首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
To evaluate a possible modulation by protein kinase C of hormonal, cAMP-mediated effects on renal epithelial cells, we studied the effect of protein kinase C activators and of bradykinin on intracellular cAMP accumulation in MDCK cells. A 15-min pretreatment of cells with phorbol 12-myristate 13-acetate or 1-oleoyl-2-acetylglycerol induced a dose-dependent inhibition of vasopressin-stimulated cAMP synthesis, but not of basal or glucagon-, prostaglandin E2-, and forskolin-stimulated cAMP generation. 4 alpha-Phorbol 12,13-didecanoate, inactive on protein kinase C, did not affect cAMP accumulation. Bradykinin (0.1-10 microM) also inhibited the stimulatory effect of vasopressin on cAMP synthesis in a concentration-dependent manner, but affected neither basal cAMP content, nor its stimulation by glucagon, prostaglandin E2 and forskolin. The effect of activators of protein kinase C and of bradykinin occurred while renal prostaglandin synthesis was blocked with indomethacin. The inhibitory effect of protein kinase C activators and bradykinin on cAMP generation was reversed by the protein kinase C inhibitor H7, was enhanced by monensin, one effect of which is to block the recycling of membrane receptors, and persisted when the GTP-binding protein N1 was blocked with 1 mM Mn2+. Our data suggest that: protein kinase C can modulate the tubular effects of vasopressin by inhibiting cAMP generation; this effect is not mediated by renal prostaglandins, and might result from a direct action on the vasopressin receptor, or on its coupling with Ns; the modulation by bradykinin of vasopressin effects are likely to be exerted, at least partly, through activation of protein kinase C.  相似文献   

2.
The effect of a number of growth factors on phosphatidylcholine (PtdCho) turnover in Swiss-3T3 cells was studied. Phorbol 12-myristate 13-acetate (PMA), bombesin, platelet-derived growth factor (PDGF) and vasopressin rapidly stimulated PtdCho hydrolysis, diacylglycerol (DAG) production, and PtdCho synthesis. Insulin and prostaglandin F2 alpha (PGF2 alpha) stimulated PtdCho synthesis, but not its breakdown, whereas epidermal growth factor (EGF) and bradykinin were without effect. Stimulation of PtdCho hydrolysis by the above ligands resulted in increased production of phosphocholine and DAG (due to phospholipase C activity) and significant amounts of choline, suggesting activation of a phospholipase D as well. CDP-choline and glycerophosphocholine levels were unchanged. Down-regulation of protein kinase C with PMA (400 nM, 40 h) abolished the stimulation of PtdCho hydrolysis and PtdCho synthesis by PMA, bombesin, PDGF and vasopressin, but not the stimulation of PtdCho synthesis by insulin and PGF2 alpha. PtdCho hydrolysis therefore occurs predominantly by activation of protein kinase C (either by PMA or PtdIns hydrolysis) leading to elevation of DAG levels derived from non-PtdIns(4,5)P2 sources. PtdCho synthesis occurs by both a protein kinase C-dependent pathway (stimulated by PMA, PDGF, bombesin and vasopressin) and a protein kinase C-independent pathway (stimulated by insulin and PGF2 alpha). DAG production from PtdCho hydrolysis is not the primary signal to activate protein kinase C, but may contribute to long-term activation of this kinase.  相似文献   

