首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The TVI cell line, derived from dorsal iris cells of adult newts ( Notophthalmus viridescens ), was investigated for the presence of crystallins. Since there is reason to believe that iris epithelial cells are the main sources of this cell line and since iris epithelial cells are known to convert into lens cells in primary cultures, it is possible that TVI cells also possess the capacity to synthesize crystallins, those proteins characteristic of lens cells. It is also possible, however, that the large number of passages gone through by TVI cells in the past has eliminated such differentiated synthetic capacity expressed in earlier generations. Our immunoelectrophoresis studies reveal the presence of small amounts of α and β crystallins, and the absence of γ crystallins in TVI cells. Furthermore, immunofluorescence observations demonstrate that a small number of cells comparable to lens epithelial cells in crystallin composition and morphology are present in TVI cultures. In view of the fact that in the amphibian lens, epithelial cells which retain proliferative activity accumulate α and β crystallins but not γ crystallins, while fiber cells which are devoid of proliferative activity accumulate all three classes of crystallins, the present results suggest that the TVI cell line has lost the capacity to maintain lens fiber cells, which are known to be present in primary culture of iris epithelial cells.  相似文献   

3.
During long-term cell culture of 8-day embryonic chick neural retina, lentoid bodies containing lens crystallins are developed. Although very low levels of crystallin can be detected in the embryonic neural retina, gross synthesis of each major crystallin class (α, anodal β, cathodal β, and δ) begins only after 12–16 days in culture. This occurs at least 10 days before lentoid bodies can be distinguished by eye. The concentration of each crystallin class was determined during lentoid development in cultures of both neural retina and lens epithelium. The proportions of crystallins in lentoid-containing cultures do not resemble those of embryonic lens fibres. Comparisons between two chick strains (N and Hy-1) differing in their growth rates revealed several differences in the crystallin compositions of lentoid bodies. These differences imply independent quantitative regulation for most or all of the crystallins.  相似文献   

4.
Crystallins are heterogeneous proteins classified into alpha, beta, and gamma families. Although crystallins were first identified as the major structural components of the ocular lens with a principal function to maintain lens transparency, further studies have demonstrated the expression of these proteins in a wide variety of tissues and cell types. Alpha crystallins (alpha A and alpha B) share significant homology with small heat shock proteins and have chaperone-like properties, including the ability to bind and prevent the precipitation of denatured proteins and to increase cellular resistance to stress-induced apoptosis. Stress-induced upregulation of crystallin expression is a commonly observed phenomenon and viewed as a cellular response mechanism against environmental and metabolic insults. However, several studies reported downregulation of crystallin gene expression in various models of glaucomatous nerodegeneration suggesting that that the decreased levels of crystallins may affect the survival properties of retinal ganglion cells (RGCs) and thus, be associated with their degeneration. This hypothesis was corroborated by increased survival of axotomized RGCs in retinas overexpressing alpha A or alpha B crystallins. In addition to RGC protective functions of alpha crystallins, beta and gamma crystallins were implicated in RGC axonal regeneration. These findings demonstrate the importance of crystallin genes in RGC survival and regeneration and further in-depth studies are necessary to better understand the mechanisms underlying the functions of these proteins in healthy RGCs as well as during glaucomatous neurodegeneration, which in turn could help in designing new therapeutic strategies to preserve or regenerate these cells.  相似文献   

5.
6.
The eye lens crystallins of the octopus Octopus dofleini were identified by sequencing abundant proteins and cDNAs. As in squid, the octopus crystallins have subunit molecular masses of 25-30 kDa, are related to mammalian glutathione S-transferases (GST), and are encoded in at least six genes. The coding regions and deduced amino acid sequences of four octopus lens cDNAs are 75-80% identical, while their non-coding regions are entirely different. Deduced amino acid sequences show 52-57% similarity with squid GST-like crystallins, but only 20-25% similarity with mammalian GST. These data suggest that the octopus and squid lens GST-like crystallin gene families expanded after divergence of these species. Northern blot hybridization indicated that the four octopus GST-like crystallin genes examined are lens-specific. Lens extracts showed about 40 times less GST activity using 1-chloro-2,4-dinitrobenzene as substrate than liver extracts of the octopus, indicating that the major GST-like crystallins are specialized for a lens structural role. A prominent 59-kDa crystallin polypeptide, previously observed in octopus but not squid and called omega-crystallin (Chiou, S.-H. (1988) FEBS Lett. 241, 261-264), has been identified as an aldehyde dehydrogenase. Since cytoplasmic aldehyde dehydrogenase is a major protein in elephant shrew lenses (eta-crystallin; Wistow, G., and Kim, H. (1991) J. Mol. Evol. 32, 262-269) the octopus aldehyde dehydrogenase crystallin provides the first example of a similar enzyme-crystallin in vertebrates and invertebrates. The use of detoxification stress proteins (GST and aldehyde dehydrogenase) as cephalopod crystallins indicates a common strategy for recruitment of enzyme-crystallins during the convergent evolution of vertebrate and invertebrate lenses. For historical reasons we propose that the octopus GST-like crystallins, like those of the squid, are called S-crystallins.  相似文献   

