首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
2.
In a search for factors that could contribute to the ability of the plant growth-stimulating Pseudomonas putida WCS358 to colonize plant roots, the organism was analyzed for the presence of genes required for pilus biosynthesis. The pilD gene of Pseudomonas aeruginosa, which has also been designated xcpA, is involved in protein secretion and in the biogenesis of type IV pili. It encodes a peptidase that processes the precursors of the pilin subunits and of several components of the secretion apparatus. Prepilin processing activity could be demonstrated in P. putida WCS358, suggesting that this nonpathogenic strain may contain type IV pili as well. A DNA fragment containing the pilD (xcpA) gene of P. putida was cloned and found to complement a pilD (xcpA) mutation in P. aeruginosa. Nucleotide sequencing revealed, next to the pilD (xcpA) gene, the presence of two additional genes, pilA and pilC, that are highly homologous to genes involved in the biogenesis of type IV pili. The pilA gene encodes the pilin subunit, and pilC is an accessory gene, required for the assembly of the subunits into pili. In comparison with the pil gene cluster in P. aeruginosa, a gene homologous to pilB is lacking in the P. putida gene cluster. Pili were not detected on the cell surface of P. putida itself, not even when pilA was expressed from the tac promoter on a plasmid, indicating that not all the genes required for pilus biogenesis were expressed under the conditions tested. Expression of pilA of P. putida in P. aeruginosa resulted in the production of pili containing P. putida PilA subunits.  相似文献   

3.
The human pathogen Eikenella corrodens expresses type IV pili and exhibits a phase variation involving the irreversible transition from piliated to nonpiliated variants. On solid medium, piliated variants form small (S-phase), corroding colonies whereas nonpiliated variants form large (L-phase), noncorroding colonies. We are studying pilus structure and function in the clinical isolate E. corrodens VA1. Earlier work defined the pilA locus which includes pilA1, pilA2, pilB, and hagA. Both pilA1 and pilA2 predict a type IV pilin, whereas pilB predicts a putative pilus assembly protein. The role of hagA has not been clearly established. That work also confirmed that pilA1 encodes the major pilus protein in this strain and showed that the phase variation involves a posttranslational event in pilus formation. In this study, the function of the individual genes comprising the pilA locus was examined using a recently developed protocol for targeted interposon mutagenesis of S-phase variant VA1-S1. Different pilA mutants were compared to S-phase and L-phase variants for several distinct aspects of phase variation and type IV pilus biosynthesis and function. S-phase cells were characterized by surface pili, competence for natural transformation, and twitching motility, whereas L-phase cells lacked these features. Inactivation of pilA1 yielded a mutant that was phenotypically indistinguishable from L-phase variants, showing that native biosynthesis of the type IV pilus in strain VA1 is dependent on expression of pilA1 and proper export and assembly of PilA1. Inactivation of pilA2 yielded a mutant that was phenotypically indistinguishable from S-phase variants, indicating that pilA2 is not essential for biosynthesis of functionally normal pili. A mutant inactivated for pilB was deficient for twitching motility, suggesting a role for PilB in this pilus-related phenomenon. Inactivation of hagA, which may encode a tellurite resistance protein, had no effect on pilus structure or function.  相似文献   

4.
Social gliding motility in Myxococcus xanthus depends on the presence of Type IV pili. To begin to examine the role of pili in social motility, 17 mutants were identified which had lost social motility, but still expressed pili. Four of these mutants carry point mutations which mapped to a locus upstream of the recently identified pilS , pilR , and pilA genes. Sequencing of this locus revealed a gene with homology to pilT from Pseudomonas aeruginosa . Sequencing of the four point mutations revealed that they occurred within the M. xanthus pilT locus. A markerless deletion within M. xanthus pilT , similar to the four point mutations, disrupted social gliding behaviour but did not interfere with pilus formation or pilus-dependent cell–cell agglutination. Using time-lapse videomicroscopy, residual social motility was observed in dsp strains (known to be deficient in fibril but not pilus production); this was not observed in a Δ pilT dsp double mutant. Two genes flanking pilT  were also sequenced, and found to have homology to pilB and pilC from P. aeruginosa . Markerless deletions within these genes caused both pilus and social-motility defects. These results indicate that M. xanthus pilB and pilC are required for pilus biogenesis, while pilT is required for assembled pili to play their role in social motility. Thus, pilB , pilT , pilC , pilS , pilR and pilA form a contiguous cluster of pil genes required for social motility.  相似文献   

