首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
The mechanism for coupling between Ca(2+) stores and store-operated channels (SOCs) is an important but unresolved question. Although SOCs have not been molecularly identified, transient receptor potential (TRP) channels share a number of operational parameters with SOCs. The question of whether activation of SOCs and TRP channels is mediated by the inositol 1,4,5-trisphosphate receptor (InsP(3)R) was examined using the permeant InsP(3)R antagonist, 2-aminoethoxydiphenyl borate (2-APB) in both mammalian and invertebrate systems. In HEK293 cells stably transfected with human TRPC3 channels, the actions of 2-APB to block carbachol-induced InsP(3)R-mediated store release and carbachol-induced Sr(2+) entry through TRPC3 channels were both reversed at high agonist levels, suggesting InsP(3)Rs mediate TRPC3 activation. However, electroretinogram recordings of the light-induced current in Drosophila revealed that the TRP channel-mediated responses in wild-type as well as trp and trpl mutant flies were all inhibited by 2-APB. This action of 2-APB is likely InsP(3)R-independent since InsP(3)Rs are dispensable for the light response. We used triple InsP(3)R knockout DT40 chicken B-cells to further assess the role of InsP(3)Rs in SOC activation. (45)Ca(2+) flux analysis revealed that although DT40 wild-type cells retained normal InsP(3)Rs mediating 2-APB-sensitive Ca(2+) release, the DT40InsP(3)R-k/o cells were devoid of functional InsP(3)Rs. Using intact cells, all parameters of Ca(2+) store function and SOC activation were identical in DT40wt and DT40InsP(3)R-k/o cells. Moreover, in both cell lines SOC activation was completely blocked by 2-APB, and the kinetics of action of 2-APB on SOCs (time dependence and IC(50)) were identical. The results indicate that (a) the action of 2-APB on Ca(2+) entry is not mediated by the InsP(3)R and (b) the effects of 2-APB provide evidence for an important similarity in the function of invertebrate TRP channels, mammalian TRP channels, and mammalian store-operated channels.  相似文献   

2.
The mechanism for coupling between Ca(2+) stores and store-operated channels (SOCs) is an important but unresolved question. SOC-mediated Ca(2+) entry is complex and may reflect more than one type of channel and coupling mechanism. To assess such possible divergence the function and coupling of SOCs was compared with two other distinct yet related Ca(2+) entry mechanisms. SOC coupling in DDT(1)MF-2 smooth muscle cells was prevented by the permeant inositol 1,4,5-trisphosphate (InsP(3)) receptor blockers, 2-aminoethoxydiphenyl borate (2-APB) and xestospongin C. In contrast, Ca(2+) entry induced by S-nitrosylation and potentiated by store depletion (Ma, H-T., Favre, C. J., Patterson, R. L., Stone, M. R., and Gill, D. L. (1999) J. Biol. Chem. 274, 35318-35324) was unaffected by 2-APB, suggesting that this entry mechanism is independent of InsP(3) receptors. The cycloalkyl lactamimide, MDL-12, 330A (MDL), prevented SOC activation (IC(50) 10 micrometer) and similarly completely blocked S-nitrosylation-mediated Ca(2+) entry. Ca(2+) entry mediated by the TRP3 channel stably expressed in HEK293 cells was activated by phospholipase C-coupled receptors but independent of Ca(2+) store depletion (Ma, H.-T., Patterson, R. L., van Rossum, D. B., Birnbaumer, L., Mikoshiba, K., and Gill, D. L. (2000) Science 287, 1647-1651). Receptor-induced TRP3 activation was 2-APB-sensitive and fully blocked by MDL. Direct stimulation of TRP3 channels by the permeant diacylglycerol derivative, 1-oleoyl-2-acetyl-sn-glycerol, was not blocked by 2-APB, but was again prevented by MDL. The results indicate that although the activation and coupling processes for each of the three entry mechanisms are distinct, sensitivity to MDL is a feature shared by all three mechanisms, suggesting there may be a common structural feature in the channels themselves or an associated regulatory component.  相似文献   