7.
Specific protein synthesis in the embryonic mouse lens was studied by immunofluorescence with antisera to adult mouse lens or crystallin fractions. Positive reactions were first detected in a few cells of the lens cup 18-24 hr after contact between optic vesicle and presumptive lens ectoderm had been established. During formation of the lens vesicle a rapidly increasing fraction of cells produced crystallins. At the time of detachment of the vesicle from the surface all cells of its posterior wall showed immunofluorescence. After fiber elongation became distinct cells of the anterior epithelium began to fluoresce and shortly afterwards the entire rudiment produced crystallins. The early reactions were due entirely to the presence of alpha-crystallin. Reactions were restricted to the lens. Thus, in the mouse as in other species crystallins were detectable by immunofluorescence in vivo only after lens morphogenesis was well underway and only in the lens rudiment itself. Cells first synthesizing crystallins always had an elongated shape and their nuclei were in a basal position. A few hours later mitotic cells displayed fluorescence. Taking into account earlier found relations between cell morphology and cell cycle phase, this indicates that alpha-crystallin is first demonstrable in the S-or early G-2 phase of the cell cycle, and that the start of its synthesis does not preclude continued cell replication. It is interesting that the cellular location, cell cycle phase, and developmental stage, in which crystallins first appear, are comparable in mouse and chick embryo. Yet, entirely different proteins are involved: alpha-crystallin in the first, delta-crystallin in the latter. Implications of this for our understanding of lens induction are discussed.  相似文献   

8.
9.
Taxon specific lens crystallins in vertebrates are either similar or identical with various metabolic enzymes. These bifunctional crystallins serve as structural protein in lens along with their catalytic role. In the present study, we have partially purified and characterized lens crystallin from Indian spiny-tailed lizard (Uromastyx hardwickii). We have found lactate dehydrogenase (LDH) activity in lens indicating presence of an enzyme crystallin with dual functions. Taxon specific lens crystallins are product of gene sharing or gene duplication phenomenon where a pre-existing enzyme is recruited as lens crystallin in addition to structural role. In lens, same gene adopts refractive role in lens without modification or loss of pre-existing function during gene sharing phenomenon. Apart from conventional role of structural protein, LDH activity containing crystallin in U. hardwickii lens is likely to have adaptive characteristics to offer protection against toxic effects of oxidative stress and ultraviolet light, hence justifying its recruitment. Taxon specific crystallins may serve as good models to understand structure–function relationship of these proteins.  相似文献   

10.
Lens crystallins isolated from the tadpole and frog lenses were compared with regard to the developmental changes of crystallin compositions. The major changes during the process of metamorphosis were (1) the total contents of alpha- and gamma-crystallins decrease from more than 70% to less than 60% and (2) one of the major beta-crystallin polypeptides increases from less than 1% to about 6% and (3) an amphibian-specific rho-crystallin also increases from about 6% to more than 10% of total soluble proteins of the lens. We have characterized the metamorphosis-dependent beta-crystallin polypeptide by peptide mapping and sequence determination of the protease-digested fragments. This polypeptide showed very high sequence homology to that of the major beta Bp-crystallin chain reported for the mammalian lenses. The changes of the relative abundance of various crystallins and the gradually-elevated levels of the expression of this beta Bp-like crystallin in the developing lens during metamorphosis may also have some bearing on the maintenance of lens stability in the adult frog lenses.  相似文献   

11.
Analysis of rat lens soluble proteins by analytical isoelectric focusing detected two inherited electrophoretic differences in low molecular weight (LM) crystallins from inbred strains of rats (Rattus norvegicus). The polymorphic lens crystallins were shown to be similar to a genetically variant LM crystallin, LEN-1, previously described in mice (Mus musculus) and encoded on chromosome 1, at a locus linked to Pep-3 (dipeptidase). Linkage analysis demonstrated that the rat crystallin locus was loosely linked to Pep-3 at a recombination distance of 38 +/- 4.5 U. These data suggest the conservation of a large chromosomal region during the evolution of Rodentia and support the hypothesis that the gamma-crystallins are evolving more rapidly than alpha- or beta-crystallins.  相似文献   

