首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The technique of back-transplantation was used to investigate the developmental potential of neural crest-derived cells that have migrated to and colonized the avian bowel. Segments of quail bowel (removed at E4) were grafted between the somites and neural tube of younger (E2) chick host embryos. Grafts were placed at a truncal level, adjacent to somites 14-24. Initial experiments, done in vitro, confirmed that crest-derived cells are capable of migrating out of segments of foregut explanted at E4. The foregut, which at E4 has been colonized by cells derived from the vagal crest, served as the donor tissue. Comparative observations were made following grafts of control tissues, which included hindgut, lung primordia, mesonephros and limb bud. Additional experiments were done with chimeric bowel in which only the crest-derived cells were of quail origin. Targets in the host embryos colonized by crest-derived cells from the foregut grafts included the neural tube, spinal roots and ganglia, peripheral nerves, sympathetic ganglia and the adrenals, but not the gut. Donor cells in these target organs were immunostained by the monoclonal antibody, NC-1, indicating that they were crest-derived and developing along neural or glial lineages. Some of the crest-derived cells (NC-1-immunoreactive) that left the bowel and reached sympathetic ganglia, but not peripheral nerves or dorsal root ganglia, co-expressed tyrosine hydroxylase immunoreactivity, a neural characteristic never expressed by crest-derived cells in the avian gut. None of the cells leaving enteric back-grafts produced pigment. Cells of mesodermal origin were also found to leave donor explants and aggregate in dermis and feather germs near the grafts. These observations indicate that crest-derived cells, having previously migrated to the bowel, retain the ability to migrate to distant sites in a younger embryo. The routes taken by these cells appear to reflect, not their previous migratory experience, but the level of the host embryo into which the graft is placed. Some of the population of crest-derived cells that leave the back-transplanted gut remain capable of expressing phenotypes that they do not express within the bowel in situ, but which are appropriate for the site in the host embryo to which they migrate.  相似文献   

2.
Studies were done to test the hypothesis that the chick hindgut is colonized by emigrés from the sacral region of the neural crest. Crest-derived cells were identified immunocytochemically with the monoclonal antibody, NC-1, and by their ability to give rise to neurons or glia in the bowel. Neurons were recognized by demonstrating acetylcholinesterase activity, neurofilament immunoreactivity, or the immunoreactivity of a neurofilament-associated protein, NAPA-73, with a monoclonal antibody, E/C8. The visualization of glial fibrillary acidic protein immunoreactivity was employed to detect enteric glia. Separate rostral and caudal populations of NC-1-immunoreactive cells were detected in stage 21 embryos (Day E3.5) that extended in continuous streams from the sacral crest to the hindgut. The rostral group, coexpressed neural markers, while the caudal population did not. The rostral, dually labeled cells appeared to become embedded in the mesenchyme of the dorsal bowel by Day E4 and then to enter the mesentery by Day E5 to give rise to the ganglion of Remak. The caudal NC-1-immunoreactive group, which did not express neural markers, appeared to ascend within the colorectum and, in contrast to the rostral cells, fully encircled the gut. NC-1-immunoreactive neurons and glia developed in organotypic tissue cultures and chorioallantoic membrane grafts of both dorsal and ventral halves of the postumbilical bowel explanted at Days E4 and 5, ages known to precede the colonization of the hindgut by cells from the vagal crest. These observations are consistent with the view that NC-1-immunoreactive cells, which do not express neural markers, migrate from the sacral crest to the hindgut. A subset of these cells appears to be capable of giving rise to neurons in vitro, explaining the development of neurons in the explants of the ventral halves of the gut; however, the fate of the sacral crest-derived cells in situ remains to be established.  相似文献   

