首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
The red alga Polysiphonia morrowii, native to the North Pacific (Northeast Asia), has recently been reported worldwide. To determine the origin of the French and Argentine populations of this introduced species, we compared samples from these two areas with samples collected in Korea and at Hakodate, Japan, the type locality of the species. Combined analyses of chloroplastic (rbcL) and mitochondrial (cox1) DNA revealed that the French and Argentine populations are closely related and differ substantially from the Korean and Japanese populations. The genetic structure of P. morrowii populations from South Atlantic and North Atlantic, which showed high haplotype diversity compared with populations from the North Pacific, suggested the occurrence of multiple introduction events from areas outside of the so‐called native regions. Although similar, the French and Argentine populations are not genetically identical. Thus, the genetic structure of these two introduced areas may have been modified by cryptic and recurrent introduction events directly from Asia or from other introduced areas that act as introduction relays. In addition, the large number of private cytoplasmic types identified in the two introduced regions strongly suggests that local populations of P. morrowii existed before the recent detection of these invasions. Our results suggest that the most likely scenario is that the source population(s) of the French and Argentine populations was not located only in the North Pacific and/or that P. morrowii is a cryptogenic species.  相似文献   

2.
The coastal mosquito Aedes togoi occurs more or less continuously from subarctic to subtropic zones along the coasts of the Japanese islands and the East Asian mainland. It occurs also in tropical Southeast Asia and the North American Pacific coast, and the populations there are thought to have been introduced from Japan by ship. To test this hypothesis, the genetic divergence among geographic populations of A. togoi was studied using one mitochondrial and three nuclear gene sequences. We detected 71 mitochondrial haplotypes forming four lineages, with high nucleotide diversity around temperate Japan and declining towards peripheral ranges. The major lineage (L1) comprised 57 haplotypes from temperate and subarctic zones in Japan and Southeast Asia including southern China and Taiwan. Two other lineages were found from subtropical islands (L3) and a subarctic area (L4) of Japan. The Canadian population showed one unique haplotype (L2) diverged from the other lineages. In the combined nuclear gene tree, individuals with mitochondrial L4 haplotypes diverged from those with the other mitochondrial haplotypes L1—L3; although individuals with L1—L3 haplotypes showed shallow divergences in the nuclear gene sequences, individuals from Southeast Asia and Canada each formed a monophyletic group. Overall, the genetic composition of the Southeast Asian populations was closely related to that of temperate Japanese populations, suggesting recent gene flow between these regions. The Canadian population might have originated from anthropogenic introduction from somewhere in Asia, but the possibility that it could have spread across the Beringian land bridge cannot be ruled out.  相似文献   

3.
In depth genetic comparisons of populations of Cutleria multifida (Tilopteridales, Phaeophyceae) collected from Europe, the northwestern Pacific Ocean, Australia and New Zealand using the DNA sequences of four gene regions (the mitochondrial cox2 and cox3 genes, the intergeneric spacer region adjacent to cox3, and the open reading frame) suggested that the northwestern European and Japanese populations were considerably greater in terms of their genetic divergence than Mediterranean, Australian or New Zealand populations. The haplotypes of the populations in northwestern European (distribution range including the type locality, seven haplotypes) and Japanese populations (seven haplotypes) were unique except for one shared haplotype. There were weak but positive correlations between the geographical distance and the genetic divergence among northwestern European and Japanese populations. Moreover, both female and male gametophytes occurred in eight of the nine Japanese localities, suggesting Japanese populations showed normal sexual heteromorphic life history of the species. In light of these results, it appears that Japanese populations were native to the area despite earlier hypothesis. In contrast, Australian and New Zealand populations were composed of only one haplotype that is very close to those found in northwestern Europe and Japan, suggesting a recent introduction history from Europe (or from northeastern Asia via Europe) by ship transport to Australia and New Zealand. The Mediterranean populations included two haplotypes identical to those found in northwestern Europe and Japan, and it is suggestive of transoceanic introductions of some populations between Mediterranean and Japanese coasts.  相似文献   