5.
The ubiquitous species Pseudomonas stutzeri has type IV pili, and these are essential for the natural transformation of the cells. An absolute transformation-deficient mutant obtained after transposon mutagenesis had an insertion in a gene which was termed pilT. The deduced amino acid sequence has identity with PilT of Pseudomonas aeruginosa (94%), Neisseria gonorrhoeae (67%), and other gram-negative species and it contains a nucleotide-binding motif. The mutant was hyperpiliated but defective for further pilus-associated properties, such as twitching motility and plating of pilus-specific phage PO4. [(3)H]thymidine-labeled DNA was bound by the mutant but not taken up. Downstream of pilT a gene, termed pilU, coding for a putative protein with 88% amino acid identity with PilU of P. aeruginosa was identified. Insertional inactivation did not affect piliation, twitching motility, or PO4 infection but reduced transformation to about 10%. The defect was fully complemented by PilU of nontransformable P. aeruginosa. When the pilAI gene (coding for the type IV pilus prepilin) was manipulated to code for a protein in which the six C-terminal amino acids were replaced by six histidine residues and then expressed from a plasmid, it gave a nonpiliated and twitching motility-defective phenotype in pilAI::Gm(r) cells but allowed transformability. Moreover, the mutant allele suppressed the absolute transformation deficiency caused by the pilT mutation. Considering the hypothesized role of pilT(+) in pilus retraction and the presumed requirement of retraction for DNA uptake, it is proposed that the pilT-independent transformation is promoted by PilA mutant protein either as single molecules or as minimal pilin assembly structures in the periplasm which may resemble depolymerized pili and that these cause the outer membrane pores to open for DNA entry.  相似文献   

6.
D Nunn  S Bergman    S Lory 《Journal of bacteriology》1990,172(6):2911-2919
The polar pili of Pseudomonas aeruginosa are composed of monomers of the pilin structural subunits. The biogenesis of pili involves the synthesis of pilin precursor, cleavage of a six-amino-acid leader peptide, membrane translocation, and assembly of monomers into a filamentous structure extending from the bacterial surface. This report describes three novel genes necessary for the formation of pili. DNA sequences adjacent to pilA, the pilin structural gene, were cloned and mutagenized with transposon Tn5. Each of the insertions were introduced into the chromosome of P. aeruginosa PAK by gene replacement. The effect of the Tn5 insertions in the bacterial chromosome on pilus assembly was assessed by electron microscopy and sensitivity of mutants to a pilus-specific bacteriophage. The resultant mutants were also tested for synthesis and membrane localization of the pilin antigen in order to define the genes required for maturation, export, and assembly of pilin. A 4.0-kilobase-pair region of DNA adjacent to the pilin structural gene was found to be essential for formation of pili. This region was sequenced and found to contain three open reading frames coding for 62-, 38- to 45-, and 28- to 32-kilodalton proteins (pilB, pilC, and pilD, respectively). Three proteins of similar molecular weight were expressed in Escherichia coli from the 4.0-kilobase-pair fragment flanking pilA with use of a T7 promoter-polymerase expression system. The results of the analyses of the three genes and the implications for pilin assembly and maturation are discussed.  相似文献   

7.
The opportunistic pathogen Pseudomonas aeruginosa produces multifunctional, polar, filamentous appendages termed type IV pili. Type IV pili are involved in colonization during infection, twitching motility, biofilm formation, bacteriophage infection, and natural transformation. Electrostatic surface analysis of modeled pilus fibers generated from P. aeruginosa strain PAK, K122-4, and KB-7 pilin monomers suggested that a solvent-exposed band of positive charge may be a common feature of all type IV pili. Several functions of type IV pili, including natural transformation and biofilm formation, involve DNA. We investigated the ability of P. aeruginosa type IV pili to bind DNA. Purified PAK, K122-4, and KB-7 pili were observed to bind both bacterial plasmid and salmon sperm DNA in a concentration-dependent and saturable manner. PAK pili had the highest affinity for DNA, followed by K122-4 and KB-7 pili. DNA binding involved backbone interactions and preferential binding to pyrimidine residues even though there was no evidence of sequence-specific binding. Pilus-mediated DNA binding was a function of the intact pilus and thus required elements present in the quaternary structure. However, binding also involved the pilus tip as tip-specific, but not base-specific, antibodies inhibited DNA binding. The conservation of a Thr residue in all type IV pilin monomers examined to date, along with the electrostatic data, implies that DNA binding is a conserved function of type IV pili. Pilus-mediated DNA binding could be important for biofilm formation both in vivo during an infection and ex vivo on abiotic surfaces.  相似文献   