12.
13.
A crystallin was isolated from the homogenate of the Squid (Loligo pealii) lens by gel filtration on a Sepharose CL-6B (2.5 X 170 cm) column. Biochemical characterization showed it is a dimeric protein with a molecular weight of (5.1 +/- 0.4) X 10(4) and a Stokes' radius of 26A. Electrophoresis on a cellulose acetate membrane indicated it is a basic protein with an isoelectric point higher than 8.6. High resolution two-dimensional gel in 8 M urea/2% NP-40 resolved this crystallin into 6 charge isomers, each with a major subunit of molecular weight 29,000 daltons and a minor subunit of 27,000 daltons in a molar ratio of 3:1. The extreme susceptibility of the protein to denaturation and precipitation even at low temperature hampered further characterization of this crystallin under nondenaturing conditions. Amino acid analysis indicated it contains an unusually high content of methionine (12.8 mol%) which may have some bearing on the instability of this crystallin in vitro. Biochemical comparison of the squid crystallin with mammalian lens crystallins shows that it is a crystallin distinguishable from all reported vertebrate lens crystallins. A detailed study of this protein may shed light on the evolution of lens crystallins in general.  相似文献   

14.
Protein distribution patterns across eye lenses from the Asiatic toad Bufo gargarizans were investigated and individual crystallin classes characterised. Special fractionation that follows the growth mode of the lens was used to yield nine fractions corresponding to layers laid down at different chronological (developmental) stages. Proportions of soluble and insoluble crystallins within each fraction were measured by Bradford assay. Water‐soluble proteins in all fractions were separated by size‐exclusion HPLC and constituents of each class further characterised by electrophoresis, RP‐HPLC and MS analysis. In outer lens layers, α‐crystallin is the most abundant soluble protein but is not found in soluble proteins in the lens centre. Water‐soluble β‐crystallins also decrease from their highest level in the outer lens to negligible mounts in the central lens. The proportion of soluble γ‐crystallin increases significantly towards the lens centre where this is the only soluble protein present. Insoluble protein levels increase significantly towards the lens centre. In B. gargarizans lenses, as with other anurans, the predominant water‐soluble protein class is γ‐crystallin. No taxon‐specific crystallins were found. The relationship between the protein distribution patterns and the functional properties of the lens this species is discussed.  相似文献   

15.
In an attempt to understand amphibian crystallin gene regulation, we have isolated and partially characterized several genomic clones which hybridized to the gamma 1 cDNA probe from Rana temporaria. A complete sequence of one of these clones showed slight homology to the mammalian beta and gamma crystallins. The deduced amino acid sequence of the coding region and its alignment as a folding unit indicated that all the topologically equivalent residues involved in maintaining the protein folding pattern are highly conserved. Northern blot analysis of total RNAs derived from several adult tissues, including eye lens, suggested that an RNA of approximately 700 nucleotides long is present in lens, heart, spleen and embryos of later stages of development but not in retina, oocytes and embryos of early developmental stages.  相似文献   

16.
Animal model systems of senile cataract and lens crystallin stability are essential to understand the complex nature of lens transparency. Our aim in this study was to assess the long-lived Antarctic toothfish Dissostichus mawsoni (Norman) as a model system to understand long-term lens clarity in terms of solubility changes that occur to crystallins. We compared the toothfish with the mammalian model cow lens, dissecting each species’ lens into a cortex and nuclear region. In addition to crystallin distribution, we also assayed fatty acid (FA) composition by negative ion electrospray ionization mass spectrometry (ESI-MS). The majority of toothfish lens crystallins from cortex (90.4%) were soluble, whereas only a third (31.8%) from the nucleus was soluble. Crystallin solubility analysis by SDS-PAGE and immunoblots revealed that relative proportions of crystallins in both soluble and urea-soluble fractions were similar within each species examined and in agreement with previous reports for bovine lens. From our data, we found that both toothfish and cow crystallins follow patterns of insolubility that mirror each animals lens composition with more γ crystallin aggregation seen in the toothfish lens nucleus than in cow. Toothfish lens lipids had a large amount of polyunsaturated fatty acids that were absent in cow resulting in an unsaturation index (I U) four-fold higher than that of cow. We identified a novel FA with a molecular mass of 267 mass units in the lens epithelial layer of the toothfish that accounted for well over 50% of the FA abundance. The unidentified lipid in the toothfish lens epithelia corresponds to either an odd-chain (17 carbons) FA or a furanoid. We conclude that long-lived fishes are likely good animal models of lens crystallin solubility and may model post-translational modifications and solubility changes better than short-lived animal models.  相似文献   