3.
The mammalian homologues of the Drosophila transient receptor potential (TRP) represent a superfamily of ion channels involved in Ca(2+) homeostasis. Several members of this family are activated either by a depletion of the internal stores of Ca(2+) or by stimulation of G protein-coupled receptors. In androgen responsive prostate cancer cell line LNCaP, TRPC1, TRPC4 and/or TRPV6 have been reported to function as store-operated channels (SOCs) while TRPC3 might be involved in the response to agonist stimulation, possibly through the induction of diacylglycerol production by phospholipase C. However, the control of expression of these TRP proteins is largely unknown. In the present study, we have investigated if the expression of the TRP proteins possibly involved in the capacitative influx of calcium is influenced by the contents of Ca(2+) in the endoplasmic reticulum. Using real-time PCR and Western blot techniques, we show that the expression of TRPC1, TRPC3 and TRPV6 proteins increases after a prolonged (24-48 h) depletion of the stores with thapsigargin. The upregulation of TRPC1 and TRPC3 depends on the store contents level and involves the activation of the Ca(2+)/calmodulin/calcineurin/NFAT pathway. Functionally, cells overexpressing TRPC1, TRPC3 and TRPV6 channels after a prolonged depletion of the stores showed an increased [Ca(2+)](i) response to alpha-adrenergic stimulation. However, the store-operated entry of calcium was unchanged. The isolated overexpression of TRPV6 (without overexpression of TRPC1 and TRPC3) did not produce this increased response to agonists, therefore suggesting that TRPC1 and/or TRPC3 proteins are responsible for the response to alpha-adrenergic stimulation but that TRPC1, TPRC3 and TRPV6 proteins, expressed alone or concomitantly, are not sufficient for SOC formation.  相似文献   

4.
The one or more coupling mechanisms of store-operated channels (SOCs) to endoplasmic reticulum (ER) Ca2+ store depletion as well as the molecular identity of SOCs per se still remain a mystery. Here, we demonstrate the co-existence of two populations of molecular distinct endogenous SOCs in LNCaP prostate cancer epithelial cells, which are preferentially activated by either active inositol 1,4,5-trisphosphate (IP3)-mediated or passive thapsigargin-facilitated store depletion and have different ER store content sensitivity. The first population, called SOC(CC) (for "conformational coupling"), is characterized by preferential IP3 receptor-dependent mode of activation, as judged from sensitivity to cytoskeleton modifications, and dominant contribution of transient receptor potential (TRP) TRPC1 within it. The second one, called SOC(CIF) (for "calcium influx factor"), depends on Ca(2+)-independent phospholipase A2 for activation with probable CIF involvement and is mostly represented by TRPC4. The previously identified SOC constituent in LNCaP cells, TRPV6, seems to play equal role in both SOC populations. These results provide new insight into the nature of SOCs and their representation in the single cell type as well as permit reconciliation of current SOC activation hypotheses.  相似文献   

5.
Ca2+ homeostasis mechanisms, in which the Ca2+ entry pathways play a key role, are critically involved in both normal function and cancerous transformation of prostate epithelial cells. Here, using the lymph node carcinoma of the prostate (LNCaP) cell line as a major experimental model, we characterize prostate-specific store-operated Ca2+ channels (SOCs)--a primary Ca2+ entry pathway for non-excitable cells--for the first time. We show that prostate-specific SOCs share major store-dependent, kinetic, permeation, inwardly rectifying, and pharmacological (including dual, potentiation/inhibition concentration-dependent sensitivity to 2-APB) properties with "classical" Ca2+ release-activated Ca2+ channels (CRAC), but have a higher single channel conductance (3.2 and 12pS in Ca2+- and Na+-permeable modes, respectively). They are subject to feedback inhibition via Ca2+-dependent PKC, CaMK-II and CaM regulatory pathways and are functionally dependent on caveolae integrity. Caveolae also provide a scaffold for spatial co-localization of SOCs with volume-regulated anion channels (VRAC) and their Ca2+-mediated interaction. The TRPC1 and TRPV6 members of the transient receptor potential (TRP) channel family are the most likely molecular candidates for the formation of prostate-specific endogenous SOCs. Differentiation of LNCaP cells to an androgen-insensitive, apoptotic-resistant neuroendocrine phenotype downregulates SOC current. We conclude that prostate-specific SOCs are important determinants in the transition to androgen-independent prostate cancer.  相似文献   

