首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 370 毫秒
1.
Dendrobium officinale (Orchidaceae) is an endangered plant species with important medicinal value. To evaluate the effectiveness of ex situ collection of D. officinale genetic diversity, we developed 15 polymorphic trinucleotide microsatellite loci of D. officinale to examine the genetic diversity and structure of three D. officinale germplasm collections comprising 120 individuals from its germplasm collection base and their respective wild populations consisting of 62 individuals from three provinces in China. The three germplasm collections showed reductions in gene diversity and average number of alleles per locus, but an increase in average number of rare alleles (frequency?≤?0.05) per locus in comparison to their wild populations. However, the differences in gene diversity between the germplasm collections and wild populations were not statistically significant. The analysis using STRUCTURE revealed evident differences in genetic composition between each germplasm collection and its wild population, probably because the D. officinale individuals with distinct genotypes in each wild population were unevenly selected for establishing its germplasm collection. For conservation management plans, we propose that D. officinale individuals with rare alleles need to be conserved with top priority, and those individuals with the most common alleles also should be concerned. The 15 new microsatellite loci may be used as a powerful tool for further evaluation and conservation of the genetic diversity of D. officinale germplasm resources.  相似文献   

2.
Plant germplasm collections invariably contain varying levels of genetic redundancy, which hinders the efficient conservation and utilization of plant germplasm. Reduction of genetic redundancies is an essential step to improve the accuracy and efficiency of genebank management. The present study targeted the assessment of genetic redundancy and genetic structure in an international cacao (Theobroma cacao L.) collection maintained in Costa Rica. A total of 688 cacao accessions maintained in this collection were genotyped with 15 simple sequence repeat (SSR) loci, using a capillary electrophoresis genotyping system. The SSR markers provided a high resolution among the accessions. Thirty-six synonymously labeled sets, involving 135 accessions were identified based on the matching of multilocus SSR profiles. After the elimination of synonymous sets, the level of redundancy caused by closely related accessions in the collection was assessed using a simulated sampling scheme that compared allelic diversity in different sample sizes. The result of the simulation suggested that a random sample of 113 accessions could capture 90% of the total allelic diversity in this collection. Principal Coordinate Analysis revealed that the Trinitario hybrids from Costa Rica shared a high similarity among groups as well as among individual accessions. The analysis of the genetic structure illustrated that the within-country/within-region difference accounted for 84.6% of the total molecular variation whereas the among-country/among-region difference accounted for 15.4%. The Brazilian germplasm contributed most to this collection in terms of total alleles and private alleles. The intercountry/interregion relationship by cluster analysis largely agreed with the geographical origin of each germplasm group and supported the hypothesis that the Upper Amazon region is the center of diversity for cacao. The results of the present study indicated that the CATIE International Cacao Collection contains a high level of genetic redundancy. It should be possible to rationalize this collection by reducing redundancy and ensuring optimal representation of the genetic diversity from distinct germplasm groups. The results also demonstrated that SSR markers, together with the statistical tools for individual identification and redundancy assessment, are technically practical and sufficiently informative to assist the management of a tropical plant germplasm collection.  相似文献   

3.
As maize was domesticated in Mexico around 9,000 years ago, local farmers have selected and maintained seed stocks with particular traits and adapted to local conditions. In the present day, many of these landraces are still cultivated; however, increased urbanization and migration from rural areas implies a risk that this invaluable maize germplasm may be lost. In order to implement an efficient mechanism of conservation in situ, the diversity of these landrace populations must be estimated. Development of a method to select the minimum number of samples that would include the maximum number of alleles and identify germplasm harboring rare combinations of particular alleles will also safeguard the efficient ex‐situ conservation of this germplasm. To reach this goal, a strategy based on SSR analysis and a novel algorithm to define a minimum collection and rare genotypes using landrace populations from Puebla State, Mexico, was developed as a “proof of concept” for methodology that could be extended to all maize landrace populations in Mexico and eventually to other native crops. The SSR‐based strategy using bulked DNA samples allows rapid processing of large numbers of samples and can be set up in most laboratories equipped for basic molecular biology. Therefore, continuous monitoring of landrace populations locally could easily be carried out. This methodology can now be applied to support incentives for small farmers for the in situ conservation of these traditional cultivars.  相似文献   