4.
Aim To explore the potential of genetic processes and mating systems to influence successful plant invasions, we compared genetic diversity of the highly invasive tropical treelet, Miconia calvescens, in nine invasive populations and three native range populations. Specifically, we tested how genetic diversity is partitioned in native and invaded regions, which have different invasion histories (multiple vs. single introductions). Lastly, we infer how levels of inbreeding in different regions impact invasion success. Location Invaded ranges in the Pacific (Hawaii, Tahiti, New Caledonia) and Australia and native range in Costa Rica. Methods Genetic diversity was inferred by analysing variation at nine microsatellite loci in 273 individuals from 13 populations of M. calvescens. Genetic structure was assessed using amova , isolation by distance (IBD) within regions, a Bayesian clustering approach, and principal coordinates analysis. Results Microsatellite analysis revealed that invaded regions exhibit low levels of allelic richness and genetic diversity with few private alleles. To the contrary, in the native range, we observed high levels of allelic richness, high heterozygosity and 78% of all private alleles. Surprisingly, despite evident genetic bottlenecks in all invasive regions, similarly high levels of inbreeding were detected in both invasive and native ranges (FIS: 0.345 and 0.399, respectively). Bayesian clustering analysis showed a lack of geographical structure in the Pacific and evidence of differing invasion histories between the Pacific and Australia. While Pacific populations are derived from a single introduction to the region, multiple introductions have taken place in Australia from different source regions. Main conclusions Multiple introductions have not resulted in increased genetic diversity for M. calvescens invasions. Moreover, similar inbreeding levels between native and invaded ranges suggests that there is no correlation between levels of inbreeding and levels of standing genetic diversity for M. calvescens. Overall, our results show that neither inbreeding nor low genetic diversity is an impediment to invasion success.  相似文献   

5.
Aim We examined the phylogeography of the cold‐temperate macroalgal species Fucus distichus L., a key foundation species in rocky intertidal shores and the only Fucus species to occur naturally in both the North Pacific and the North Atlantic. Location North Pacific and North Atlantic oceans (42° to 77° N). Methods We genotyped individuals from 23 populations for a mitochondrial DNA (mtDNA) intergenic spacer (IGS) (n = 608) and the cytochrome c oxidase subunit I (COI) region (n = 276), as well as for six nuclear microsatellite loci (n = 592). Phylogeographic structure and connectivity were assessed using population genetic and phylogenetic network analyses. Results IGS mtDNA haplotype diversity was highest in the North Pacific, and divergence between Pacific haplotypes was much older than that of the single cluster of Atlantic haplotypes. Two ancestral Pacific IGS/COI clusters led to a widespread Atlantic cluster. High mtDNA and microsatellite diversities were observed in Prince William Sound, Alaska, 11 years after severe disturbance by the 1989 Exxon Valdez oil spill. Main conclusions At least two colonizations occurred from the older North Pacific populations to the North Atlantic between the opening of the Bering Strait and the onset of the Last Glacial Maximum. One colonization event was from the Japanese Archipelago/eastern Aleutians, and a second was from the Alaskan mainland around the Gulf of Alaska. Japanese populations probably arose from a single recolonization event from the eastern Aleutian Islands before the North Pacific–North Atlantic colonization. In the North Atlantic, the Last Glacial Maximum forced the species into at least two known glacial refugia: the Nova Scotia/Newfoundland (Canada) region and Andøya (northern Norway). The presence of two private haplotypes in the central Atlantic suggests the possibility of colonization from other refugia that are now too warm to support F. distichus. With the continuing decline in Arctic ice cover as a result of global climate change, renewed contact between North Pacific and North Atlantic populations of Fucus species is expected.  相似文献   