3.
The vagal neural crest is the origin of majority of neurons and glia that constitute the enteric nervous system, the intrinsic innervation of the gut. We have recently confirmed that a second region of the neuraxis, the sacral neural crest, also contributes to the enteric neuronal and glial populations of both the myenteric and the submucosal plexuses in the chick, caudal to the level of the umbilicus. Results from this previous study showed that sacral neural crest-derived precursors colonised the gut in significant numbers only 4 days after vagal-derived cells had completed their migration along the entire length of the gut. This observation suggested that in order to migrate into the hindgut and differentiate into enteric neurons and glia, sacral neural crest cells may require an interaction with vagal-derived cells or with factors or signalling molecules released by them or their progeny. This interdependence may also explain the inability of sacral neural crest cells to compensate for the lack of ganglia in the terminal hindgut of Hirschsprung's disease in humans or aganglionic megacolon in animals. To investigate the possible interrelationship between sacral and vagal-derived neural crest cells within the hindgut, we mapped the contribution of various vagal neural crest regions to the gut and then ablated appropriate sections of chick vagal neural crest to interrupt the migration of enteric nervous system precursor cells and thus create an aganglionic hindgut model in vivo. In these same ablated animals, the sacral level neural axis was removed and replaced with the equivalent tissue from quail embryos, thus enabling us to document, using cell-specific antibodies, the migration and differentiation of sacral crest-derived cells. Results showed that the vagal neural crest contributed precursors to the enteric nervous system in a regionalised manner. When quail-chick grafts of the neural tube adjacent to somites 1-2 were performed, neural crest cells were found in enteric ganglia throughout the preumbilical gut. These cells were most numerous in the esophagus, sparse in the preumbilical intestine, and absent in the postumbilical gut. When similar grafts adjacent to somites 3-5 or 3-6 were carried out, crest cells were found within enteric ganglia along the entire gut, from the proximal esophagus to the distal colon. Vagal neural crest grafts adjacent to somites 6-7 showed that crest cells from this region were distributed along a caudal-rostral gradient, being most numerous in the hindgut, less so in the intestine, and absent in the proximal foregut. In order to generate aneural hindgut in vivo, it was necessary to ablate the vagal neural crest adjacent to somites 3-6, prior to the 13-somite stage of development. When such ablations were performed, the hindgut, and in some cases also the cecal region, lacked enteric ganglionated plexuses. Sacral neural crest grafting in these vagal neural crest ablated chicks showed that sacral cells migrated along normal, previously described hindgut pathways and formed isolated ganglia containing neurons and glia at the levels of the presumptive myenteric and submucosal plexuses. Comparison between vagal neural crest-ablated and nonablated control animals demonstrated that sacral-derived cells migrated into the gut and differentiated into neurons in higher numbers in the ablated animals than in controls. However, the increase in numbers of sacral neural crest-derived neurons within the hindgut did not appear to be sufficiently high to compensate for the lack of vagal-derived enteric plexuses, as ganglia containing sacral neural crest-derived neurons and glia were small and infrequent. Our findings suggest that the neuronal fate of a relatively fixed subpopulation of sacral neural crest cells may be predetermined as these cells neither require the presence of vagal-derived enteric precursors in order to colonise the hindgut, nor are capable of dramatically altering their proliferation or d  相似文献   

4.
Enteric neurons arise from vagal and sacral level neural crest cells. To examine the phenotype of neural-crest-derived cells in vagal and sacral pathways, we used antisera to Sox10, p75, Phox2b, and Hu, and transgenic mice in which the expression of green fluorescent protein was under the control of the Ret promoter. Sox10 was expressed prior to the emigration of vagal cells, whereas p75 was expressed shortly after their emigration. Most crest-derived cells that emigrated adjacent to somites 1–4 migrated along a pathway that was later followed by the vagus nerve. A sub-population of these vagal cells coalesced to form vagal ganglia, whereas others continued their migration towards the heart and gut. Cells that coalesced into vagal ganglia showed a different phenotype from cells in the migratory streams proximal and distal to the ganglia. Only a sub-population of the vagal cells that first entered the foregut expressed Phox2b or Ret. Sacral neural crest cells gave rise to pelvic ganglia and some neurons in the hindgut. The pathways of sacral neural crest cells were examined by using DβH-nlacZ mice. Sacral cells appeared to enter the distal hindgut around embryonic day 14.5. Very few of the previously demonstrated, but rare, neurons that were present in the large intestine of Ret null mutants and that presumably arose from the sacral neural crest expressed nitric oxide synthase, unlike their counterparts in Ret heterozygous mice. This study was supported by the National Health and Medical Research Council of Australia (project grants nos. 145628 and 350311, C.J. Martin Fellowship no. 007144, and Senior Research Fellowship no. 170224).  相似文献   