8.
9.
The social gliding behaviour of Myxococcus xanthus has previously been associated with the presence of polar pili. A Tn 5 transposon insertion was isolated which introduces a defect in social gliding and is genetically linked to a known sgl locus; this insertion was found also to cause a piliation defect. A 2.7 kb section of DNA was isolated from either side of this transposon and sequenced, revealing three genes which encode amino acid sequences with substantial similarity to components of the Type IV pilus biogenesis pathway in Pseudomonas aeruginosa . The myxococcal pilA gene encodes a putative pilin precursor with a short signal sequence and processing site similar to those of other Type IV pilins. Myxococcal pilS and pilR encode amino acid sequences with similarity to PilS and PilR of P. aeruginosa , as well as to other members of the NtrB/C family of two-component regulators. Mutations within pilR and pilA that have no polar effect were demonstrated to be responsible for pilus and social motility defects. These results indicate that the pili of M. xanthus belong to the Type IV family of pili, and demonstrate that these pili are actually required for social motility.  相似文献   

10.
11.
12.
Membrane filter pass-through ability of Pseudomonas aeruginosa was analyzed with isogenic mutants. A flagellum-deficient fliC mutant required two-times longer time (12 hr) to pass through a 0.45-microm pore size filter. With 0.3- and 0.22-microm filters, however, the fliC mutant showed no remarkable disability. Meanwhile a pilA mutant defective in twitching motility failed to pass through the 0.22-microm filter. Complementation of the mutant with pilA gene on a plasmid restored the twitching motility and the 0.22-microm filter pass-through activity. Thus, the distinctive role of P. aeruginosa type IV pili in infiltration into finer reticulate structures was indicated.  相似文献   

13.
14.
To investigate the role of type IV pili in the virulence of phytopathogenic bacteria, four mutant strains for pilus biogenesis-related genes were generated in Pseudomonas syringae pv. tabaci 6605. PilA encodes the pilin protein as a major subunit of type IV pili, and the pilO product is reported to be required for pilus assembly. The fimU and fimT genes are predicted to produce minor pilins. Western blot analysis revealed that pilA, pilO, and fimU mutants but not the fimT mutant failed to construct type IV pili. Although the swimming motility of all mutant strains was not impaired in liquid medium, they showed remarkably reduced motilities on semisolid agar medium, suggesting that type IV pili are required for surface motilities. Virulence toward host tobacco plants and hypersensitive response-inducing ability in nonhost Arabidopsis leaves of pilA, pilO, and fimU mutant strains were reduced. These results might be a consequence of reduced expression of type III secretion system-related genes in the mutant strains. Further, all mutant strains showed enhanced expression of resistance-nodulation-division family members mexA, mexB, and oprM, and higher tolerance to antimicrobial compounds. These results indicate that type IV pili are an important virulence factor of this pathogen.  相似文献   

15.
Pseudomonas aeruginosa bacteriophage φKMV requires type IV pili for infection, as observed from the phenotypic characterization and phage adsorption assays on a phage infection-resistant host strain mutant. A cosmid clone library of the host ( P. aeruginosa PAO1) genomic DNA was generated and used to select for a clone that was able to restore φKMV infection in the resistant mutant. This complementing cosmid also re-established type IV pili-dependent twitching motility. The correlation between bacteriophage φKMV infectivity and type IV pili, along with its associated twitching motility, was confirmed by the resistance of a P. aeruginosa PAO1Δ pilA mutant to the phage. Subcloning of the complementing cosmid and further phage infection analysis and motility assays suggests that a common regulatory mechanism and/or interaction between the ponA and pilMNOPQ gene products are essential for bacteriophage φKMV infectivity.  相似文献   

16.
Pseudomonas aeruginosa exhibits swarming motility on 0.5 to 1% agar plates in the presence of specific carbon and nitrogen sources. We have found that PAO1 double mutants expressing neither flagella nor type IV pili (fliC pilA) display sliding motility under the same conditions. Sliding motility was inhibited when type IV pilus expression was restored; like swarming motility, it also decreased in the absence of rhamnolipid surfactant production. Transposon insertions in gacA and gacS increased sliding motility and restored tendril formation to spreading colonies, while transposon insertions in retS abolished motility. These changes in motility were not accompanied by detectable changes in rhamnolipid surfactant production or by the appearance of bacterial surface structures that might power sliding motility. We propose that P. aeruginosa requires flagella during swarming to overcome adhesive interactions mediated by type IV pili. The apparent dependence of sliding motility on environmental cues and regulatory pathways that also affect swarming motility suggests that both forms of motility are influenced by similar cohesive factors that restrict translocation, as well as by dispersive factors that facilitate spreading. Studies of sliding motility may be particularly well-suited for identifying factors other than pili and flagella that affect community behaviors of P. aeruginosa.  相似文献   