6.
Reconstructing historical colonization pathways of an invasive species is critical for uncovering factors that determine invasion success and for designing management strategies. The American bullfrog (Lithobates catesbeianus) is endemic to eastern North America, but now has a global distribution and is considered to be one of the worst invaders in the world. In Montana, several introduced populations have been reported, but little is known of their sources and vectors of introduction and secondary spread. We evaluated the genetic composition of introduced populations at local (Yellowstone River floodplain) and regional (Montana and Wyoming) scales in contrast to native range populations. Our objectives were to (1) estimate the number of introductions, (2) identify probable native sources, (3) evaluate genetic variation relative to sources, and (4) characterize properties of local‐ and regional‐scale spread. We sequenced 937 bp of the mitochondrial cytochrome b locus in 395 tadpoles collected along 100 km of the Yellowstone River, from three additional sites in MT and a proximate site in WY. Pairwise ΦST revealed high divergence among nonnative populations, suggesting at least four independent introductions into MT from diverse sources. Three cyt b haplotypes were identical to native haplotypes distributed across the Midwest and Great Lakes regions, and AMOVA confirmed the western native region as a likely source. While haplotype (Hd = 0.69) and nucleotide diversity (π = 0.005) were low in introduced bullfrogs, the levels of diversity did not differ significantly from source populations. In the Yellowstone, two identified haplotypes implied few introduction vectors and a significant relationship between genetic and river distance was found. Evidence for multiple invasions and lack of subsequent regional spread emphasizes the importance of enforcing legislation prohibiting bullfrog importation and the need for continuing public education to prevent transport of bullfrogs in MT. More broadly, this study demonstrates how genetic approaches can reveal key properties of a biological invasion to inform management strategies.  相似文献   

7.
Sardines (Sardinops spp.) occupy temperate upwelling zones in the coastal regions of the Indian and Pacific Oceans, including locations in Japan, California, Chile, Australia, and South Africa. East and West Pacific populations are separated by vast expanses of open ocean, and northern and southern hemisphere populations are separated by tropical waters which are lethal to sardines. The relative importance of these barriers has been the focus of a longstanding debate between vicariance and dispersal schools in biogeography. Comparisons of a 500 bp fragment of the mitochondrial (mt) DNA control region reveal strong geographic structuring of mtDNA lineages but shallow divergence both within and between regional populations. Regional populations are related to one another in a stepping-stone pattern, the apparent result of a series of Pleistocene dispersal events around the continental margins of the Indian-Pacific Basin. These mtDNA data, combined with an electrophoretic survey of variability at 34 nuclear loci (Grant and Leslie 1996), indicate that the five regional forms of Sardinops (considered separate taxa by most authorities) probably diverged within 500,000 years BP, a much shorter timeframe than predicted by vicariance models based on plate tectonics. High mtDNA haplotype diversity, coupled with an excess of rare alleles in the protein electrophoretic dataset, may indicate exponential growth from a small ancestral population. The mtDNA and allozyme data are concordant with climate records and fossil evidence in portraying regional populations as recent, unstable, and ephemeral. Regional populations of sardines have probably been extinguished and recolonized over short evolutionary timescales in response to changes in climate and the oceanography of coastal upwelling zones.  相似文献   

8.

Aim

Invasive species are predicted to experience a reduction in genetic diversity during the introduction process because of founder effects, yet they are able to successfully establish in new regions and outcompete the native biota. Admixture has been proposed as a potential solution to this genetic paradox. We adopted a phylogeographic approach to investigate the invasion history of the delicate skink ( Lampropholis delicata) in the Pacific region and test the hypothesis that admixture is important for the success of biological invasions.

Location

Eastern Australia and the Pacific region (Lord Howe Island, New Zealand, Hawaii).

Methods

We obtained mitochondrial DNA sequence data ( ND2, ND4) from across the native Australian range (238 samples, 120 populations) and 371 samples from the introduced range of L. delicata. Genetic distances and Analysis of molecular variance (AMOVA) were used to examine the level of genetic variation across the native and introduced ranges.

Results

Fourteen haplotypes were evident in the introduced range (1 in Hawaii, 7 in New Zealand, 7 in Lord Howe Island), with a shared haplotype present in both New Zealand and Lord Howe Island. Five source regions were identified (Brisbane, Tenterfield, Border Ranges, Yamba‐Coffs Harbour, Sydney) from across four distinct native‐range genetic lineages. The Hawaiian population stems from a single introduction from Brisbane, whereas one or more introductions from the Tenterfield region led to the New Zealand populations. Multiple introductions from across all five source regions have resulted in extreme admixture (up to 8.3% sequence divergence) within Lord Howe Island.