3.
Skeletal muscle grows at a very rapid rate in the neonatal pig, due in part to an enhanced sensitivity of protein synthesis to the postprandial rise in amino acids. An increase in leucine alone stimulates protein synthesis in skeletal muscle of the neonatal pig; however, the effect of isoleucine and valine has not been investigated in this experimental model. The left ventricular wall of the heart grows faster than the right ventricular wall during the first 10 days of postnatal life in the pig. Therefore, the effects of individual BCAA on protein synthesis in individual skeletal muscles and in the left and right ventricular walls were examined. Fasted pigs were infused with 0 or 400 micromol x kg(-1) x h(-1) leucine, isoleucine, or valine to raise individual BCAA to fed levels. Fractional rates of protein synthesis and indexes of translation initiation were measured after 60 min. Infusion of leucine increased (P < 0.05) phosphorylation of eukaryotic initiation factor (eIF)4E-binding protein-1 and increased (P < 0.05) the amount and phosphorylation of eIF4G associated with eIF4E in longissimus dorsi and masseter muscles and in both ventricular walls. Leucine increased (P < 0.05) the phosphorylation of ribosomal protein (rp)S6 kinase and rpS6 in longissimus dorsi and masseter but not in either ventricular wall. Leucine stimulated (P < 0.05) protein synthesis in longissimus dorsi, masseter, and the left ventricular wall. Isoleucine and valine did not increase translation initiation factor activation or protein synthesis rates in skeletal or cardiac muscles. The results suggest that the postprandial rise in leucine, but not isoleucine or valine, acts as a nutrient signal to stimulate protein synthesis in cardiac and skeletal muscles of neonates by increasing eIF4E availability for eIF4F complex assembly.  相似文献   

4.
Chromogranin A is a major component of storage granules in many different secretory cell types. After [35S]methionine labelling of proteins from cultured bovine chromaffin cells, chromogranin A was immunoprecipitated with specific antibodies, and the radioactivity incorporated into chromogranin A was determined and used as an index of its synthesis rate. Depolarization of cells with nicotine or high K+ evoked a Ca2+-dependent increase in chromogranin A synthesis, whereas muscarine, which does not evoke significant Ca2+ influx from bovine chromaffin cells, had no effect on chromogranin A synthesis. Forskolin, an activator of adenylate cyclase, affected neither the basal nor the nicotine-stimulated rate of chromogranin A synthesis. In contrast, 12-O-tetradecanoylphorbol 13-acetate (TPA), an activator of protein kinase C, significantly enhanced the incorporation of radioactivity into chromogranin A. Sphingosine, an inhibitor of protein kinase C, abolished both nicotine-stimulated and TPA-induced chromogranin A synthesis. In addition, long-term treatment of chromaffin cells with TPA decreased protein kinase C activity and inhibited the nicotine-stimulated chromogranin A synthesis. These results suggest that protein kinase C may play an important role in the control of chromogranin A synthesis.  相似文献   

5.
The regulation of glycogen synthase by Ca2+-mobilizing hormones was studied by using rat liver parenchymal cells in primary culture. Long-term exposure of hepatocytes to 4 beta-phorbol 12-myristate 13-acetate (TPA) resulted in a decrease in vasopressin or ATP inhibition of glycogen synthesis and glycogen synthase activity, without any change in the activation of glycogen phosphorylase. In contrast, treatment with TPA did not diminish the effects of glucagon, isoprenaline or A23187 on glycogen synthase or phosphorylase. TPA treatment for 18 h did not change specific [3H]vasopressin binding, but abolished protein kinase C activity in a concentration-dependent manner. The effects of TPA to decrease protein kinase C activity and to reverse the inactivation of glycogen synthase by vasopressin were well correlated and were mimicked by mezerein, but not by 4 alpha-phorbol. However, 1 microM-TPA totally inhibited protein kinase C activity, but reversed only 60% of the vasopressin effect on glycogen synthase. It is therefore concluded that Ca2+-mobilizing hormones inhibit glycogen synthase partly, but not wholly, through a mechanism involving protein kinase C.  相似文献   

