glucose or NO3. Anaerobic consumption of NO by denitrification followed Michaelis-Menten kinetics and was stimulated by addition of glucose and NO3. Aerobic consumption of NO followed first-order kinetics up to mixing ratios of at least 14 ppmv NO, was inhibited by autoclaving but not by acetylene, and decreased with increasing soil moisture content. The high NO-consumption activity and the effects of soil moisture on the apparent rates of anaerobic and aerobic production and consumption of NO suggest that diffusional constraints have an important influence on the release of NO, and may be a reason for the different behaviour of NO release vs N2O release.  相似文献   

3.
Sources of nitrous oxide production following wetting of dry soil   总被引:5,自引:0,他引:5  
Abstract Production of N2O was detected within 30 min of adding water to very dry soil (matric water potential < −9 MPa) sampled at the end of the dry season from an annual grassland of California, U.S.A. Using C2H2 to inhibit nitrification, we demonstrate that nitrification was a modest source of N2O in sieved soil wetted to a water content below field capacity, but that denitrification was the major source of N2O in sieved soils wetted to a water content above field capacity and in intact cores wetted either below or above field capacity. Significant abiological sources of N2O were not detected. De novo enzyme synthesis began within 4–8 h of wetting, and denitrifying enzyme activity doubled within 26 h, indicating that denitrifying bacteria can quickly transform their metabolic state from adaptation to severe drought stress to rapid exploitation of changing resources.  相似文献   

4.
Abstract Denitrification was measured in intact sediment cores and in homogenised slurries using membrane inlet mass spectrometry. Dissolved concentrations of O2, N2, N2O and CO2 were simultaneously monitored. Using a 0.8 mm diameter needle probe, a comparison was made of the gas profiles of intact cores obtained under different conditions, i.e. with air or argon as the headspace gas and after the addition of nitrate and/or a carbon source to the sediment surface. O2 was detectable to a depth of 1 cm under a headspace of air and the depth at which the maxima of denitrification products occurred was 1.5–2 cm. Denitrification products (N2O, N2) occurred in the surface layers where O2 was above the minimum level of detectability (> 0.25 μM): diffusion of N2 and N2O upwards from the anoxic zone, local anaerobic microenvironments or aerobic denitrification are alternative explanations for this observation. The addition of nitrate and/or acetate increased the concentrations of N2, N2O and CO2 in the sediment core. In sediment slurries, the pH, nitrate concentration, carbon source and the depth from which the sample was taken affected the rate of denitrification. Nitrogen was the sole detectable end product. Maximum denitrification occurred at pH 7.5 and at 20 mM nitrate. Denitrification was at a maximum in those slurries prepared from sections of core at 1–2 cm depth.  相似文献   

5.
Ecosystem CO2 and N2O exchanges between soils and the atmosphere play an important role in climate warming and global carbon and nitrogen cycling; however, it is still not clear whether the fluxes of these two greenhouse gases are correlated at the ecosystem scale. We collected 143 pairs of ecosystem CO2 and N2O exchanges between soils and the atmosphere measured simultaneously in eight ecosystems around the world and developed relationships between soil CO2 and N2O fluxes. Significant linear regressions of soil CO2 and N2O fluxes were found for all eight ecosystems; the highest slope occurred in rice paddies and the lowest in temperate grasslands. We also found the dominant role of growing season on the relationship of annual CO2 and N2O fluxes. No significant relationship between soil CO2 and N2O fluxes was found across all eight ecosystem types. The estimated annual global N2O emission based on our findings is 13.31 Tg N yr−1 with a range of 8.19–18.43 Tg N yr−1 for 1980–2000, of which cropland contributes nearly 30%. Our findings demonstrated that stoichiometric relationships may work on ecological functions at the ecosystem level. The relationship of soil N2O and CO2 fluxes developed here could be helpful in biogeochemical modeling and large-scale estimations of soil CO2 and N2O fluxes.  相似文献   