Main Conclusions

L. delicata introductions are capable of being successful both in the presence and absence of admixture. Contrary to the predictions of the sequential two‐step model, the presence of admixture was not related to the time since initial introduction. We suggest that the importance of admixture in determining the success of biological invasions has been overemphasized.
  相似文献   

9.
Excirolana braziliensis is a coastal intertidal isopod with a broad distribution spanning the Atlantic and Pacific tropical and temperate coasts of the American continent. Two separate regional studies (one in Panama and one in Chile) revealed the presence of highly genetically divergent lineages, implying that this taxon constitutes a cryptic species complex. The relationships among the lineages found in these two different regions and in the rest of the distribution, however, remain unknown. To better understand the phylogeographic patterns of E. braziliensis, we conducted phylogenetic analyses of specimens from much of its entire range. We obtained DNA sequences for fragments of four mitochondrial genes (16S rDNA, 12S rDNA, COI, and Cytb) and also used publicly available sequences. We conducted maximum likelihood and Bayesian phylogenetic reconstruction methods. Phylogeographic patterns revealed the following: (1) new highly divergent lineages of E. braziliensis; (2) three instances of Atlantic–Pacific divergences, some of which appear to predate the closure of the Isthmus of Panama; (3) the distributional limit of highly divergent lineages found in Brazil coincides with the boundary between two major marine coastal provinces; (4) evidence of recent long‐distance dispersal in the Caribbean; and (5) populations in the Gulf of California have closer affinities with lineages further south in the Pacific, which contrasts with the closer affinity with the Caribbean reported for other intertidal organisms. The high levels of cryptic diversity detected also bring about challenges for the conservation of this isopod and its fragile environment, the sandy shores. Our findings underscore the importance of comprehensive geographic sampling for phylogeographic and taxonomical studies of broadly distributed putative species harboring extensive cryptic diversity.  相似文献   

10.
Bryde’s whales (Balaenoptera brydei) differ from other typical baleen whale species because they are restricted to tropical and warm temperate waters in major oceans, and frequent trans-equatorial movement has been suggested for the species. We tested this hypothesis by analyzing genetic variation at 17 microsatellite loci (N = 508) and 299 bp of mitochondrial DNA (mtDNA) control region sequences (N = 472) in individuals obtained from the western North Pacific, South Pacific, and eastern Indian Ocean. Combined use of microsatellite and mtDNA markers allowed us to distinguish between contemporary gene flow and ancestral polymorphism and to describe sex-specific philopatry. A high level of genetic diversity was found within the samples. Both nuclear and mtDNA markers displayed similar population structure, indicating a lack of sex-specific philopatry. Spatial structuring was detected using both frequency-based population parameters and individual-based Bayesian approaches. Whales in the samples from different oceanic regions came from genetically distinct populations with evidence of limited gene flow. We observed low mtDNA sequence divergence among populations and a lack of concordance between geographic and phylogenetic position of mtDNA haplotypes, suggesting recent separation of populations rather than frequent trans-equatorial and inter-oceanic movement. We conclude that current gene flow between Bryde’s whale populations is low and that effective management actions should treat them as separate entities to ensure continued existence of the species.  相似文献   

11.
The recent development of Pacific oyster (Crassostrea gigas) SNP genotyping arrays has allowed detailed characterisation of genetic diversity and population structure within and between oyster populations. It also raises the potential of harnessing genomic selection for genetic improvement in oyster breeding programmes. The aim of this study was to characterise a breeding population of Australian oysters through genotyping and analysis of 18 027 SNPs, followed by comparison with genotypes of oyster sampled from Europe and Asia. This revealed that the Australian populations had similar population diversity (HE) to oysters from New Zealand, the British Isles, France and Japan. Population divergence was assessed using PCA of genetic distance and revealed that Australian oysters were distinct from all other populations tested. Australian Pacific oysters originate from planned introductions sourced from three Japanese populations. Approximately 95% of these introductions were from geographically, and potentially genetically, distinct populations from the Nagasaki oysters assessed in this study. Finally, in preparation for the application of genomic selection in oyster breeding programmes, the strength of LD was evaluated and subsets of loci were tested for their ability to accurately infer relationships. Weak LD was observed on average; however, SNP subsets were shown to accurately reconstitute a genomic relationship matrix constructed using all loci. This suggests that low‐density SNP panels may have utility in the Australian population tested, and the findings represent an important first step towards the design and implementation of genomic approaches for applied breeding in Pacific oysters.  相似文献   