6.
Insulin stimulated protein synthesis in L6 myoblasts but did not increase the labelling of DAG or the release of phosphocholine from phosphatidylcholine. The DAG lipase inhibitor, RHC 80267, more than doubled the amount of label appearing in DAG but did not stimulate protein synthesis. Even in the presence of the DAG lipase inhibitor insulin failed to have any effect on DAG labelling, and conversely RHC 80267 did not modify the insulin-induced increase in protein synthesis. These results suggest that endogenous DAG production is not involved in the stimulation of protein synthesis by insulin. However, exogenous diacylglycerols (1-oleoyl-2-acetyl glycerol and 1-stearoyl-2-arachidonoyl glycerol) both stimulated protein synthesis in L6 myoblasts. The efficacy of the former (arachidonatefree) DAG suggested that their action was by activation of protein kinase C rather than by arachidonate release and prostaglandin formation. Ibuprofen, an inhibitor of cyclo-oxygenase failed to block the effects of insulin whereas a second cyclo-oxygenase inhibitor, indomethacin had only a partial inhibitory effect. The protein kinase C (PKC) inhibitor, RO-31-8220, totally blocked the effect of insulin. Since indomethacin is also recognised to inhibit phospholipase A2, the data suggests that insulin acts on protein synthesis in myoblasts by arachidonate activation of PKC.  相似文献   

7.
Addition of vasopressin to quiescent cultures of Swiss 3T3 cells caused a rapid increase in the phosphorylation of an acidic molecular weight 80,000 cellular protein (termed 80K). The effect was concentration- and time-dependent; enhancement in 80K phosphorylation could be detected as early as 30 sec after the addition of the hormone. Recently, a rapid increase in the phosphorylation of an 80K cellular protein following treatment with phorbol esters or diacylglycerol has been shown to reflect the activation of protein kinase C in intact Swiss 3T3 cells. Here we show that the 80K phosphoproteins generated in response to vasopressin and phorbol 12,13-dibutyrate (PBt2) were identical as judged by one- and two-dimensional polyacrylamide gel electrophoresis (PAGE) and peptide mapping following partial proteolysis with Staphylococcus aureus V8 protease. In addition, prolonged pretreatment of 3T3 cells with PBt2 which leads to the disappearance of protein kinase C activity blocked the ability of vasopressin to stimulate the phosphorylation of 80K. The effect of vasopressin on 80K phosphorylation and mitogenesis was selectively blocked by the vasopressin antagonist (Pmp1-O-Me-Tyr2-Arg8) vasopressin suggesting that these responses are mediated by its specific receptor in these cells. The removal of vasopressin leads to dephosphorylation (within minutes) of the 80K phosphoprotein. We conclude that vasopressin rapidly stimulates protein kinase C activity in intact 3T3 cells.  相似文献   

8.
A recent study reported that protein synthesis was inhibited in rat livers perfused with medium containing vasopressin (Chin, K. -V., Cade, C., Brostrom, M. A., and Brostrom, C. O. (1988) Int. J. Biochem. 20, 1313-1319). The inhibition of protein synthesis caused by vasopressin was associated with a disaggregation of polysomes, suggesting that peptide chain initiation was slowed relative to elongation. In contrast, Redpath and Proud (Redpath, N. T., and Proud, C. G. (1989) Biochem. J. 262, 69-75) recently reported an inhibition of peptide chain elongation by a calcium/calmodulin-dependent mechanism. Therefore, the question remained whether only peptide chain initiation was inhibited or both initiation and elongation were affected by vasopressin. In the present study, vasopressin was found to inhibit protein synthesis in both perfused rat livers and isolated rat hepatocytes. Ribosomal half-transit times in isolated hepatocytes averaged 1.9 +/- 0.1 min with or without vasopressin present in the media, demonstrating that the rate of peptide chain elongation was unaffected by vasopressin. Instead, the inhibition of protein synthesis induced by vasopressin was manifested at the level of peptide chain initiation. Vasopressin treatment resulted in both a 2-fold increase in the number of free ribosomal particles and a greater than 50% decrease in the amount of [35S]methionine bound to 43 S preinitiation complexes. In addition, the activity of eukaryotic initiation factor (eIF) 2B in crude extracts from perfused livers was reduced to 53% of the control value in response to vasopressin. The inhibition of eIF-2B activity was associated with an increase in the proportion of the alpha-subunit of eIF-2 in the phosphorylated form from 9.6% in control livers to 30.7% in livers perfused with medium containing vasopressin. The results demonstrate the novel finding that the inhibition of protein synthesis in vasopressin-treated livers is caused by a reduction in eIF-2B activity due to an increase in phosphorylation of eIF-2 alpha.  相似文献   