6.
Abstract Anaerobic production and consumption of NO was measured in a calcic cambisol (KBE; pH 7.3) and a forest luvisol (PBE; pH 4.4) which were incubated at 80% water-holding capacity and continuously flushed with N2. Both NO production and NO consumption were negligibly low when nitrate and nitrite concentrations in the soil were exhausted. Addition of glucose alone had no effect, but addition of nitrate ± glucose greatly stimulated both NO production and NO consumption. NO consumption followed an apparent first-order reaction at low NO mixing ratios (1–3 ppmv), but a higher NO mixing ratios it followed Michaelis-Menten kinetics. In PBE the apparent K m was 980 ppbv NO (1.92 nM in soil water). During reduction of nitrate, nitrite intermediately accumulated and simultaneously, production rates of NO and N2O were at the maximum. Production rates of NO plus N2O amounted to 20% and 34% of the nitrate reduction rate in KBE and PBE, respectively. NO production was hyperbolically related to the nitrite concentration, indicating an apparent Km of 1.6 μg nitrite-N g−1 d.w. soil (equivalent to 172 μM nitrite in soil solution) for the reduction of nitrite to NO in KBE. Under nitrate and nitrite-limiting conditions, 62–76% and 93–97% of the consumed NO-N were recovered as N2O-N in KBE and PBE, respectively. Gassing of nitrate plus nitrite-depretsu KBE with increasing mixing ratios of NO2 resulted in increasing rates of NO2 uptake and presumably in the formation of low concentrations of nitrite and nitrate. This NO2 uptake resulted in increasing rates of both NO production and NO consumption indicating that nitrite or nitrate was limiting for both reactions.  相似文献   

7.
Metabolism of nitric oxide in soil and denitrifying bacteria   总被引:1,自引:0,他引:1  
Abstract Production and consumption of NO was measured under anaerobic conditions in a slightly alkaline and an acidic soil as well as in pure cultures of denitrifying Pseudomonas aeruginosa, P. stutzeri, P. fluorescens, Paracoccus denitrificans, Azospirillum brasilense , and A. lipoferum . Growing bacterial cultures reduced nitrate and intermediately accumulated nitrite, NO, N2O, but not NO2. Addition of formaldehyde inhibited NO production and NO consumption. In the presence of acetylene NO was reduced to N2O. Net NO release rates in denitrifying bacterial suspensions and in soil samples decreased hyperbolically with increasing NO up to mixing ratios of about 5 ppmv NO. This behaviour could be modelled by assuming a constant rate of NO production simultaneously with a NO consumption activity that increased with NO until V max was reached. The data allowed calculation of the gross rates ( P ) of NO production, of the rate constants ( k ), V max and K m of NO consumption, and of the NO compensation mixing ratio ( m c). In soil, P was larger than V max resulting in net NO release even at high NO mixing ratios unless P was selectively inhibited by chlorate + chlorite or by aerobic incubation conditions. In bacteria, V max was somewhat larger than P resulting in net NO uptake at high NO mixing ratios. Both P and V max were dependent on the supply of electron donor (e.g. glucose). Both in soil (aerobic or anaerobic) and in pure culture, the K m values of NO consumption were in a similar low range of about 0.5–6.0 nM. Anaerobic soil and denitrifying bacteria exhibited m c values of 1.6–2.1 ppmv NO and 0.2–4.0 ppmv NO, respectively.  相似文献   

8.
Abstract Samples of water, sediment and bacterial mat from hot springs in Grændalur and Hveragerdi areas in southwestern Iceland were screened at 70°C and 80°C for thermophilic denitrifying bacteria by culturing in anaerobic media containing nitrate or N2O as the terminal oxidant. The springs ranged in temperature from 65–100°C and included both neutral (pH 7–8.5) and acidic (pH 2.5–4) types. Nitrate reducing bacteria (nitrate → nitrite) and denitrifiers (nitrate → N2) were found that grew at 70°C but not at 80°C in nutrient media at pH 8. Samples from neutral springs that were cultured at pH 8 failed to yield a chemolithotrophic, sulfur-oxidizing and nitrate-reducing bacterium, and samples from acidic springs that were cultured at pH 3.5 seemed entirely to lack dissimilatory, nitrate-utilizing bacteria. No sample yielded an organism capable of growth solely by N2O respiration. The denitrifiers appeared to be Bacillus . Two such Bacillus strains were examined in pure culture and found to exhibit the unusual denitrification phenotype described previously for the mesophile, Pseudomonas aeruginosa , and one other strain of thermophilic Bacillus . The phenotype is characterized by the ability to grow by reduction of nitrate to N2 with N2O as an intermediate but a virtual inability to reduce N2O when N2O was the sole oxidant.  相似文献   