12.
Caprella mutica (Crustacea, Amphipoda) has been widely introduced to non-native regions in the last 40 years. Its native habitat is sub-boreal northeast Asia, but in the Northern Hemisphere, it is now found on both coasts of North America, and North Atlantic coastlines of Europe. Direct sequencing of mitochondrial DNA (cytochrome c oxidase subunit I gene) was used to compare genetic variation in native and non-native populations of C. mutica . These data were used to investigate the invasion history of C. mutica and to test potential source populations in Japan. High diversity (31 haplotypes from 49 individuals), but no phylogeographical structure, was identified in four populations in the putative native range. In contrast, non-native populations showed reduced genetic diversity (7 haplotypes from 249 individuals) and informative phylogeographical structure. Grouping of C. mutica populations into native, east Pacific, and Atlantic groups explained the most among-region variation (59%). This indicates independent introduction pathways for C. mutica to the Pacific and Atlantic coasts of North America. Two dominant haplotypes were identified in eastern and western Atlantic coastal populations, indicating several dispersal routes within the Atlantic. The analysis indicated that several introductions from multiple sources were likely to be responsible for the observed global distribution of C. mutica , but the pathways were least well defined among the Atlantic populations. The four sampled populations of C. mutica in Japan could not be identified as the direct source of the non-native populations examined in this study. The high diversity within the Japan populations indicates that the native range needs to be assessed at a far greater scale, both within and among populations, to accurately assess the source of the global spread of C. mutica .  相似文献   

13.
Gracilaria vermiculophylla (Ohmi) Papenf., an agar‐producing red alga introduced from northeast Asia to Europe and North America, is often highly abundant in invaded areas. To assay its genetic diversity and identify the putative source of invasive populations, we analyzed the mitochondrial cytochrome c oxidase subunit I (cox1) gene from 312 individuals of G. vermiculophylla collected in 37 native and 32 introduced locations. A total of 19 haplotypes were detected: 17 in northeast Asia and three in Europe and eastern and western North America, with only one shared among all regions. The shared haplotype was present in all introduced populations and in ~99% of individuals in the introduced areas. This haplotype was also found at three native locations in east Korea, west Japan, and eastern Russia. Both haplotype and nucleotide diversities were extremely low in Europe and North America compared to northeast Asia. Our study indicates that the East Sea/Sea of Japan is a likely donor region of the invasive populations of G. vermiculophylla in the east and west Atlantic and the east Pacific.  相似文献   

14.
The Northern Fulmar (Fulmarus glacialis) is a common tube‐nosed seabird with a disjunct Holarctic range. Taxonomic divisions within the Northern Fulmar have historically been muddled by geographical variation notably including highly polymorphic plumage. Recent molecular analyses (i.e., DNA barcoding) have suggested that genetic divergence between Atlantic and Pacific populations could be on par with those typically observed between species. We employ a multigene phylogenetic analysis to better explore the level of genetic divergence between these populations and to test an old hypothesis on the origin of the modern distribution of color morphs across their range. Additionally, we test whether mutations in the melanocortin‐1 receptor gene (MC1R) are associated with dark plumage in the Northern Fulmar. We confirmed that mitochondrial lineages in the Atlantic and Pacific populations are highly divergent, but nuclear markers revealed incomplete lineage sorting. Genetic divergence between these populations is consistent with that observed between many species of Procellariiformes and we recommend elevating these two forms to separate species. We also find that MC1R variation is not associated with color morph but rather is better explained by geographical divergence.  相似文献   