4.
Borderea chouardii is a relictual and dioecious, strictly sexually reproducing, long-living geophyte of the Dioscoreaceae family. Previous biological and demographic studies have indicated the existence of a uniformly distributed panmictic population of this taxon at the southernmost Spanish pre-Pyrenean mountain ranges where it occurs in rather inaccessible crevices of a single limestone cliff. However, individuals of B. chouardii are spatially subdivided into two subpopulations located, respectively, on the upper and lower parts of the cliff, and vertically separated 150 m. Because of its extreme rarity, B. chouardii was the first Iberian taxon to have a specific conservation plan and has been included in several red lists under the category of critically endangered (CR). However, no previous attempts have been conducted to analyse the fine scale evolutionary mechanisms involved in its present microspatial distribution. Genetic diversity and population structure have been investigated through the analysis of neutral hypervariable markers such as simple sequence repeats (SSRs) and randomly amplified polymorphic DNAs (RAPDs) to unravel the impact of life history traits in the differentiation of the two subpopulations. Both types of molecular markers were unequivocal in distinguishing two genetically distinct groups of individuals corresponding to their spatial separation. However, SSRs detected a higher level of subpopulation differentiation (F(ST) = 0.35, R(ST) = 0.32) than RAPDs (F(ST) = 0.21). SSR data indicated significant deviation from random dispersal of genes and genotypes between the two groups, suggesting that mating occurs mainly among individuals within subpopulations, thus, favouring the divergence between the two groups. This microevolutionary differentiation scenario might have been caused by a coupled effect of past genetic drift and reproductive isolation, as a result of strong glacial age bottlenecks and inefficient dispersal system of pollen and seeds, respectively. The identification of such genetic structure in this narrow endemic prompts a modification of the management strategies of its single extant population.  相似文献   

5.
Sweet and sour cherries are two economically important species in the world. The capability to distinguish among cherry genotypes in breeding, cultivation and germplasm collection is extremely important for scientific as well as economic reasons. In the present research, sixteen simple sequences repeat (SSR) loci were used to estimate the relationships among sweet, sour, duke and wild cherries. All of the SSR markers showed high transferability across the studied species that allowed us to study genetic diversity in them. Totally 96 alleles were generated with SSR loci, of which 93 were found polymorphic with 97.57 % polymorphism. Values of genetic similarity between genotypes varied from 0.16 to 0.97 which indicated high level of genetic diversity. On the basis of their genetic similarities, SSR analysis allowed to group the genotypes into three main clusters according to their species. These results have an important implication for cherry germplasm characterization, improvement, and conservation.  相似文献   

6.
Due to its beneficial effects on river ecosystems, black alder (Alnus glutinosa) is one of the tree species selected for planting on riverbanks in the cross-border area encompassing Wallonia in Belgium, Lorraine in France, and Luxembourg. The preservation of this species, however, is threatened by an invasive pathogen that particularly targets and kills young alder individuals. The objectives of this study were to characterize the genetic diversity and the genetic structure of A. glutinosa at this local level with the aim of assisting the conservation and replanting strategies and to determine if a germplasm collection comprising individuals from the same cross-border area captures the diversity present in the region. Nuclear simple sequence repeat (SSR) and chloroplastic DNA (cpDNA) markers were used to analyze four local wild populations and the germplasm collection which is representative of two river catchments and six legal provenance regions. Three populations distant from the studied area were also included. A panel of 14 nuclear SSR loci revealed high allelic diversity and very low differentiation among wild populations (mean F ST?=?0.014). The germplasm collection displayed a range of alleles that were representative of the different populations, and no significant differentiation between the germplasm collection and the local wild populations was observed, making this collection, as far as allelic diversity is concerned, suitable for providing trees for riverbank replanting programs. Using SSR markers, various statistical approaches consistently indicated the lack of a significant geographical structure at the level of the river catchments or provenance regions. In contrast, two cpDNA haplotypes were detected and displayed a cross-border geographically structured distribution that could be taken into account in defining new cross-border provenance regions.  相似文献   