6.
Functional requirement for Orai1 in store-operated TRPC1-STIM1 channels   总被引:2,自引:0,他引:2  
Orai1 and TRPC1 have been proposed as core components of store-operated calcium release-activated calcium (CRAC) and store-operated calcium (SOC) channels, respectively. STIM1, a Ca(2+) sensor protein in the endoplasmic reticulum, interacts with and mediates store-dependent regulation of both channels. We have previously reported that dynamic association of Orai1, TRPC1, and STIM1 is involved in activation of store-operated Ca(2+) entry (SOCE) in salivary gland cells. In this study, we have assessed the molecular basis of TRPC1-SOC channels in HEK293 cells. We report that TRPC1+STIM1-dependent SOCE requires functional Orai1. Thapsigargin stimulation of cells expressing Orai1+STIM1 increased Ca(2+) entry and activated typical I(CRAC) current. STIM1 alone did not affect SOCE, whereas expression of Orai1 induced a decrease. Expression of TRPC1 induced a small increase in SOCE, which was greatly enhanced by co-expression of STIM1. Thapsigargin stimulation of cells expressing TRPC1+STIM1 activated a non-selective cation current, I(SOC), that was blocked by 1 microm Gd(3+) and 2-APB. Knockdown of Orai1 decreased endogenous SOCE as well as SOCE with TRPC1 alone. siOrai1 also significantly reduced SOCE and I(SOC) in cells expressing TRPC1+STIM1. Expression of R91WOrai1 or E106QOrai1 induced similar attenuation of TRPC1+STIM1-dependent SOCE and I(SOC), whereas expression of Orai1 with TRPC1+STIM1 resulted in SOCE that was larger than that with Orai1+STIM1 or TRPC1+STIM1 but not additive. Additionally, Orai1, E106QOrai1, and R91WOrai1 co-immunoprecipitated with similar levels of TRPC1 and STIM1 from HEK293 cells, and endogenous TRPC1, STIM1, and Orai1 were co-immunoprecipitated from salivary glands. Together, these data demonstrate a functional requirement for Orai1 in TRPC1+STIM1-dependent SOCE.  相似文献   

7.
We identified human TRPC3 protein by yeast two-hybrid screening of a human brain cDNA library with human TRPM4b as a bait. Immunoprecipitation and confocal microscopic analyses confirmed the protein-protein interaction between TRPM4b and TRPC3, and these two TRPs were found to be highly colocalized at the plasma membrane of HEK293T cells. Overexpression of TRPM4b suppressed TRPC3-mediated whole cell currents by more than 90% compared to those in TRPC3-expressed HEK293T cells. Furthermore, HEK293T cells stably overexpressing red fluorescent protein (RFP)-TRPM4b exhibited an almost complete abolition of UTP-induced store-operated Ca2+ entry, which is known to take place via endogenous TRPC channels in HEK293T cells. This study is believed to provide the first clear evidence that TRPM4b interacts physically with TRPC3, a member of a different TRP subfamily, and regulates negatively the channel activity, in turn suppressing store-operated Ca2+ entry through the TRPC3 channel.  相似文献   