17.
Over 95% of the dry mass of the eye lens consists of specialized proteins called crystallins. Aged lenses are subject to cataract formation, in which damage, cross-linking, and precipitation of crystallins contribute to a loss of lens clarity. Cataract is one of the major causes of blindness, and it is estimated that over 50,000,000 people suffer from this disability. Damage to lens crystallins appears to be largely attributable to the effects of UV radiation and/or various active oxygen species (oxygen radicals, 1O2, H2O2, etc.). Photooxidative damage to lens crystallins is normally retarded by a series of antioxidant enzymes and compounds. Crystallins which experience mild oxidative damage are rapidly degraded by a system of lenticular proteases. However, extensive oxidation and cross-linking severely decrease proteolytic susceptibility of lens crystallins. Thus, in the young lens the combination of antioxidants and proteases serves to prevent crystallin damage and precipitation in cataract formation. The aged lens, however, exhibits diminished antioxidant capacity and decreased proteolytic capabilities. The loss of proteolytic activity may actually be partially attributable to oxidative damage which proteases (like any other protein)_can sustain. We propose that the rate of crystallin damage increases as antioxidant capacity declines with age. The lower protease activity of aged lens cells may be insufficient to cope with such rates of crystallin damage, and denatured crystallins may begin to accumulate. As the concentration of oxidatively denatured crystallins rises, cross-linking reactions may produce insoluble aggregates which are refractive to protease digestion. Such a scheme could explain many events which are known to contribute to cataract formation, as well as several which have appeared to be unrelated. This hypothesis is also open to experimental verification and intervention.  相似文献   

18.
Lens crystallins and their genes: diversity and tissue-specific expression   总被引:10,自引:0,他引:10  
J Piatigorsky 《FASEB journal》1989,3(8):1933-1940
  相似文献   

19.
1. The ability of cell-free preparations from bovine lens to degrade fragments of alpha-crystallin has been studied. Crystallin fragments, produced by either chemical cleavage with cyanogen bromide or prolonged treatment with H2O2 and Cu2+ to produce hydroxyl radicals, were labelled with 125I and incubated with preparations obtained from lenses from animals of different age. 2. Results showed that the ability of the preparations obtained from the lens cores (the innermost part of the lens composed of enucleated non-dividing cells incapable of protein synthesis) to degrade crystallin fragments decreased with animal age. No such age-related correlation was obtained with preparations obtained from the cortex (the outer region of the lens surrounding the core). 3. The effect of incubation of the various lenticular preparations with H2O2 and Cu2+ on subsequent ability to catabolise crystallin fragments was also examined. Preparations from the oldest lenses were found to be the least resistant to free-radical attack. 4. The relative susceptibility of the crystallins and non-lenticular proteins to H2O2/Cu(2+)-mediated free-radical attack was examined. Not only were the various crystallins (alpha, beta and gamma) far more resistant to cleavage under these conditions, they also protected the non-lenticular proteins from free-radical-mediated attack. The comparative resistance of the crystallins to attack and their ability to protect other proteins appeared to be dependent on their structural integrity as prior denaturation with acid and/or cleavage with cyanogen bromide eliminated these properties. 5. It is suggested that crystallins (which show sequence homology to some heat-shock proteins) possess homeostatic functions which could protect other proteins (e.g. proteases) from certain forms of free-radical-mediated damage; crystallins may therefore be important in ageing in general where aberrant polypeptides accumulate.  相似文献   

20.
Low molecular weight peptides derived from the breakdown of crystallins have been reported in adult human lenses. The proliferation of these LMW peptides coincides with the earliest stages of cataract formation, suggesting that the protein cleavages involved may contribute to the aggregation and insolubilization of crystallins. This study reports the identification of 238 endogenous LMW crystallin peptides from the cortical extracts of four human lenses representing young, middle and old‐age human lenses. Analysis of the peptide terminal amino acids showed that Lys and Arg were situated at the C‐terminus with significantly higher frequency compared to other residues, suggesting that trypsin‐like proteolysis may be active in the lens cortical fiber cells. Selected reaction monitoring analysis of an endogenous αA‐crystallin peptide (αA57‐65) showed that the concentration of this peptide in the human lens increased gradually to middle age, after which the rate of αA57‐65 formation escalated significantly. Using 2D gel electrophoresis/nanoLC‐ESI‐MS/MS, 12 protein complexes of 40–150 kDa consisting of multiple crystallin components were characterized from the water soluble cortical extracts of an adult human lens. The detection of these protein complexes suggested the possibility of crystallin cross‐linking, with these complexes potentially acting to stabilize degraded crystallins by sequestration into water soluble complexes. Proteins 2015; 83:1878–1886. © 2015 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号