9.
Abstract Samples of water, sediment and bacterial mat from hot springs in Grændalur and Hveragerdi areas in southwestern Iceland were screened at 70°C and 80°C for thermophilic denitrifying bacteria by culturing in anaerobic media containing nitrate or N2O as the terminal oxidant. The s springs ranged in temperature from 65–100°C and included both neutral (pH 7–8.5) and acidic (pH 2.5–4) types. Nitrate reducing bacteria (nitrate → nitrite) and denitrifiers (nitrate → N2) were found that grew at 70°C but not at 80°C in nutrient media at pH 8. Samples from neutral springs that were cultured at pH 8 failed to yield a chemolithotrophic, sulfur-oxidizing and nitrate-reducing bacterium, and samples from acidic springs that were cultured at pH 3.5 seemed entirely to lack dissimilatory, nitrate-utilizing bacteria. No sample yielded an organism capable of growth solely by N2O respiration. The denitrifiers appeared to be Bacillus . Two such Bacillus strains were examined in pure culture and found to exhibit the unusual denitrification phenotype described previously for the mesophile, Pseudomonas aeruginosa , and one other strain of thermophilic Bacillus . The phenotype is characterized by the ability to grow by reduction of nitrate to N2 with N2O as an intermediate but a virtual inability to reduce N2O when N2O was the sole oxidant.  相似文献   

10.
Consumption of NO by methanotrophic bacteria in pure culture and in soil   总被引:2,自引:0,他引:2  
Abstract The methanotrophs Methylomonas angile (type I) and Methylosinus trichosporium (type II) produced nitrite, nitrate and N2O during growth on methane, apparently by heterotrophic nitrification of ammonium. The methanotrophs were also able to consume NO but did not produce it. After incubation of soil from a drained paddy field in the presence of CH4 the numbers of methanotrophs increased from 105 to 107 per gram dry weigth. The thus enriched soil showed increased rates of NO consumption while rates of NO production did not change.  相似文献   

11.
Soils are the main sources of the greenhouse gas nitrous oxide (N2O). The N2O emission at the soil surface is the result of production and consumption processes. So far, research has concentrated on net N2O production. However, in the literature, there are numerous reports of net negative fluxes of N2O, (i.e. fluxes from the atmosphere to the soil). Such fluxes are frequent and substantial and cannot simply be dismissed as experimental noise.
Net N2O consumption has been measured under various conditions from the tropics to temperate areas, in natural and agricultural systems. Low mineral N and large moisture contents have sometimes been found to favour N2O consumption. This fits in with denitrification as the responsible process, reducing N2O to N2. However, it has also been reported that nitrifiers consume N2O in nitrifier denitrification. A contribution of various processes could explain the wide range of conditions found to allow N2O consumption, ranging from low to high temperatures, wet to dry soils, and fertilized to unfertilized plots. Generally, conditions interfering with N2O diffusion in the soil seem to enhance N2O consumption. However, the factors regulating N2O consumption are not yet well understood and merit further study.
Frequent literature reports of net N2O consumption suggest that a soil sink could help account for the current imbalance in estimated global budgets of N2O. Therefore, a systematic investigation into N2O consumption is necessary. This should concentrate on the organisms, reactions, and environmental factors involved.  相似文献   

12.
1. A survey was made of denitrification and nitrous oxide (N2O) production in river sediments at fifty sites in north‐east England during one season in order to investigate the relationship between rates and environmental factors likely to influence these processes. The sites were chosen to represent a wide range of physical and chemical conditions. Denitrification rate and N2O production were measured within 5 h of sampling using the slurry acetylene blockage technique.
2. Denitrification rate ranged from less than 0.005–260 nmol N g–1 DW h–1, tending to increase in a downstream direction. N2O production ranged from negative values (net consumption) to 13 nmol N2O‐N g–1 DW h–1 and accounted for 0–115% of the N gases produced.
3. Denitrification rate and N2O concentration in the sediment were correlated positively with nitrate concentration in the water column, water content of the sediment and percentage of fine (< 100 μm) particles in the sediment.
4. The variation in denitrification rate was satisfactorily explained (64% total variance) by a model employing measurements of water nitrate and water content of sediments. No simple or multiple relationship was found for N2O production.  相似文献   