8.
Capacitative calcium entry or store-operated calcium entry in nonexcitable cells is a process whereby the activation of calcium influx across the plasma membrane is signaled by depletion of intracellular calcium stores. Transient receptor potential (TRP) proteins have been proposed as candidates for store-operated calcium channels. Human TRPC3 (hTRPC3), an extensively studied member of the TRP family, is activated through a phospholipase C-dependent mechanism, not by store depletion, when expressed in HEK293 cells. However, store depletion by thapsigargin is sufficient to activate hTRPC3 channels when expressed in DT40 avian B-lymphocytes. To gain further insights into the differences between hTRPC3 channels generated in these two expression systems and further understand the role of hTRPC3 in capacitative calcium entry, we examined the effect of two well characterized inhibitors of capacitative calcium entry, Gd3+ and 2-aminoethoxydiphenyl borane (2APB). We confirmed that in both DT40 cells and HEK293 cells, 1 microm Gd3+ or 30 microm 2APB completely blocked calcium entry due to receptor activation or store depletion. In HEK293 cells, 1 microm Gd3+ did not block receptor-activated hTRPC3-mediated cation entry, whereas 2APB had a partial (approximately 60%) inhibitory effect. Interestingly, store-operated hTRPC3-mediated cation entry in DT40 cells was also partially inhibited by 2APB, whereas 1 microm Gd3+ completely blocked store-operated hTRPC3 activity in these cells. Furthermore, the sensitivity of store-operated hTRPC3 channels to Gd3+ in DT40 cells was similar to the endogenous store-operated channels, with essentially 100% block of activity at concentrations as low as 0.1 microm. Finally, Gd3+ has a rapid inhibitory effect when added to fully developed hTRPC3-mediated calcium entry, suggesting a direct action of Gd3+ on hTRPC3 channels. The distinct action of these inhibitors on hTRPC3-mediated cation entry in these two cell types may result from their different modes of activation and may also reflect differences in basic channel structure.  相似文献   

9.
Na(+)/Ca(2+) exchangers (NCXs) and members of the canonical transient receptor potential (TRPC) channels play an important role in Ca(2+) homeostasis in heart and brain. With respect to their overlapping expression and their role as physiological Ca(2+) influx pathways a functional discrimination of both mechanisms seems to be necessary. Here, the effect of the reverse-mode NCX inhibitor KB-R7943 was investigated on different TRPC channels heterologously expressed in HEK293 cells. In patch-clamp recordings KB-R7943 potently blocked currents through TRPC3 (IC(50)=0.46 microM), TRPC6 (IC(50)=0.71 microM), and TRPC5 (IC(50)=1.38 microM). 1-Oleoyl-2-acetyl-sn-glycerol-induced Ca(2+) entry was nearly completely suppressed by 10 microM KB-R7943 in TRPC6-transfected cells. Thus, KB-R7943 is able to block receptor-operated TRP channels at concentrations which are equal or below those required to inhibit reverse-mode NCX activity. These data further suggest that the protective effects of KB-R7943 in ischemic tissue may, at least partly, be due to inhibition of TRPC channels.  相似文献   

10.
The TRPC1 (transient receptor potential canonical-1) channel is a constituent of the nonselective cation channel that mediates Ca2+ entry through store-operated channels (SOCs) in human endothelial cells. We investigated the role of protein kinase Calpha (PKCalpha) phosphorylation of TRPC1 in regulating the opening of SOCs. Thrombin or thapsigargin added to the external medium activated Ca2+ entry after Ca2+ store depletion, which we monitored by changes in cellular Fura 2 fluorescence. Internal application of the metabolism-resistant analog of inositol 1,4,5-trisphosphate (IP3) activated an inward cationic current within 1 min, which we recorded using the whole cell patch clamp technique. La3+ or Gd3+ abolished the current, consistent with the known properties of SOCs. Pharmacological (G?6976) or genetic (kinase-defective mutant) inhibition of PKCalpha markedly inhibited IP3-induced activation of the current. Thrombin or thapsigargin also activated La3+-sensitive Ca2+ entry in a PKCalpha-dependent manner. We determined the effects of a specific antibody directed against an extracellular epitope of TRPC1 to address the functional importance of TRPC1. External application of the antibody blocked thrombin- or IP3-induced Ca2+ entry. In addition, we showed that addithrombin or thapsigargin induced phosphorylation of TRPC1 within 1 min. Thrombin failed to induce TRPC1 phosphorylation in the absence of PKCalpha activation. Phosphorylation of TRPC1 and the resulting Ca2+ entry were essential for the increase in permeability induced by thrombin in confluent endothelial monolayers. These results demonstrate that PKCalpha phosphorylation of TRPC1 is an important determinant of Ca2+ entry in human endothelial cells.  相似文献   