15.
Keeney DB  Heist EJ 《Molecular ecology》2006,15(12):3669-3679
Although many coastal shark species have widespread distributions, the genetic relatedness of worldwide populations has been examined for few species. The blacktip shark, (Carcharhinus limbatus), inhabits tropical and subtropical coastal waters throughout the world. In this study, we examined the genetic relationships of blacktip shark populations (n = 364 sharks) throughout the majority of the species' range using the entire mitochondrial control region (1067-1070 nucleotides). Two geographically distinct maternal lineages (western Atlantic, Gulf of Mexico, and Caribbean Sea clades, and eastern Atlantic, Indian, and Pacific Ocean clades) were identified and shallow population structure was detected throughout their geographic ranges. These findings indicate that a major population subdivision exists across the Atlantic Ocean, but not the Pacific Ocean. The historical dispersal of this widespread, coastal species may have been interrupted by the rise of the Isthmus of Panama. This scenario implies historical dispersal across the Pacific Ocean (supported by the recovery of the same common haplotype from the Philippines, Hawaii, and the Gulf of California reflecting recent/contemporary dispersal abilities) and an oceanic barrier to recent migration across the Atlantic. Genetic structure within the eastern Atlantic/Indo-Pacific (Phi(ST) = 0.612, P < 0.001) supports maternal philopatry throughout this area, expanding previous western Atlantic findings. Eastern Atlantic/Indo-Pacific C. limbatus control region haplotypes were paraphyletic to Carcharhinus tilstoni haplotypes in our maximum-parsimony analysis. The greater divergence of western Atlantic C. limbatus than C. tilstoni from eastern Atlantic/Indo-Pacific C. limbatus reflects the taxonomic uncertainty of western Atlantic C. limbatus.  相似文献   

16.
We provide mitochondrial sequence variation of the invasive fish Gambusia holbrooki from 24 European populations, from Portugal to Greece. Phylogeographic structure in Europe was compared with genetic data from native samples (USA) and historical records were reviewed to identify introduction routes. Overall, data agree with records of historical introductions and translocations, and indicate that the most abundant haplotype throughout Europe originated from North Carolina and corresponded to the first introduction in 1921 to Spain, being transferred to Italy in 1922 and to many countries afterwards. Our results also show that at least another independent introduction occurred first in France and subsequently from France to Greece. Haplotypes of G. affinis were not detected in our European sampling effort but historical records and other data suggest that this species was introduced to Italy in 1927 and it might be present. At the continental scale, there is less diversity in Europe than in North America, in agreement with the low number of introduced fish. At the local scale, some European populations gained diversity from multiple introductions and from “de novo” mutations.  相似文献   

17.
Aim This paper evaluates global collection records, evidence of anthropogenic transport methods, and experimental and distributional data relative to temperature requirements to understand the historical and potential dispersal of a well‐known genus of estuarine crab. Location The records analysed are from temperate and tropical coastal ocean areas. Methods The study is based primarily on literature analysis and examination of museum specimens. Results The human‐mediated successful global dispersal of the European shore crabs Carcinus maenas (Linnaeus, 1758) and C. aestuarii (Nardo, 1847) occurred in three major episodes: around 1800, in the 1850s–70s, and in the 1980s–90s. The nineteenth century introductions occurred through transport by ships (probably in hull fouling or in solid ballast), while the introductions in the 1980s could have occurred through a greater variety of dispersal mechanisms (ships’ hull fouling and seawater system fouling; fouling on semisubmersible drilling platforms; ballast water; transport with fisheries products intended for food or bait; scientific research; releases from aquaria maintained for educational or scientific purposes; or intentional non‐governmental releases for human food production). These introductions have resulted in Carcinus’ establishment in five temperate regions outside of its native Europe in Atlantic North America, Australia, South Africa, Japan and Pacific North America, while releases into tropical regions have not established populations. C. maenas’ range in both its native and introduced regions appears to be regulated by similar temperature parameters, enabling an assessment of its potential distribution. Main conclusions The second episode of Carcinus’ global dispersal, the period from the 1850s to 1870s, may be part of a broader surge of world‐wide invasions caused by an increase in shipping.  相似文献   

18.

Aim

Many species of ascidians are invasive and can cause both ecological and economic losses. Here, we describe risk assessment for nineteen ascidian species and predict coastal regions that are more vulnerable to arrival and expansion.

Location

Global.