7.
Tu M  Lu BR  Zhu Y  Wang Y 《Biochemical genetics》2007,45(11-12):789-801
In order to estimate genetic diversity of rice (Oryza sativa L.) germplasm in Yunnan Province of China, 60 varieties from different regions were analyzed by microsatellite (SSR) fingerprints. Nine selected SSR primer pairs amplified a total of 55 alleles from these varieties, and high genetic diversity (0.706) was found, although it was not evenly distributed across the regions. Marked genetic variation was detected within the traditional varieties. A UPGMA dendrogram based on SSR polymorphism indicated a great variation among the rice varieties, with coefficients ranging between 0.229 and 1.000. The formation of the rice diversity pattern in Yunnan is associated with natural conditions and especially with diverse cultural demands and farming styles. Strategic conservation of rice germplasm in Yunnan is important, and this could be implemented by collecting varieties across geographic regions with sufficient individuals within the same varieties. Effective rice conservation should also consider cultural aspects during collection.  相似文献   

8.
烟草种质不同群体量遗传完整性的SSR研究   总被引:1,自引:0,他引:1  
本研究以普通烟草种质红花大金元、豌口红土烟、白花黑烟、云烟87以及野生种N.alata为试验材料,利用SSR分子标记技术结合构建DNA混合基因池的方法对种质不同群体量的遗传完整性性进行研究。结果表明,960对引物对红花大金元、豌口红土烟、白花黑烟以及云烟87进行全基因组扫描,在前3份种质中未筛选到多态性引物,而在云烟87中筛选出3对多态性引物,3对多态性在云烟87的80个单株中扩增出6条特异性条带,将群体量降为10株时仍能检测到6条特异性条带,因此普通烟草种质繁殖更新群体等于或大于10株便能代表群体的遗传完整性。野生种N.alata从608对引物中筛选出11对多态性引物,扩增出44条DNA 条带, 其中多态性DNA 片段有19条,并对不同的群体量进行遗传多样性参数的比较,得出大于20株的群体能代表野生种质的遗传完整性。  相似文献   

9.
Common wild rice (Oryza rufipogon Griff.), the progenitor of Asian cultivated rice (O. sativa L.), is endangered due to habitat loss. The objectives of this research were to evaluate the genetic diversity of wild rice species in isolated populations and to develop a core collection of representative genotypes for ex situ conservation. We collected 885 wild rice accessions from eight geographically distinct regions and transplanted these accessions in a protected conservation garden over a period of almost two decades. We evaluated these accessions for 13 morphological or phenological traits and genotyped them for 36 DNA markers evenly distributed on the 12 chromosomes. The coefficient of variation of quantitative traits was 0.56 and ranged from 0.37 to 1.06. SSR markers detected 206 different alleles with an average of 6 alleles per locus. The mean polymorphism information content (PIC) was 0.64 in all populations, indicating that the marker loci have a high level of polymorphism and genetic diversity in all populations. Phylogenetic analyses based on morphological and molecular data revealed remarkable differences in the genetic diversity of common wild rice populations. The results showed that the Zengcheng, Gaozhou, and Suixi populations possess higher levels of genetic diversity, whereas the Huilai and Boluo populations have lower levels of genetic diversity than do the other populations. Based on their genetic distance, 130 accessions were selected as a core collection that retained over 90% of the alleles at the 36 marker loci. This genetically diverse core collection will be a useful resource for genomic studies of rice and for initiatives aimed at developing rice with improved agronomic traits.  相似文献   