11.
12.
TRPC1 and TRPC5 form a novel cation channel in mammalian brain   总被引:43,自引:0,他引:43  
TRP proteins are cation channels responding to receptor-dependent activation of phospholipase C. Mammalian (TRPC) channels can form hetero-oligomeric channels in vitro, but native TRPC channel complexes have not been identified to date. We demonstrate here that TRPC1 and TRPC5 are subunits of a heteromeric neuronal channel. Both TRPC proteins have overlapping distributions in the hippocampus. Coexpression of TRPC1 and TRPC5 in HEK293 cells resulted in a novel nonselective cation channel with a voltage dependence similar to NMDA receptor channels, but unlike that of any reported TRPC channel. TRPC1/TRPC5 heteromers were activated by G(q)-coupled receptors but not by depletion of intracellular Ca(2+) stores. In contrast to the more common view of the TRP family as comprising store-operated channels, we propose that many TRPC heteromers form diverse receptor-regulated nonselective cation channels in the mammalian brain.  相似文献   

13.
The mechanism of receptor-induced activation of the ubiquitously expressed family of mammalian canonical transient receptor potential (TRPC) channels has been the focus of intense study. Primarily responding to phospholipase C (PLC)-coupled receptors, the channels are reported to receive modulatory input from diacylglycerol, endoplasmic reticulum inositol 1,4,5-trisphosphate receptors and Ca2+ stores. Analysis of TRPC5 channels transfected within DT40 B cells and deletion mutants thereof revealed efficient activation in response to PLC-beta or PLC-gamma activation, which was independent of inositol 1,4,5-trisphoshate receptors or the content of stores. In both HEK293 cells and DT40 cells, TRPC5 and TRPC3 channel responses to PLC activation were highly analogous, but only TRPC3 and not TRPC5 channels responded to the addition of the permeant diacylglycerol (DAG) analogue, 1-oleoyl-2-acetyl-sn-glycerol (OAG). However, OAG application or elevated endogenous DAG, resulting from either DAG lipase or DAG kinase inhibition, completely prevented TRPC5 or TRPC4 activation. This inhibitory action of DAG on TRPC5 and TRPC4 channels was clearly mediated by protein kinase C (PKC), in distinction to the stimulatory action of DAG on TRPC3, which is established to be PKC-independent. PKC activation totally blocked TRPC3 channel activation in response to OAG, and the activation was restored by PKC-blockade. PKC inhibition resulted in decreased TRPC3 channel deactivation. Store-operated Ca2+ entry in response to PLC-coupled receptor activation was substantially reduced by OAG or DAG-lipase inhibition in a PKC-dependent manner. However, store-operated Ca2+ entry in response to the pump blocker, thapsigargin, was unaffected by PKC. The results reveal that each TRPC subtype is strongly inhibited by DAG-induced PKC activation, reflecting a likely universal feedback control on TRPCs, and that DAG-mediated PKC-independent activation of TRPC channels is highly subtype-specific. The profound yet distinct control by PKC and DAG of the activation of TRPC channel subtypes is likely the basis of a spectrum of regulatory phenotypes of expressed TRPC channels.  相似文献   