9.
With hepatocytes in suspension, freshly isolated from meal-fed rats, no significant effect of ionomycin on the rate of de novo fatty acid synthesis was observed, whereas phorbol myristate acetate (PMA) was strongly stimulatory. The combination of ionomycin and PMA produced the same stimulation as was seen with PMA alone. Stimulation of fatty acid synthesis by vasopressin was comparable and not additive to that observed with PMA, indicating that activation of protein kinase C is solely responsible for this metabolic effect of vasopressin. Both vasopressin and PMA increased acetyl-CoA carboxylase activity in isolated rat hepatocytes.  相似文献   

10.
Vasopressin and bradykinin bind to receptors coupled to GTP-binding proteins and rapidly induce polyphosphoinositide breakdown leading to Ca2+ mobilization and activation of protein kinase C. Both peptides are known to induce mitogenesis in the presence of growth factors that act through receptors with intrinsic tyrosine kinase activity. Surprisingly, addition of a combination of vaso-pressin and bradykinin to Swiss 3T3 cells synergistically stimulates DNA synthesis in the absence of any other growth factors. This effect is induced at nanomolar concentrations of the peptides and could be inhibited by addition of specific receptor antagonists or broad spectrum neuropeptide antagonists. Bradykinin, which stimulates transient activation of protein kinase C, induces DNA synthesis in synergy with substances that cause long-term activation of protein kinase C, like vasopression or phorbol 12, 13-dibutyrate. Down-regulation of protein kinase C inhibited the induction of mitogenesis by the combination of vasopressin and bradykinin, thus demonstrating the importance of long-term activation of this enzyme for DNA synthesis. Analysis of tyrosine phosphorylated proteins of Mr = 110,000–130,000 and Mr = 70,000–80,000 revealed a biphasic response after stimulation with bradykinin, whereas the response induced by vasopressin declined after the initial maximum. The combination of bradykinin with vasopressin caused an enhanced and prolonged increase in tyrosine phosphorylation of these proteins as compared with the individual peptides. Inhibition of tyrosine phosphorylation by tyrphostin was paralleled by inhibition of DNA synthesis. Together, these results demonstrate synergistic stimulation of DNA synthesis by bradykinin and vasopressin via prolonged stimulation of multiple signaling pathways and imply that the interactive effects of Ca2+ -mobilizing peptides on mitogenesis may be more general than previously thought. © 1994 Wiley-Liss, Inc.  相似文献   

11.
The effect of vasopressin on junctional conductance (gj) in isolated heart cell pairs was investigated. The results indicated that vasopressin (60 nM) causes a decrease in gj of 53% (S.E. +/- 5) (n = 10) within 15 sec. of its administration to the bath. The effect of vasopressin was dose-dependent and was suppressed by staurosporine (50 microM)--a potent inhibitor of protein kinase C. Inhibitors of protein kinase C by themselves increased gj. The results indicate that protein kinase C plays an important role in the control of gj in heart muscle.  相似文献   