5.
The phenotypically diverse neurones of the enteric nervous system are developmentally derived from precursors that migrate to the bowel from the vagal and sacral regions of the neuraxis. In order to gain insight into the generation of enteric neuronal diversity, we examined the expression of serotonin (5-HT), tyrosine hydroxylase and GABA in vitro. In the mature avian intestine, intrinsic neurones contain 5-HT or GABA but not tyrosine hydroxylase. These markers were demonstrated immunocytochemically, singly or simultaneously. All three phenotypic markers developed in cultures of cranial, vagal or truncal neural crest when the cultures were grown in enriched medium, containing horse serum and chick embryo extract; however, 5-HT and GABA, but not tyrosine hydroxylase-immunoreactive cells, also developed in cultures that were grown in partially defined medium. Tyrosine hydroxylase immunoreactivity was seen when partially defined medium was supplemented with nerve growth factor (NGF). Cultures of branchial arches (III and IV) contained cells that displayed tyrosine hydroxylase immunoreactivity, but not that of 5-HT- or GABA-; however, 5-HT immunoreactivity was seen when branchial arches were cocultured with aneuronal hindgut (from 4-day chick embryos). Cultures of cells from chick gut dissociated at 7 days contained tyrosine hydroxylase as well as 5-HT and GABA immunoreactivities; however, no cultures of bowel dissociated at 8 days or later expressed tyrosine hydroxylase immunoreactivity. When neuraxial cells were cocultured with branchial arches or heart instead of gut, no 5-HT-immunoreactive cells were seen; nevertheless, the further addition of explants of gut to the heart/crest cocultures did permit the expression of 5-HT immunoreactivity. These results are consistent with the hypotheses that precursors with the potential to give rise to cells that express 5-HT, GABA and tyrosine hydroxylase are found at several levels of the neuraxis; however, the ability to express these phenotypes may be suppressed either while the crest cells are migrating (for example, 5-HT and GABA expression by crest cells passing through the branchial arches) or in their final destination (for example, tyrosine hydroxylase in the gut). This suppression may be transient and reversed by the microenvironment of the target organs.  相似文献   

6.
Enteric ganglia in the hindgut are derived from separate vagal and sacral neural crest populations. Two conflicting models, based primarily on avian data, have been proposed to describe the contribution of sacral neural crest cells. One hypothesizes early colonization of the hindgut shortly after neurulation, and the other states that sacral crest cells reside transiently in the extraenteric ganglion of Remak and colonize the hindgut much later, after vagal crest-derived neural precursors arrive. In this study, I show that Wnt1-lacZ-transgene expression, an "early" marker of murine neural crest cells, is inconsistent with the "early-colonization" model. Although Wnt1-lacZ-positive sacral crest cells populate pelvic ganglia in the mesenchyme surrounding the hindgut, they are not found in the gut prior to the arrival of vagal crest cells. Similarly, segments of murine hindgut harvested prior to the arrival of vagal crest cells and grafted under the renal capsule fail to develop enteric neurons, unless adjacent pelvic mesenchyme is included in the graft. When pelvic mesenchyme from DbetaH-nlacZ transgenic embryos is apposed with nontransgenic hindgut, neural precursors from the mesenchyme colonize the hindgut and form intramural ganglion cells that express the transgenic marker. Contribution of sacral crest-derived cells to the enteric nervous system is not affected by cocolonization of grafts by vagal crest-derived neuroglial precursors. The findings complement recent studies of avian chimeras and support an evolutionarily conserved model in which sacral crest cells first colonize the extramural ganglion and secondarily enter the hindgut mesenchyme.  相似文献   