14.
Role and regulation of TRP channels in neutrophil granulocytes   总被引:7,自引:0,他引:7  
Heiner I  Eisfeld J  Lückhoff A 《Cell calcium》2003,33(5-6):533-540
Members of the transient receptor potential (TRP) family for which mRNA can be demonstrated in neutrophil granulocytes with RT-PCR include TRPC6 (as only "short" TRP), TRPM2, TRPV1, TRPV2, TRPV5 and TRPV6. When these are analyzed in heterologous overexpression experiments, TRPM2 is the only cation channel with characteristic properties that can be used as fingerprint to provide functional evidence for its expression in neutrophil granulocytes. As cells transfected with TRPM2, neutrophil granulocytes display non-selective cation currents and typical channel activity evoked by intracellular ADP-ribose and NAD. Thus, stimulation of TRPM2 is likely to occur after activation of CD38 (producing ADP-ribose) and during the oxidative burst (enhancing the NAD concentration). This novel mode of cation entry regulation may be of particular importance for the response of granulocytes to chemoattractants. TRPV6 is a likely but not exclusive candidate as subunit of the channels mediating store-operated Ca2+ entry (SOCE). Evidence for SOCE in granulocytes has been presented with the fura-2 technique but not with electrophysiological methods although Ca2+-selective store-operated currents can be demonstrated in HL-60 cells, a cell culture model of neutrophil granulocytes.  相似文献   

15.
TRP proteins mostly assemble to homomeric channels but can also heteromerize, preferentially within their subfamilies. The TRPC1 protein is the most versatile member and forms various TRPC channel combinations but also unique channels with the distantly related TRPP2 and TRPV4. We show here a novel cross-family interaction between TRPC1 and TRPV6, a Ca2+ selective member of the vanilloid TRP subfamily. TRPV6 exhibited substantial co-localization and in vivo interaction with TRPC1 in HEK293 cells, however, no interaction was observed with TRPC3, TRPC4, or TRPC5. Ca2+ and Na+ currents of TRPV6-overexpressing HEK293 cells are significantly reduced by co-expression of TRPC1, correlating with a dramatically suppressed plasma membrane targeting of TRPV6. In line with their intracellular retention, remaining currents of TRPC1 and TRPV6 co-expression resemble in current-voltage relationship that of TRPV6. Studying the N-terminal ankyrin like repeat domain, structurally similar in the two proteins, we have found that these cytosolic segments were sufficient to mediate a direct heteromeric interaction. Moreover, the inhibitory role of TRPC1 on TRPV6 influx was also maintained by expression of only its N-terminal ankyrin-like repeat domain. Our experiments provide evidence for a functional interaction of TRPC1 with TRPV6 that negatively regulates Ca2+ influx in HEK293 cells.  相似文献   

16.
TRPC channels as STIM1-regulated store-operated channels   总被引:6,自引:3,他引:3  
Receptor-activated Ca(2+) influx is mediated largely by store-operated channels (SOCs). TRPC channels mediate a significant portion of the receptor-activated Ca(2+) influx. However, whether any of the TRPC channels function as a SOC remains controversial. Our understanding of the regulation of TRPC channels and their function as SOCs is being reshaped with the discovery of the role of STIM1 in the regulation of Ca(2+) influx channels. The findings that STIM1 is an ER resident Ca(2+) binding protein that regulates SOCs allow an expanded and molecular definition of SOCs. SOCs can be considered as channels that are regulated by STIM1 and require the clustering of STIM1 in response to depletion of the ER Ca(2+) stores and its translocation towards the plasma membrane. TRPC1 and other TRPC channels fulfill these criteria. STIM1 binds to TRPC1, TRPC2, TRPC4 and TRPC5 but not to TRPC3, TRPC6 and TRPC7, and STIM1 regulates TRPC1 channel activity. Structure-function analysis reveals that the C-terminus of STIM1 contains the binding and gating function of STIM1. The ERM domain of STIM1 binds to TRPC channels and a lysine-rich region participates in the gating of SOCs and TRPC1. Knock-down of STIM1 by siRNA and prevention of its translocation to the plasma membrane inhibit the activity of native SOCs and TRPC1. These findings support the conclusion that TRPC1 is a SOC. Similar studies with other TRPC channels demonstrate their regulation by STIM1 and indicate that all TRPC channels, except TRPC7, function as SOCs.  相似文献   