12.
Rat hepatocytes were maintained in primary monolayer culture for 24 h in the presence of serum. Treatment of hepatocytes with 1 microM 4 beta-phorbol 12 beta-myristate 13 alpha-acetate (PMA) for 5-15 min increased membrane-associated protein kinase C activity and concomitantly decreased soluble activity. Membrane protein kinase C activity returned to basal values within 1 h then decreased by more than 50% within 2 h. Prolonged (2-18 h) incubation with PMA did not further decrease protein kinase C activity. Pretreatment of hepatocytes with PMA for 5-15 min had little effect on the subsequent actions of 100 nM vasopressin but abolished the stimulation of inositol phosphate accumulation by 3 nM vasopressin and 20 microM norepinephrine. Long-term exposure (2-18 h) of hepatocytes to 1 microM PMA actually enhanced the effects of vasopressin and 20 microM norepinephrine. The stimulation by norepinephrine (20 microM) of inositol phosphate accumulation was abolished by the alpha 1-adrenergic antagonist prazosin (1 microM), whereas the beta-adrenergic antagonist propranolol (30 microM) had little effect. Addition of 8Br-cAMP (100 microM) or glucagon (10 nM) for 5 min or 8 h had no significant effect alone, but enhanced the subsequent vasopressin stimulation of inositol phosphate accumulation. There was no effect of 8Br-cAMP or glucagon on norepinephrine stimulation of phosphoinositide breakdown. These data indicate that the stimulation of phospholipase C activity in rat hepatocytes by 3 nM vasopressin is enhanced by cyclic AMP-dependent kinase but inhibited by protein kinase C. In contrast, down regulation of protein kinase C markedly enhanced the maximal phosphoinositide response due to both vasopressin and norepinephrine.  相似文献   

13.
The progression of Swiss 3T3 fibroblasts from the quiescent state (G0) through G1 to DNA synthesis in S phase generally requires the synergistic action of two mitogens. The main aim of this study was to compare systematically the early Ca2+ and pH responses in quiescent cells to all of the pair combinations of eight mitogens (bombesin, platelet-derived growth factor, vasopressin, prostaglandin F2 alpha, epidermal growth factor, 12-O-tetradecanoyl phorbol-13-acetate, insulin, 8-bromo-cAMP) with their subsequent effects on DNA synthesis. Each of the mitogens which caused inositol phosphate accumulation (bombesin, platelet-derived growth factor, vasopressin, prostaglandin F2 alpha) also activated Ca2+- and phospholipid-dependent protein kinase (protein kinase C) and generated both the Ca2+ and pH responses, although epidermal growth factor also generated the ionic responses without causing release of inositol phosphates or activation of protein kinase C. For sequential mitogen additions the ionic signals were measured in single cells as well as in cell populations to avoid ambiguities due to heterogeneity in the responses of the cells to the various mitogens. The modulating effects of the mitogens on the [Ca2+]i responses to subsequent mitogen additions varied widely, but detailed comparisons showed that the pattern of blocking effects could not be attributed solely to the effect of the first mitogen causing either maximal breakdown of phosphatidylinositol 4,5-bisphosphate or complete depletion of the intracellular Ca2+ pool or activation of protein kinase C. From these analyses it was concluded that the requirement for two mitogens for effective DNA synthesis could not be attributed to the summation to a critical threshold of either the ionic signals or phosphatidylinositol 4,5-bisphosphate breakdown, and that these responses are insufficient by themselves to cause the cells to progress to DNA synthesis in S phase.  相似文献   

14.
Guanine nucleotides and pertussis toxin were used to test for the involvement of a guanine nucleotide binding protein in the vasopressin V1 receptor-mediated stimulation of protein kinase C activity in Swiss 3T3 cells. Addition of vasopressin in the presence of [gamma-32P]ATP and digitonin caused a marked and rapid increase (8 +/- 1-fold after 1 min) in the phosphorylation of an Mr = 80,000 cellular protein (80K), a specific marker for protein kinase C activation. This phosphorylation was selectively blocked by the V1 receptor antagonist Pmp1-0-Me-Tyr2 [Arg8] vasopressin, indicating that the effect was mediated through the vasopressin V1 receptor. Down regulation of protein kinase C by prior prolonged pretreatment of intact cells with phorbol 12,13-dibutyrate (PBt2) blocked the ability of vasopressin to stimulate the phosphorylation of 80K in digitonin-permeabilized cells. Addition of a submaximal concentration of vasopressin together with the GTP analogue GTP-gamma-S caused a synergistic stimulation of 80K phosphorylation. The GDP analogue GDP-beta-S caused a 50% inhibition of the phosphorylation of 80K induced by a saturating concentration of vasopressin and shifted the vasopressin dose-response curve to the right. GDP-beta-S had no effect on the dose-response for the stimulation of 80K phosphorylation induced by PBt2. Prior incubation of intact quiescent cultures of Swiss 3T3 cells with pertussis toxin did not impair either vasopressin-induced increase in cytosolic [Ca2+] or activation of protein kinase C. These findings provide functional evidence for the involvement of a pertussis toxin-insesitive G protein in the vasopressin V1 receptor-mediated stimulation of protein kinase C in Swiss 3T3 cells.  相似文献   