7.
We have used the vital dye, DiI, to analyze the contribution of sacral neural crest cells to the enteric nervous system in chick and mouse embryos. In order to label premigratory sacral neural crest cells selectively, DiI was injected into the lumen of the neural tube at the level of the hindlimb. In chick embryos, DiI injections made prior to stage 19 resulted in labelled cells in the gut, which had emerged from the neural tube adjacent to somites 29-37. In mouse embryos, neural crest cells emigrated from the sacral neural tube between E9 and E9.5. In both chick and mouse embryos, DiI-labelled cells were observed in the rostral half of the somitic sclerotome, around the dorsal aorta, in the mesentery surrounding the gut, as well as within the epithelium of the gut. Mouse embryos, however, contained consistently fewer labelled cells than chick embryos. DiI-labelled cells first were observed in the rostral and dorsal portion of the gut. Paralleling the maturation of the embryo, there was a rostral-to-caudal sequence in which neural crest cells populated the gut at the sacral level. In addition, neural crest cells appeared within the gut in a dorsal-to-ventral sequence, suggesting that the cells entered the gut dorsally and moved progressively ventrally. The present results resolve a long-standing discrepancy in the literature by demonstrating that sacral neural crest cells in both the chick and mouse contribute to the enteric nervous system in the postumbilical gut.  相似文献   

8.
Sensory ganglia taken from quail embryos at E4 to E7 were back-transplanted into the vagal neural crest migration pathway (i.e., at the level of somites 1 to 6) of 8- to 10-somite stage chick embryos. Three types of sensory ganglia were used: (i) proximal ganglia of cranial sensory nerves IX and X forming the jugular-superior ganglionic complex, whose neurons and nonneuronal cells both arise from the neural crest; (ii) distal ganglia of the same nerves, i.e., the petrosal and nodose ganglia in which the neurons originate from epibranchial placodes and the nonneuronal cells from the neural crest; (iii) dorsal root ganglia taken in the truncal region between the fore- and hindlimb levels. The question raised was whether cells from the graft would be able to yield the neural crest derivatives normally arising from the hindbrain and vagal crest, such as carotid body type I and II cells, enteric ganglia, Schwann cells located along the local nerves, and the nonneuronal contingent of cells in the host nodose ganglion. All the grafted cephalic ganglia provided the host with the complete array of these cell types. In contrast, grafted dorsal root ganglion cells gave rise only to carotid body type I and II cells, to the nonneuronal cells of the nodose ganglion, and to Schwann cells; the ganglion-derived cells did not invade the gut and therefore failed to contribute to the host's enteric neuronal system. Coculture on the chorioallantoic membrane of aneural chick gut directly associated with quail sensory ganglia essentially reinforced these results. These data demonstrate that the capacity of peripheral ganglia to provide enteric plexuses varies according to the level of the neuraxis from which they originate.  相似文献   

9.
Experiments in which the developing gut of avian embryos was back-transplanted to permit the bowel to interact with the developing neural tube were undertaken. Segments of intestine from 4-day quail embryos were implanted between the somites and neural tubes of chick embryos of 7 to 24 somites. The spinal cord responded to the presence of the bowel by enlarging unilaterally on the side of the graft. This effect encompassed both gray and white matter and was accompanied by the extension of neuritic projections from the spinal cord into the enteric grafts. The growth-promoting effect of enteric transplants was manifest at all levels of the neural tube where the grafts were made and led to enlargement of the brain as well as the spinal cord; however, truncal neural crest derivatives in the region of the grafts, such as developing sympathetic and spinal ganglia, were unaffected. Neither sham operations nor grafts of ciliary ganglion, lung, pancreas, mesonephros, or rudiment of the eye mimicked the action of the gut. The effect of the bowel was manifest as early as 24 hr following back-transplantation and was found to be due to an increase in the number of cells in the neuroepithelium. The cell responsible for the ability of the gut wall to enhance neuroepithelial proliferation was not identified, but the effect lacked species specificity and could be elicited in the absence of endoderm or neural crest derivatives in the explant. We propose that the musculoconnective tissue of the gut produces a short-range diffusible factor that induces mitogenic activity in the neuroepithelial cells of the neural tube, but not in the crest cells that form sympathetic or sensory ganglia. Since the gut is not normally in apposition to the neural tube, we suggest that the physiological targets of this factor are the specialized crest cells that colonize the bowel and give rise to the enteric nervous system.  相似文献   