10.
Information on genetic diversity and population structure of a tetraploid alfalfa collection might be valuable in effective use of the genetic resources. A set of 336 worldwide genotypes of tetraploid alfalfa (Medicago sativa subsp. sativa L.) was genotyped using 85 genome-wide distributed SSR markers to reveal the genetic diversity and population structure in the alfalfa. Genetic diversity analysis identified a total of 1056 alleles across 85 marker loci. The average expected heterozygosity and polymorphism information content values were 0.677 and 0.638, respectively, showing high levels of genetic diversity in the cultivated tetraploid alfalfa germplasm. Comparison of genetic characteristics across chromosomes indicated regions of chromosomes 2 and 3 had the highest genetic diversity. A higher genetic diversity was detected in alfalfa landraces than that of wild materials and cultivars. Two populations were identified by the model-based population structure, principal coordinate and neighbor-joining analyses, corresponding to China and other parts of the world. However, lack of strictly correlation between clustering and geographic origins suggested extensive germplasm exchanges of alfalfa germplasm across diverse geographic regions. The quantitative analysis of the genetic diversity and population structure in this study could be useful for genetic and genomic analysis and utilization of the genetic variation in alfalfa breeding.  相似文献   

11.
卧龙圈养大熊猫遗传多样性现状及预测,   总被引:2,自引:0,他引:2  
以中国最大的大熊猫圈养种群—四川卧龙中国大熊猫保护中心的圈养种群为对象,以8个大熊猫微卫星位点为分子标记, 探讨了大熊猫圈养种群的遗传多样性, 并与邛崃野生种群及其他7个濒危物种进行比较。微卫星数据表明, 圈养种群的遗传多样性水平(A=5.5, He =0.620, Ho=0.574) 低于邛崃野生种群(A=9.8,He=0.779,Ho=0.581),但高于其他7 个濒危物种的种群(He=0.13~0.46)。在此数据的基础上对未来100个世代内圈养种群遗传多样性的变化情况做出了预测。结果表明假设种群数量比现在扩大一倍, 经历100个世代后也只会使平均等位基因数少减少0.4。因此继续增加野生个体对保持遗传多样性的意义已经不大, 建议该圈养种群的保护策略应将重点放到制定更有效的繁殖计划以避免近交上。  相似文献   

12.
For broadening the narrow genetic base of modern soybean cultivars, 159 accessions were selected from the Chinese soybean collection which contained at least one of seven important agronomic traits: resistance to soybean cyst nematode (SCN) or soybean mosaic virus (SMV), tolerance to salt, cold, or drought, high seed oil content or high protein content. Genetic diversity evaluation using 55 microsatellite loci distributed across the genome indicated that a large amount of genetic diversity (0.806) and allelic variation (781) were conserved in this selected set, which captured 65.6% of the alleles present in Chinese soybean collection (1,863 accessions). On average, 9.4 rare alleles (frequency <5%) per locus were present, which were highly informative. Using model-based Bayesian clustering in STRUCTURE we distinguished four main clusters and a set of accessions with admixed ancestry. The four clusters reflected different geographic regions of origin of the accessions. Since the clusters were also clearly different with respect to the seven agronomic traits, the inferred population structure was introduced when association analysis was conducted. A total of 21 SSR markers on 16 chromosomes were identified as significantly (P < 0.01) associated with high oil content (6), high protein content (1), drought tolerance (5), SCN resistance (6) and SMV resistance (3). Twelve of these markers were located in or near previously identified quantitative trait loci (QTL). The results for both genetic relationship and trait-related markers will be useful for effective conservation and utilization of soybean germplasm.  相似文献   

13.
Knowing the extent and structure of genetic variation in germplasm collections is essential for the conservation and utilization of biodiversity in cultivated plants. Cucumber is the fourth most important vegetable crop worldwide and is a model system for other Cucurbitaceae, a family that also includes melon, watermelon, pumpkin and squash. Previous isozyme studies revealed a low genetic diversity in cucumber, but detailed insights into the crop''s genetic structure and diversity are largely missing. We have fingerprinted 3,342 accessions from the Chinese, Dutch and U.S. cucumber collections with 23 highly polymorphic Simple Sequence Repeat (SSR) markers evenly distributed in the genome. The data reveal three distinct populations, largely corresponding to three geographic regions. Population 1 corresponds to germplasm from China, except for the unique semi-wild landraces found in Xishuangbanna in Southwest China and East Asia; population 2 to Europe, America, and Central and West Asia; and population 3 to India and Xishuangbanna. Admixtures were also detected, reflecting hybridization and migration events between the populations. The genetic background of the Indian germplasm is heterogeneous, indicating that the Indian cucumbers maintain a large proportion of the genetic diversity and that only a small fraction was introduced to other parts of the world. Subsequently, we defined a core collection consisting of 115 accessions and capturing over 77% of the SSR alleles. Insight into the genetic structure of cucumber will help developing appropriate conservation strategies and provides a basis for population-level genome sequencing in cucumber.  相似文献   