13.
Soil–atmosphere fluxes of trace gases (especially nitrous oxide (N2O)) can be significant during winter and at snowmelt. We investigated the effects of decreases in snow cover on soil freezing and trace gas fluxes at the Hubbard Brook Experimental Forest, a northern hardwood forest in New Hampshire, USA. We manipulated snow depth by shoveling to induce soil freezing, and measured fluxes of N2O, methane (CH4) and carbon dioxide (CO2) in field chambers monthly (bi-weekly at snowmelt) in stands dominated by sugar maple or yellow birch. The snow manipulation and measurements were carried out in two winters (1997/1998 and 1998/1999) and measurements continued through 2000. Fluxes of CO2 and CH4 showed a strong seasonal pattern, with low rates in winter, but N2O fluxes did not show strong seasonal variation. The snow manipulation induced soil freezing, increased N2O flux and decreased CH4 uptake in both treatment years, especially during winter. Annual N2O fluxes in sugar maple treatment plots were 207 and 99 mg N m−2 yr−1 in 1998 and 1999 vs. 105 and 42 in reference plots. Tree species had no effect on N2O or CO2 fluxes, but CH4 uptake was higher in plots dominated by yellow birch than in plots dominated by sugar maple. Our results suggest that winter fluxes of N2O are important and that winter climate change that decreases snow cover will increase soil:atmosphere N2O fluxes from northern hardwood forests.  相似文献   

14.
Abstract Denitrification rates were measured as N2O production in two water-logged forest soils at monthly intervals. The effect of acetylene inhibition and the addition of nitrate, glucose, acetate and celloboise in field incubations was examined.
N2O release from the two soils was very low, 26 mg N2m−2y−1 in ash and 178 mg N2 in alder. In acetylene inhibited incubations N2O production was higher, 296 and 486 mg N2m−2 y−1 in ash and alder respectively. After addition of nitrate and C-sources to a 10 mM concentration, denitrification rates increased to 5–15 times higher values.
The denitrification rates below 4°C were low and most N2O was produced in late spring and summer.
The highest rate of denitrification during a 50 h incubation experiment occurred between 3 and 23 h.  相似文献   

15.
Hurricane-induced nitrous oxide fluxes from a wet tropical forest   总被引:2,自引:0,他引:2  
Hurricane activity is predicted to increase over the mid-Atlantic as global temperatures rise. Nitrous oxide (N2O), a greenhouse gas with a substantial source from tropical soils, may increase after hurricanes yet this effect has been insufficiently documented. On September 21, 1998, Hurricane Georges crossed Puerto Rico causing extensive defoliation. We used a before–after design to assess the effect of Georges on N2O emissions, and factors likely influencing N2O fluxes including soil inorganic nitrogen pools and soil water content in a humid tropical forest at El Verde, Puerto Rico. Emissions of N2O up to 7 months post-Georges ranged from 5.92 to 4.26 ng cm−2 h−1 and averaged five times greater than fluxes previously measured at the site. N2O emissions 27 months after the hurricane remained over two times greater than previously measured fluxes. Soil ammonium pools decreased after Georges and remained low. The first year after the hurricane, nitrate pools increased, but not significantly when compared against a single measurement made before the hurricane. Soil moisture and temperature did not differ significantly in the two sampling periods. These results suggest that hurricanes increase N2O fluxes in these forests by altering soil N transformations and the relative availabilities of inorganic nitrogen.  相似文献   

16.
Abstract Microbial populations, nitrogen mineralization potentials, and denitrification enzyme activities were examined in two abandoned carbolithic minesoils. Numbers and activities of bacteria and fungi were lower in nonamended than in lime and/or fly ash amended sites. Rates of aerobic NO3 production (3 to 38 μg-N kg−1 h−1) and anaerobic NO3 reduction to N2O (5 to 68 μg-N kg−1 h−1) were measured. Organisms capable of N2O production under anaerobic soil conditions were present in low numbers, and their activity was restricted in part by low soil pH. Nondenitrifying nitrate-reducing bacteria were more diverse and in greater numbers than respiratory denitrifiers and may have been responsible for N2O production in assays measuring denitrification enzyme activity.  相似文献   