15.
(1) The addition of long chain fatty acids to the incubation medium of isolated rat lung cells produced a dose-dependent inhibition of protein labelling from L-[3H]valine. Maximal rate changes were observed at fatty acids levels within the range of their physiological concentration. (2) The effect of fatty acids on protein labelling does not seem to be mediated by their oxidation. The following observations seem to support this conclusion: (a) the rate of fatty acid oxidation by lung cells was remarkably low, so that no significant variations in the state of reduction of the NAD system were detected; (b) there was no correspondence in the dose-response patterns of fatty acid oxidation and inhibition of protein labelling; (c) octanoate was much more actively oxidized than oleate, however the latter was more effective in decreasing protein labelling. (3) An apparent relationship between the length of the fatty chain and its ability to inhibit protein labelling seems to exist. The longer the chain the stronger the inhibitory effect observed. (4) The effect of fatty acid on protein labelling seems to be mediated by a cellular energy depletion secondary to an inhibition of the respiratory chain. Their ability to decrease oxygen uptake and adenine nucleotide content was also proportional to the chain length. (5) Glucose, which apparently acted by increasing energy production at substrate level phosphorylation, partially prevented the inhibitory effect of fatty acid on protein labelling. This observation supports the point of view that fatty acids do not act in decreasing protein labelling by perturbing directly the protein synthesis machinery but decreasing the phosphorylation potential.  相似文献   

16.
The effects of leucine, its metabolites, and the 2-oxo acids of valine and isoleucine on protein synthesis and degradation in incubated limb muscles of immature and adult rats were tested. Leucine stimulated protein synthesis but did not reduce proteolysis when leucine transamination was inhibited. 4-Methyl-2-oxopentanoate at concentrations as low as 0.25 mM inhibited protein degradation but did not change protein synthesis. The 2-oxo acids of valine and isoleucine did not change protein synthesis or degradation even at concentrations as high as 5 mM. 3-Methylvalerate, the irreversibly decarboxylated product of 4-methyl-2-oxopentanoate, decreased protein degradation at concentrations greater than or equal to 1 mM. This was not due to inhibition of 4-methyl-2-oxopentanoate catabolism, because 0.5 mM-3-methylvalerate did not suppress proteolysis, even though it inhibited leucine decarboxylation by 30%; higher concentrations of 3-methylvalerate decreased proteolysis progressively without inhibiting leucine decarboxylation further. During incubation with [1-14C]- and [U-14C]-leucine, it was found that products of leucine catabolism formed subsequent to the decarboxylation of 4-methyl-2-oxopentanoate accumulated intracellularly. This pattern was not seen during incubation with radiolabelled valine. Thus, the effect of leucine on muscle proteolysis requires transamination to 4-methyl-2-oxopentanoate. The inhibition of muscle protein degradation by leucine is most sensitive to, but not specific for, its 2-oxo acid, 4-methyl-2-oxopentanoate.  相似文献   