14.
Twenty-four SSR markers were utilized to evaluate the genetic variation across thirty-six guava varieties including wild species. The SSR markers revealed a polymorphism of 95.7% and a great range of diversity among the experimental guava germplasm. Eighty-one alleles were detected, in diversity analysis, with 2–7 alleles with a mean of 3.682 alleles per loci. The SSR loci showcased an allele frequency of 0.306 (mPgCIR251) to 0.861 (mPgCIR227) at a mean value 0.561. An average polymorphic value of 0.490 across was measured for all the 36 germplasm with the range of 0.234 in mPgCIR227 to 0.706 in mPgCIR03. The genetic diversity for SSRs varied between 0.248 (mPgCIR227) and 0.747 (mPgCIR03) with an average of 0.548. Clustering of germplasm distinctly separated pink and white flesh germplasm into two major groups. First three coordinates contributed towards 32.76% of the variation measured using principle coordinate analysis. Molecular variance (AMOVA) study showed 06 and 94% genetic variation among population and individual, respectively with five sub populations. This study provides valuable information for understanding the genetic variability in guava which can be exploited to develop varieties with better fruit yield and nutritional quality.  相似文献   

15.
Presently, Theobroma cacao L. (cacao) in Cuba is mainly cultivated in the eastern region where plantations comprise a mixture of clonal varieties, hybrids, progeny of Trinidad Selected Hybrids, and traditional—also known as ancient—cacao. The ancient genetic resources, probably the plants most closely related to the original introductions, are endangered by their progressive replacement by modern clones. To promote the conservation and utilization of these genetic resources, a representative sample of 537 traditional Cuban cacao plants was used to develop a core collection. Core collections based on 15 simple sequence repeat (SSR) markers were generated using five different sampling algorithms: random sampling, simulated annealing, stepwise clustering with random sampling, the M strategy, and maximum genetic diversity. The five core collections were designed to capture 95 % of the SSR alleles in the complete collection. The genetic, morphological, and geographical diversity of each core collection was compared with that of the entire collection. The entire collection contained 139 alleles, including 104 rare ones, with the 95 % allelic coverage threshold achieved with 133 alleles. The core collection generated by the maximum genetic diversity algorithm had the lowest number of accessions (185), the highest mean genetic distance (0.486), the lowest morphological character redundancy, and the highest diversity as assessed by the mean Shannon-Weaver diversity index (0.757). This core collection can thus serve as the basis of future improvement programs based on local genetic resources.  相似文献   

16.
杂交育种中,亲本选配是育种成败的关键。本研究以重庆市油菜工程技术研究中心提供的180份甘蓝型黄子油菜亲本种质为材料,应用分布于不同连锁群的60对SSR标记进行了分析,共检测出308个标记位点,每对引物在不同亲本材料之间的等位基因数在1~11个之间,平均位点为5.1个。其中多态性位点207个,多态率达67.2%。对SSR扩增结果进行UPGMA分析,在遗传距离0.566处,180个品种(系)分为3个类群,聚类结果与种质来源比较一致,本研究为甘蓝型油菜黄子杂交育种和优势组合的选配提供了理论依据。  相似文献   