17.
The relevance of pilus-related genes to motility, pilus structure on the cell surface and competency of natural transformation was studied by gene disruption analysis in the unicellular motile cyanobacterium SYNECHOCYSTIS: sp. PCC 6803. The genes disrupted in this study were chosen as related to the pil genes for biogenesis of the type IV pili in a Gram-negative bacterium PSEUDOMONAS: aeruginosa. It was found that motility of SYNECHOCYSTIS: cells was lost in the mutants of slr0063, slr1274, slr1275, slr1276, slr1277 and sll1694 together with a simultaneous loss of the thick pili on the cell surface. Competency of the natural transformation was lost in the mutants listed above and slr0197-disruptant. The gene slr0197 was previously predicted as a competence gene by a search with sequence-independent DNA-binding structure [Yura et al. (1999) DNA Res. 6: 75]. It was suggested that both DNA uptake for natural transformation and motility are mediated by a specific type IV-like pilus structure, while a putative DNA-binding protein encoded by slr0197 is additionally required for the DNA uptake. Based on the homology with the pil genes in P: aeruginosa, slr0063, slr1274, slr1275, slr1276, slr1277 and sll1694 were designated pilB1, pilM, pilN, pilO, pilQ and pilA1, respectively. The gene slr0197 was designated comA.  相似文献   

18.
Virulence of the opportunistic pathogen Pseudomonas aeruginosa involves the coordinate expression of a wide range of virulence factors including type IV pili which are required for colonization of host tissues and are associated with a form of surface translocation termed twitching motility. Twitching motility in P. aeruginosa is controlled by a complex signal transduction pathway which shares many modules in common with chemosensory systems controlling flagella rotation in bacteria and which is composed, in part, of the previously described proteins PilG, PilH, PilI, PilJ and PilK. Here we describe another three components of this pathway: ChpA, ChpB and ChpC, as well as two downstream genes, ChpD and ChpE, which may also be involved. The central component of the pathway, ChpA, possesses nine potential sites of phosphorylation: six histidine-containing phosphotransfer (HPt) domains, two novel serine- and threonine-containing phosphotransfer (SPt, TPt) domains and a CheY-like receiver domain at its C-terminus, and as such represents one of the most complex signalling proteins yet described in nature. We show that the Chp chemosensory system controls twitching motility and type IV pili biogenesis through control of pili assembly and/or retraction as well as expression of the pilin subunit gene pilA. The Chp system is also required for full virulence in a mouse model of acute pneumonia.  相似文献   

19.
Pseudomonas aeruginosa strains PA7 and Pa5196 glycosylate their type IVa pilins with α1,5-linked D-arabinofuranose (d-Araf), a rare sugar configuration identical to that found in cell wall polymers of the Corynebacterineae. Despite this chemical identity, the pathway for biosynthesis of α1,5-D-Araf in Gram-negative bacteria is unknown. Bioinformatics analyses pointed to a cluster of seven P. aeruginosa genes, including homologues of the Mycobacterium tuberculosis genes Rv3806c, Rv3790, and Rv3791, required for synthesis of a polyprenyl-linked d-ribose precursor and its epimerization to D-Araf. Pa5196 mutants lacking the orthologues of those genes had non-arabinosylated pilins, poor twitching motility, and significantly fewer surface pili than the wild type even in a retraction-deficient (pilT) background. The Pa5196 pilus system assembled heterologous non-glycosylated pilins efficiently, demonstrating that it does not require post-translationally modified subunits. Together the data suggest that pilins of group IV strains need to be glycosylated for productive subunit-subunit interactions. A recombinant P. aeruginosa PAO1 strain co-expressing the genes for d-Araf biosynthesis, the pilin modification enzyme TfpW, and the acceptor PilA(IV) produced arabinosylated pili, confirming that the Pa5196 genes identified are both necessary and sufficient. A P. aeruginosa epimerase knock-out could be complemented with the corresponding Mycobacterium smegmatis gene, demonstrating conservation between the systems of the Corynebacterineae and Pseudomonas. This work describes a novel Gram-negative pathway for biosynthesis of d-Araf, a key therapeutic target in Corynebacterineae.  相似文献   

20.
During a screening of a mini-Tn5-luxCDABE transposon mutant library of Pseudomonas aeruginosa PAO1 for alterations in swarming motility, 36 mutants were identified with Tn5 insertions in genes for the synthesis or function of flagellin and type IV pilus, in genes for the Xcp-related type II secretion system, and in regulatory, metabolic, chemosensory, and hypothetical genes with unknown functions. These mutants were differentially affected in swimming and twitching motility but in most cases had only a minor additional motility defect. Our data provide evidence that swarming is a more complex type of motility, since it is influenced by a large number of different genes in P. aeruginosa. Conversely, many of the swarming-negative mutants also showed an impairment in biofilm formation, indicating a strong relationship between these types of growth states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号