10.
Experiments were done to study the fate of transient catecholaminergic (TC) cells that develop in the rodent gut during ontogeny. When they are first detected, at Day E11 in rats, TC cells are distributed along the vagal pathway, in advance of the descending fibers of the vagus nerves, and in the foregut. The early TC cells coexpress the immunoreactivities of several neural markers, including 150-kDa neurofilament protein, peripherin, microtubule associated protein (MAP) 5, and growth-associated protein (GAP)-43, with those of the catecholamine biosynthetic enzymes tyrosine hydroxylase (TH) and dopamine-beta-hydroxylase (DBH). All cells in the fetal rat bowel at Day E11 that express neural markers also express TH immunoreactivity. The primitive TC cells also express the immunoreactivities of neural cell adhesion molecule (N-CAM), neuropeptide Y (NPY), and nerve growth factor (NGF) receptor (and NGF receptor mRNA). By Day E12 TC cells are found along the vagal pathway and throughout the entire preumbilical bowel. At this age TC cells acquire additional characteristics, including MAP 2 and synaptophysin immunoreactivities and acetylcholinesterase activity, which indicate that they continue to mature as neurons. In addition, TC cells of the rat are immunostained at Day E12 by the NC-1 monoclonal antibody, which in rats labels multiple cell types including migrating cells of neural crest origin. Despite their neural properties, at least some TC cells divide and therefore are neural precursors and not terminally differentiated neurons. At Day E10 TH mRNA-containing cells were not detected by in situ hybridization; however, by Day E11 TH mRNA was detected in sympathetic ganglia and in scattered cells in the mesenchyme of the foregut and vagal pathway. At this age, the number of enteric and vagal cells containing TH mRNA is about 30% less than the number of cells containing TH immunoreactivity in adjacent sections. The ratio of TH mRNA-containing cells to TH-immunoreactive vagal and enteric cells is even less at Day E12, especially in more caudal regions of the preumbilical bowel. A similar decline in the ratio of TH mRNA-containing to TH-immunoreactive cells was not observed in sympathetic ganglia. After Day E12 TH mRNA cannot be detected in enteric or vagal cells by in situ hybridization; nevertheless, TH immunoreactivity continues to be present through Day E14. DBH, NPY, and NGF receptor immunoreactivities are expressed by TH-immunoreactive transitional cells in the fetal rat gut after TH mRNA is no longer detectable.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Avian neural crest cells from the vagal (somite level 1-7) and the sacral (somite level 28 and posterior) axial levels migrate into the gut and differentiate into the neurons and glial cells of the enteric nervous system. Neural crest cells that emigrate from the cervical and thoracic levels stop short of the dorsal mesentery and do not enter the gut. In this study we tested the hypothesis that neural crest cells derived from the sacral level have cell-autonomous migratory properties that allow them to reach and invade the gut mesenchyme. We heterotopically grafted neural crest cells from the sacral axial level to the thoracic level and vice versa and observed that the neural crest cells behaved according to their new position, rather than their site of origin. Our results show that the environment at the sacral level is sufficient to allow neural crest cells from other axial levels to enter the mesentery and gut mesenchyme. Our study further suggests that at least two environmental conditions at the sacral level enhance ventral migration. First, sacral neural crest cells take a ventral rather than a medial-to-lateral path through the somites and consequently arrive near the gut mesenchyme many hours earlier than their counterparts at the thoracic level. Our experimental evidence reveals only a narrow window of opportunity to invade the mesenchyme of the mesentery and the gut, so that earlier arrival assures the sacral neural crest of gaining access to the gut. Second, the gut endoderm is more dorsally situated at the sacral level than at the thoracic level. Thus, sacral neural crest cells take a more direct path to the gut than the thoracic neural crest, and also their target is closer to the site from which they initiate migration. In addition, there appears to be a barrier to migration at the thoracic level that prevents neural crest cells at that axial level from migrating ventral to the dorsal aorta and into the mesentery, which is the portal to the gut.  相似文献   