17.
Abstract: Thiosphaera pantotropha has been reported to denitrify aerobically and nitrify heterotrophically. However, recent evidence has indicated that these properties (particularly aerobic denitrification) have been lost. The occurrence and levels of aerobic denitrification and heterotrophic nitrification by T. pantotropha in chemostat cultures have therefore been re-evaluated. Only low nitrate reduction rates were observed: the apparent nitrogen loss was of the same order of magnitude as the combined error in the calculated nitrogen consumption. However, 15N mass spectrometry revealed low aerobic denitrification rates (about 10% of the rates originally published by this group). Heterotrophic nitrification rates were about a third of previous observations. N2 and N2O were both produced from NH4+, NO3 and NO2. Periplasmic nitrate reductase was present in aerobically grown cells.  相似文献   

18.
Atmospheric concentrations of the greenhouse gas nitrous oxide (N2O) have continued to rise since the advent of the industrial era, largely because of the increase in agricultural land use. The urine deposited by grazing ruminant animals is a major global source of agricultural N2O. With the first commitment period for reducing greenhouse gas emissions under the Kyoto Protocol now underway, mitigation options for ruminant urine N2O emissions are urgently needed. Recent studies showed that increasing the urinary concentration of the minor urine constituent hippuric acid resulted in reduced emissions of N2O from a sandy soil treated with synthetic bovine urine, due to a reduction in denitrification. A similar effect was seen when benzoic acid, a product of hippuric acid hydrolysis, was used. This current laboratory experiment aimed to investigate these effects using real cow urine for the first time. Increased concentrations of hippuric acid or benzoic acid in the urine led to reduction of N2O emissions by 65% (from 17% to <6% N applied), with no difference between the two acid treatments. Ammonia volatilization did not increase significantly with increased hippuric acid or benzoic acid concentrations in the urine applied. Therefore, there was a net reduction in gaseous N loss from the soil with higher urinary concentrations of both hippuric acid and benzoic acid. The results show that elevating hippuric acid in the urine had a marked negative effect on both nitrification and denitrification rates and on subsequent N2O fluxes. This study indicates the potential for developing a novel mitigation strategy based on manipulation of urine composition through ruminant diet.  相似文献   

19.
The possibility of carbon (C) being locked away from the atmosphere for millennia is given in hydromorphic soils. However, the water-table-dependent feedback from soil organic matter (SOM) decomposition to the climate system is less clear. At least three greenhouse gases are produced: carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). These gases show emission peaks at different water table positions and have different global warming potentials (GWP), for example a factor of 23 for CH4 and 296 for N2O as compared with the equivalent mass of CO2 on a 100-year time horizon. This review of available annual data on all three gases revealed that the radiative forcing effect of SOM decomposition is principally dictated by CO2 despite its low GWP. Anaerobic SOM decomposition generally has a lower potential feedback to the climatic system than aerobic SOM decomposition. Concrete values are constrained by a lack of data from tropical and subarctic regions. Furthermore, data on N2O and on plant effects are generally rare. However, there is a clear latitudinal differentiation for the GWP of soils under anaerobic conditions compared with aerobic conditions when looking at CO2 and CH4: in the tropical and temperate regions, the anaerobic GWP showed a range of 25–60% of the aerobic value, but values varied between 80% and 110% in the boreal zone. Hence, particularly in the vulnerable boreal zone, the feedback from ecosystems to climate change will highly depend on plant responses to changing water tables at elevated temperatures.  相似文献   

20.
Abstract A denitrifying Cytophaga was isolated from soil enriched by anaerobic incubation with glucose, sulfide (S2−), nitrous oxide (N2O), and acetylene (C2H2). Such soil enrichments and pure cultures of the isolated Cytophaga reduced N2O rapidly even in the presence of a normally inhibitory concentration of C2H2 (4 kPa) providing S2− was present (8 μmol/g soil or 0.4 μmol/ml culture). Since C2H2 inhibition of the reduction of N2O is used as a tool in the assay of denitrification, the presence in large numbers of such a Cytophaga may influence the effectiveness of this assay especially in sulfidic environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号