17.
Stress, such as heat-shock, hypoxia and hypoglycemia, inhibits the initiation of protein synthesis. The effects of heat-shock on protein synthesis, eucaryotic initiation factor 2 (eIF-2) activity, protein kinase C (PKC), and casein kinase II (CKII) activities were studied in primary cortical neuronal cultures. In neurons exposed to heat-shock at 44°C for 20 min, protein synthesis is inhibited by more than 80%, and is accompanied by a 60% decrease in eIF-2 activity. Steady state PKC and CK II activities were not affected by heat-shock. Vanadate (200 M), a protein phosphotyrosine phosphatase inhibitor, partially prevented the depression of eIF-2 activity during heat-shock, and increased CKII activity by 90%. In contrast, staurosporine (62nM), a protein kinase C inhibitor, did not affect eIF-2 activity. We conclude that heat-shock causes a change in the phosphorylation/ dephosphorylation of regulatory proteins leading to a depressed eIF-2 activity and protein synthesis in neurons.  相似文献   

18.
Action of phenylephrine on protein synthesis in liver cells.   总被引:1,自引:1,他引:0       下载免费PDF全文
The alpha-adrenergic agonist phenylephrine was found to inhibit protein labelling from [3H]valine in isolated liver cells. This effect is only observable under conditions of partial Ca2+ depletion and in cells displaying maximal rates of protein labelling, i.e. cells isolated from fed animals or from starved animals when incubated in the presence of alanine. The ability of phenylephrine to inhibit protein labelling at near-saturating concentrations of the amino acid precursor indicates that this alpha-agonist actually decreases the rate of protein synthesis. The possibility that phenylephrine acts by making cellular Ca2+ availability further limiting can be ruled out, since alanine stimulates protein labelling under conditions of severe Ca2+ depletion obtained by pretreatment of the cells with EGTA. The following observations indicate that the phenylephrine action may be mediated by an increase in cellular cyclic AMP content: (1) a close relationship was found between the abilities of phenylephrine to inhibit protein labelling and to increase cyclic AMP content; (2) cyclic AMP mimics the phenylephrine action only in cells partially depleted of Ca2+; (3) the alpha 1-antagonist prazosin, which inhibited the phenylephrine-mediated increase in cyclic AMP, also abolished the effect on protein synthesis.  相似文献   

19.
20.
Hydrogen sulfide, a signaling gas, affects several cell functions. We hypothesized that hydrogen sulfide modulates high glucose (30 mm) stimulation of matrix protein synthesis in glomerular epithelial cells. High glucose stimulation of global protein synthesis, cellular hypertrophy, and matrix laminin and type IV collagen content was inhibited by sodium hydrosulfide (NaHS), an H(2)S donor. High glucose activation of mammalian target of rapamycin (mTOR) complex 1 (mTORC1), shown by phosphorylation of p70S6 kinase and 4E-BP1, was inhibited by NaHS. High glucose stimulated mTORC1 to promote key events in the initiation and elongation phases of mRNA translation: binding of eIF4A to eIF4G, reduction in PDCD4 expression and inhibition of its binding to eIF4A, eEF2 kinase phosphorylation, and dephosphorylation of eEF2; these events were inhibited by NaHS. The role of AMP-activated protein kinase (AMPK), an inhibitor of protein synthesis, was examined. NaHS dose-dependently stimulated AMPK phosphorylation and restored AMPK phosphorylation reduced by high glucose. Compound C, an AMPK inhibitor, abolished NaHS modulation of high glucose effect on events in mRNA translation as well as global and matrix protein synthesis. NaHS induction of AMPK phosphorylation was inhibited by siRNA for calmodulin kinase kinase β, but not LKB1, upstream kinases for AMPK; STO-609, a calmodulin kinase kinase β inhibitor, had the same effect. Renal cortical content of cystathionine β-synthase and cystathionine γ-lyase, hydrogen sulfide-generating enzymes, was significantly reduced in mice with type 1 diabetes or type 2 diabetes, coinciding with renal hypertrophy and matrix accumulation. Hydrogen sulfide is a newly identified modulator of protein synthesis in the kidney, and reduction in its generation may contribute to kidney injury in diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号