12.
The enteric nervous system arises mainly from vagal and sacral neural crest cells that colonise the gut between 9.5 and 14 days of development in mice. Using the Cre-LoxP system, we removed beta1 integrins in the neural crest cells when they emerge from the neural tube. beta1-null enteric neural crest cells fail to colonise the gut completely, leading to an aganglionosis of the descending colon, which resembles the human Hirschsprung's disease. Moreover, beta1-null enteric neural crest cells form abnormal aggregates in the gut wall, leading to a severe alteration of the ganglia network organisation. Organotypic cultures of gut explants reveal that beta1-null enteric neural crest cells show impaired adhesion on extracellular matrix and enhanced intercellular adhesion properties. They display migration defects in collagen gels and gut tissue environments. We also provide evidence that beta1 integrins are required for the villi innervation in the small intestine. Our findings highlight the crucial roles played by beta1 integrins at various steps of enteric nervous system development.  相似文献   

13.
J Fontaine-Perus 《Peptides》1984,5(2):195-200
The distribution of the VIP containing structures was studied in the gut and in the paravertebral sympathetic ganglia of the quail and chick embryos by immunocytochemistry. In the gut, development of peptidergic nerves followed a craniocaudal gradient. Immunoreactive fibres were first visible in the oesophagus at day 9 in the quail and day 10 in the chick, at 12 days they extended over the whole length of the gut. Cell bodies were localized at day 9 in the foregut and observed in the mid- and hind-gut just before hatching. Transplantations on the chorioallantoic membrane of fragments of various parts of the digestive tract clearly demonstrated that VIP nerve cell bodies belonged to the intrinsic innervation of the gut. Besides the gut, sympathetic paravertebral ganglia contained cells with VIP immunoreactivity detected at day 9 and 10 in quail and chick respectively. In order to find out whether VIP containing neurons differentiated normally in chick embryos in which quail neural crest cells had been implanted at an early stage of development we looked for the appearance of peptidergic neurones in the following situations: when the quail neural primordium had been grafted orthotopically and isochronically into chick host (1) at the adrenomedullary (somites 18-24) and (2) at the vagal (somites 1-7) levels of the neural axis. In all conditions VIP immunoreactivity was observed in quail cells located either in the sympathetic paravertebral ganglia of the trunk at the level of the graft or in the enteric ganglia according to the graft was made at the adrenomedullary and vagal levels respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The enteric nervous system arises from vagal (caudal hindbrain) and sacral level neural crest-derived cells that migrate into and along the developing gut. Data from previous studies have suggested that (i) there may be gradients along the gut that induce the caudally directed migration of vagal enteric neural precursors (ENPs), (ii) exposure to the caecum might alter the migratory ability of vagal ENPs and (iii) Sema3A might regulate the entry into the hindgut of ENPs derived from sacral neural crest. Using co-cultures we show that there is no detectable gradient of chemoattractive molecules along the pre-caecal gut that specifically promotes the caudally directed migration of vagal ENPs, although vagal ENPs migrate faster caudally than rostrally along explants of hindgut. Exposure to the caecum did not alter the rate at which ENPs colonized explants of hindgut, but it did alter the ability of ENPs to colonize the midgut. The co-cultures also revealed that there is localized expression of a repulsive cue in the distal hindgut, which might delay the entry of sacral ENPs. We show that Sema3A is expressed by the hindgut mesenchyme and its receptor, neuropilin-1, is expressed by migrating ENPs. Furthermore, there is premature entry of sacral ENPs and extrinsic axons into the distal hindgut of fetal mice lacking Sema3A. These data show that Sema3A expressed by the distal hindgut regulates the entry of sacral ENPs and extrinsic axons into the hindgut. ENPs did not express neuropilin-2 and there was no detectable change in the timetable by which ENPs colonize the gut in mice lacking neuropilin-2.  相似文献   