Methods

We used ensemble niche modelling with three algorithms (Random Forest, Support Vector Machine and MaxEnt) to predict ecologically suitable areas and evaluated our predictions using independent (area under the curve—AUC) and dependent thresholds (true skill statistics—TSS). Environmental variables were maximum and the range of sea surface temperature, mean salinity and maximum chlorophyll. We used our niche modelling results and a modified invasibility index to compare invasion risk among 15 coastal regions.

Results

Currently, the most invaded regions are in temperate latitudes of the Northern Hemisphere and Temperate Australasia, which are regions most prone for new invasions. In the tropics, the West and Central Indo‐Pacific are two regions of strong concern, the former with high risk of primary invasion by Botryllus schlosseri and Didemnum perlucidum. In the Southern Hemisphere, the Southwest and Southeast Atlantic are most at risk, both subject to invasion by Botrylloides violaceus, Didemnum vexillum, Molgula manhattensis and Styela clava among others. Regions most at risk of expansion of established invasive species are the Central Indo‐Pacific, Northwest Pacific, Mediterranean and West Indo‐Pacific.

Main conclusions

All regions studied have areas that are suitable and connected to receive new ascidian introductions or that may permit the spread of already established species. Risk comparison of primary introductions and expansion of established introduced ascidians among regions will allow managers to prioritize species of concern for each region both for monitoring future introductions or to enforce control actions towards established species to decrease the risk of regional expansion.
  相似文献   

19.
Bottlenose dolphins (Tursiops truncatus) occupy a wide range of coastal and pelagic habitats throughout tropical and temperate waters worldwide. In some regions, "inshore" and "offshore" forms or ecotypes differ genetically and morphologically, despite no obvious boundaries to interchange. Around New Zealand, bottlenose dolphins inhabit 3 coastal regions: Northland, Marlborough Sounds, and Fiordland. Previous demographic studies showed no interchange of individuals among these populations. Here, we describe the genetic structure and diversity of these populations using skin samples collected with a remote biopsy dart. Analysis of the molecular variance from mitochondrial DNA (mtDNA) control region sequences (n = 193) showed considerable differentiation among populations (F(ST) = 0.17, Phi(ST) = 0.21, P < 0.001) suggesting little or no female gene flow or interchange. All 3 populations showed higher mtDNA diversity than expected given their small population sizes and isolation. To explain the source of this variation, 22 control region haplotypes from New Zealand were compared with 108 haplotypes worldwide representing 586 individuals from 19 populations and including both inshore and offshore ecotypes as described in the Western North Atlantic. All haplotypes found in the Pacific, regardless of population habitat use (i.e., coastal or pelagic), are more divergent from populations described as inshore ecotype in the Western North Atlantic than from populations described as offshore ecotype. Analysis of gene flow indicated long-distance dispersal among coastal and pelagic populations worldwide (except for those haplotypes described as inshore ecotype in the Western North Atlantic), suggesting that these populations are interconnected on an evolutionary timescale. This finding suggests that habitat specialization has occurred independently in different ocean basins, perhaps with Tursiops aduncus filling the ecological niche of the inshore ecotype in some coastal regions of the Indian and Western Pacific Oceans.  相似文献   

20.
Colpomenia peregrina is an annual brown macroalga found in temperate waters worldwide. To understand population differentiation and to reconstruct pathways of colonization/introduction, we analyzed variation in two mitochondrial protein-coding genes, cytochrome c oxidase subunit III (cox3) and ATP synthase F0 subunit 6 (atp6), and cp RuBisCO spacer. A total of 359 cox3, 342 atp6, and 38 RuBisCO spacer sequences from Colpomenia peregrina were obtained for samples collected at 28 sites from 12 countries. The combined cox3?+?atp6 sequences (1,231 bp) revealed 99 polymorphic sites and 69 haplotypes. An mt haplotype network revealed four distinct groups, separated by 7 to 26 mutation steps. NW Pacific populations were present in each group (but dominant in one), whereas SW Pacific and the Atlantic populations each were present in one group. The network and phylogenetic analyses, along with patterns of genetic diversity, suggested a NW Pacific center of origin, expanding first to the SW Pacific, then the NE Pacific, and most recently to the north Atlantic. A generalized skyline plot revealed a dramatic population expansion of the species ca. 20 kya.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号