17.
Capacitative calcium entry (CCE), the mechanism that replenishes the internal Ca2+ stores with Ca2+ from the extracellular milieu in response to depletion of the store, is mediated by Ca2+ channels in the plasma membrane generally referred to as store-operated channels (SOCs). However, the roles of SOCs in the more physiological context have been fully elucidated. 2-Aminoethyl diphenylborinate (2-APB) strongly inhibits SOCs, as well as inositol-1,4,5 trisphosphate (IP3) receptors. In the present study, we screened a library of 166 2-APB analogues for effects on CCE and IP3-induced Ca2+ release in order to discover specific SOC inhibitors, and found that some blocked both store-operated and receptor-operated Ca2+ influx more strongly and selectively than 2-APB. Indeed, these new compounds ceased the prolonged intracellular Ca2+ oscillations induced by a low concentration of ATP in CHO-K1 cells. These novel SOC inhibitors will be valuable pharmacological and biochemical tools for elucidating the physiological roles.  相似文献   

18.
19.
Albert AP  Large WA 《Cell calcium》2003,33(5-6):345-356
Over twenty years ago it was shown that depletion of the intracellular Ca2+ store in smooth muscle triggered a Ca2+ influx mechanism. The purpose of this review it to describe recent electrophysiological data which indicate that Ca2+ influx occurs through discrete ion channels in the plasmalemma of smooth muscle cells. The effect of external Ca2+ on the amplitude and reversal potential of whole-cell and single channel currents suggests that there are at least two, and probably more, distinct store-operated channels (SOCs) which have markedly different permeabilities to Ca2+ ions. Two activation mechanisms have been identified which involve Ca2+ influx factor and protein kinase C (PKC) activation via diacylglycerol. In addition, in rabbit portal vein cells there is evidence that stimulation of alpha-adrenoceptors can stimulate SOC opening via PKC in a store-independent manner. There is at present little knowledge on the molecular identity of SOCs but it has been proposed that TRPC1 may be a component of the functional channel. We also summarise the data showing that SOCs may be involved in contraction and cell proliferation of smooth muscle. Finally, we highlight the similarities and differences of SOCs and receptor-operated cation channels that are present in native rabbit portal vein myocytes.  相似文献   

20.
The coupling between Ca(2+) pools and store-operated Ca(2+) entry channels (SOCs) remains an unresolved question. Recently, we revealed that Ca(2+) entry could be activated in response to S-nitrosylation and that this process was stimulated by Ca(2+) pool emptying (Favre, C. J., Ufret-Vincenty, C. A., Stone, M. R., Ma, H-T. , and Gill, D. L. (1998) J. Biol. Chem. 273, 30855-30858). In DDT(1)MF-2 smooth muscle cells and DC-3F fibroblasts, Ca(2+) entry activated by the lipophilic NO donor, GEA3162 (5-amino-3-(3, 4-dichlorophenyl)1,2,3,4-oxatriazolium), or the alkylator, N-ethylmaleimide, was observed to be strongly activated by transient external Ca(2+) removal, closely resembling activation of SOC activity in the same cells. The nonadditivity of SOC and NO donor-activated Ca(2+) entry suggested a single entry mechanism. Calyculin A-induced reorganization of the actin cytoskeleton prevented SOC but had no effect on GEA3162-induced Ca(2+) entry. However, a single entry mechanism could account for both SOC and NO donor-activated entry if the latter reflected direct modification of the entry channel by S-nitrosylation, bypassing the normal coupling process between channels and pools. Small differences between SOC and GEA3162-activated Ba(2+) entry and sensitivity to blockade by La(3+) were observed, and in HEK293 cells SOC activity was observed without a response to thiol modification. It is concluded that in some cells, S-nitrosylation modifies an entry mechanism closely related to SOC and/or part of the regulatory machinery for SOC-mediated Ca(2+) entry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号