15.
The enteric nervous system (ENS) is derived from vagal and sacral neural crest cells (NCC). Within the embryonic avian gut, vagal NCC migrate in a rostrocaudal direction to form the majority of neurons and glia along the entire length of the gastrointestinal tract, whereas sacral NCC migrate in an opposing caudorostral direction, initially forming the nerve of Remak, and contribute a smaller number of ENS cells primarily to the distal hindgut. In this study, we have investigated the ability of vagal NCC, transplanted to the sacral region of the neuraxis, to colonise the chick hindgut and form the ENS in an experimentally generated hypoganglionic hindgut in ovo model. Results showed that when the vagal NC was transplanted into the sacral region of the neuraxis, vagal-derived ENS precursors immediately migrated away from the neural tube along characteristic pathways, with numerous cells colonising the gut mesenchyme by embryonic day (E) 4. By E7, the colorectum was extensively colonised by transplanted vagal NCC and the migration front had advanced caudorostrally to the level of the umbilicus. By E10, the stage at which sacral NCC begin to colonise the hindgut in large numbers, myenteric and submucosal plexuses in the hindgut almost entirely composed of transplanted vagal NCC, while the migration front had progressed into the pre-umbilical intestine, midway between the stomach and umbilicus. Immunohistochemical staining with the pan-neuronal marker, ANNA-1, revealed that the transplanted vagal NCC differentiated into enteric neurons, and whole-mount staining with NADPH-diaphorase showed that myenteric and submucosal ganglia formed interconnecting plexuses, similar to control animals. Furthermore, using an anti-RET antibody, widespread immunostaining was observed throughout the ENS, within a subpopulation of sacral NC-derived ENS precursors, and in the majority of transplanted vagal-to-sacral NCC. Our results demonstrate that: (1) a cell autonomous difference exists between the migration/signalling mechanisms used by sacral and vagal NCC, as transplanted vagal cells migrated along pathways normally followed by sacral cells, but did so in much larger numbers, earlier in development; (2) vagal NCC transplanted into the sacral neuraxis extensively colonised the hindgut, migrated in a caudorostral direction, differentiated into neuronal phenotypes, and formed enteric plexuses; (3) RET immunostaining occurred in vagal crest-derived ENS cells, the nerve of Remak and a subpopulation of sacral NCC within hindgut enteric ganglia.  相似文献   

16.
Neural crest precursors to the autonomic nervous system form different derivatives depending upon their axial level of origin; for example, vagal, but not trunk, neural crest cells form the enteric ganglia of the gut. Here, we show that Slit2 is expressed at the entrance of the gut, which is selectively invaded by vagal, but not trunk, neural crest. Accordingly, only trunk neural crest cells express Robo receptors. In vivo and in vitro experiments demonstrate that trunk, not vagal, crest cells avoid cells or cell membranes expressing Slit2, thereby contributing to the differential ability of neural crest populations to invade and innervate the gut. Conversely, exposure to soluble Slit2 significantly increases the distance traversed by trunk neural crest cells. These results suggest that Slit2 can act bifunctionally, both repulsing and stimulating the motility of trunk neural crest cells.  相似文献   