17.
Knowledge of natural diversity and population structures of wild species, which might be related to cultivated species, is fundamental for conservation and breeding purposes. In this study, a genetic characterization of a large population of Oryza glumaepatula, occurring in a 10 km2 area located at Tamengo Basin (Paraguay River, Brazil), was performed using SSR markers. This population is annually dragged from the river to permit navigation; one goal of this study was to examine the impact of this removal on genetic variability. From 18 polymorphic SSR markers, a total of 190 alleles were detected in a sample of 126 individuals, with an average of 10.3 alleles/locus, and a H e of 0.67. The five QTL-related markers showed an average H e value of 0.56, while the remaining 13 markers detected an average estimate of 0.70. An apparent outcrossing rate of 30%, a high proportion of alleles at low frequencies (56%), and the presence of exclusive alleles (9.5%) were found, with strong evidence of the establishment of individuals from different populations upstream in the Paraguay River. For conservation purposes, the river drag has no effect on the population. However, periodical seed collection from the Corumbá population can preserve part of the genetic variability present in upstream populations reducing the need for upriver collecting expeditions.  相似文献   

18.
Assessing levels and patterns of population genetic variation is an important step for evaluating rare or endangered species and determining appropriate conservation strategies. This is particularly important for ensuring the preservation of novel genetic variation in wild relatives of crops, which could provide beneficial alleles for plant breeding and improvement. In this study, we evaluate the population genetics of Helianthus niveus ssp. tephrodes (the Algodones sunflower), which is an endangered, wild relative of cultivated sunflower (H. annuus L.). This rare sunflower species is native to the sand dunes of the Sonoran Desert in southern California, southwestern Arizona, and northern Mexico and is thought to harbor beneficial alleles for traits related to drought tolerance. We genotyped nine populations of this species with a set of simple-sequence repeat markers derived from expressed sequence tags (EST-SSRs) and investigated levels of genetic diversity and population structure, in H. niveus ssp. tephrodes. We also compared our results to findings from five related sunflower species that have been analyzed with these same markers, including annuals and perennials that range from rare to widespread. The Algodones sunflower harbors lower levels of standing genetic variation, but similar levels of population structure as compared to other sunflower species. We also discovered that a disjunct population from northern Mexico was genetically distinct from populations elsewhere in the range. Given the occurrence of such a genetically unique population, our recommendations include population surveys of the southern portion of the range in hopes of bolstering the existing germplasm collection.  相似文献   

19.
? Premise of the study: Cynodon species are multiple-use grasses that display varying levels of adaptation to biotic and abiotic stress. Previously identified EST-SSR primers were characterized and multiplexed to assess the level of genetic diversity present within a collection of almost 1200 Cynodon accessions from across Australia. ? Methods and Results: Two multiplex reactions were developed comprising a total of 16 EST-SSR markers. All SSR markers amplified across different Cynodon species and different levels of ploidy. The number of alleles ranged from one to eight per locus and the total number of alleles for the germplasm collection was 79. ? Conclusions: The 16 markers show sufficient variation for the characterization of Cynodon core collections and analysis of population genetic diversity in Cynodon grasses.  相似文献   

20.
野生杏和栽培杏的遗传多样性和遗传结构分析   总被引:1,自引:0,他引:1  
利用SSR分子标记结合荧光毛细管电泳检测技术,研究了野生杏和栽培杏的遗传多样性和遗传结构,结果显示:27个SSR位点,平均每个位点检测到17.82个等位基因(Na)和7.44个有效等位基因(Ne),平均Shannon's信息指数(I)为2.23,平均期望杂合度(He)和观察杂合度(Ho)分别为0.70和0.52。基于SSR位点,群体水平上平均等位基因数、有效等位基因数、期望杂合度、观察杂合度和Shannon's信息指数分别为6.59、4.15、0.70、0.53和1.50,说明我国杏种质资源遗传多样性丰富,其中野生杏资源遗传多样性明显高于栽培杏资源,野生杏中西伯利亚杏种质遗传多样性最高且具有较多的特异等位基因,而栽培杏中仁用杏遗传多样性最低,特有等位基因较少。聚类分析将供试159份种质分为4组。群体遗传结构分析将159份种质划分为5个类群,分类情况与传统形态指标划分基本一致。通过本研究可知,我国杏资源遗传多样性丰富,遗传结构较为复杂;西伯利亚杏与栽培杏亲缘关系较远;野生普通杏与栽培杏具有类似的遗传结构,推测野生普通杏为栽培杏原始种;仁用杏遗传多样性较低,遗传背景狭窄。本研究结果可为杏资源新品种选育及持续利用提供重要的理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号