17.
18.
Periocular mesenchyme (PM) is a mesencephalic neural crest derived cell population which as a result of an interaction with the retinal pigment epithelium forms the scleral cartilage of the avian eye. Enteric neurons are derived from vagal crest cells which invade the gut. To study factors which regulate neuronal differentiation, we investigated whether the gut could direct neurogenesis in PM, a cell population that does not produce neurons in vivo. We report here that PM cultured in the presence of aneural chick hindgut on the chorioallantoic membrane (CAM), invaded the gut and formed large numbers of neurons. These were localized in enteric ganglia and contained neurofilament immunoreactivity, vasoactive intestinal peptide immunoreactivity, and somatostatin immunoreactivity. In the control PM cultured alone on the CAM, a small number of cells contained neurofilament immunoreactivity but lacked the appearance of mature neurons.  相似文献   

19.
To permit a more detailed analysis of neural crest cell migratory pathways in the chick embryo, neural crest cells were labelled with a nondeleterious membrane intercalating vital dye, DiI. All neural tube cells with endfeet in contact with the lumen, including premigratory neural crest cells, were labelled by pressure injecting a solution of DiI into the lumen of the neural tube. When assayed one to three days later, migrating neural crest cells, motor axons, and ventral root cells were the only cells types external to the neural tube labelled with DiI. During the neural crest cell migratory phase, distinctly labelled cells were found along: (1) a dorsolateral pathway, under the epidermis, as well adjacent to and intercalating through the dermamyotome; and (2) a ventral pathway, through the rostral portion of each sclerotome and around the dorsal aorta as described previously. In contrast to those cells migrating through the sclerotome, labelled cells on the dorsolateral pathway were not segmentally arranged along the rostrocaudal axis. DiI-labelled cells were observed in all truncal neural crest derivatives, including subepidermal presumptive pigment cells, dorsal root ganglia, and sympathetic ganglia. By varying the stage at which the injection was performed, neural crest cell emigration at the level of the wing bud was shown to occur from stage 13 through stage 22. In addition, neural crest cells were found to populate their derivatives in a ventral-to-dorsal order, with the latest emigrating cells migrating exclusively along the dorsolateral pathway.  相似文献   

20.
The ENS resembles the brain and differs both physiologically and structurally from any other region of the PNS. Recent experiments in which crest cell migration has been studied with DiI, a replication-deficient retrovirus, or antibodies that label cells of neural crest origin, have confirmed that both the avian and mammalian bowel are colonized by émigrés from the sacral as well as the vagal level of the neural crest. Components of the extracellular matrix, such as laminin, may play roles in enteric neural and glial development. The observation that an overabundance of laminin develops in the presumptive aganglionic region of the gut in Is/Is mutant mice and is associated with the inability of crest-derived cells to colonize this region of the bowel has led to the hypothesis that laminin promotes the development of crest-derived cells as enteric neurons. Premature expression of a neuronal phenotype would cause crest-derived cells to cease migrating before they complete the colonization of the gut. The acquisition by crest-derived cells of a nonintegrin, nervespecific, 110 kD laminin-binding protein when they enter the bowel may enable these cells to respond to laminin differently from their pre-enteric migrating predecessors. Crest-derived cells migrating along the vagal pathway to the mammalian gut are transiently catecholaminergic (TC). This phenotype appears to be lost rapidly as the cells enter the bowel and begin to follow their program of terminal differentiation. The appearance and disappearance of TC cells may thus be an example of the effects of the enteric microenvironment on the differentiation of crest-derived cells in situ. Crest-derived cells can be isolated from the enteric microenvironment by immunoselection, a method that takes advantage of the selective expression on the surfaces of crest-derived cells of certain antigens. One neurotrophin, NT-3, promotes the development of enteric neurons and glia in vitro. Because trkC is expressed in the developing and mature gut, it seems likely that NT-3 plays a critical role in the development of the ENS in situ. Although the factors that are responsible for the development of the unique properties of the ENS remain unknown, progress made in understanding enteric neuronal development has recently accelerated. The application of new techniques and recently developed probes suggest that the accelerated pace of discovery in this area can be expected to continue. © 1993 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号