首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Alpha-Gal epitopes are carbohydrate structures bearing an alpha-D-Galp-(1-->3)-beta-D-Galp terminus and are the main cause of antibody-mediated hyperacute rejection in xenotransplantation. Nine monosaccharides and ten disaccharides were evaluated as substrates for a fusion protein, which contains both alpha-(1-->3)-galactosyltransferase and uridine-5'-diphosphogalactose 4-epimerase. Four disaccharide and six trisaccharide alpha-Gal epitope derivatives were synthesized utilizing this novel fusion enzyme.  相似文献   

2.
The glycosyl donor, hepta-O-benzyl-beta-lactosyl trichloroacetimidate (4) was prepared by treating hepta-O-benzyl-lactose with trichloroacetonitrile in the presence of potassium carbonate. The acceptor, methyl 2-O-benzyl-4,6-O-benzylidene-7,8-dideoxy-alpha-D-manno-oct-7-enopyranoside (8) was synthesized by hydrolysis of a 3,4-butane diacetal of methyl L-glycero-alpha-D-manno-oct-enopyranoside and subsequent benzylidenation. Glycosidation of the donor 4 with the acceptor 8 in 1,4-dioxane using Me(3)SiOTf as a promoter for 1 h at room temperature gave methyl (2,3,4,6-tetra-O-benzyl-beta-D-galactopyranosyl)-(1-->4)-(2,3,6-tri-O-benzyl-alpha-D-glucopyranosyl)-(1-->3)-2-O-benzyl-4,6-O-benzylidene-7,8-dideoxy-alpha-D-manno-oct-7-enopyranoside (9) as a major product (59%). The oct-enopyranoside moiety of the trisaccharide 9 was converted to a heptopyranoside (80%) by oxidative cleavage with OsO(4)-NaIO(4) and subsequent reduction. Hydrogenolysis of the resulting trisaccharide and subsequent acetylation gave the peracetate of alpha-lactosyl-(1-->3)-Hep. Deacetylation of the peracetate afforded the title trisaccharide.  相似文献   

3.
A (1-->3,1-->4)-beta-D-glucan endohydrolase [(1-->3,1-->4)-beta-glucanase, EC 3.2.1.73] was detected in wheat (Triticum aestivum L.) leaves by Western analyses and activity measurements. This enzyme is able to degrade the (1-->3,1-->4)-beta-glucans present in the cell walls of cereals and other grass species. In wheat, enzyme levels clearly increased during leaf development, reaching maximum values at full expansion and then decreasing upon leaf ageing. To test whether the abundance of (1-->3,1-->4)-beta-glucanase might be controlled by the carbohydrate status, environmental and nutritional conditions capable of altering the leaf soluble sugar contents were used. Both the activity and enzyme protein levels rapidly and markedly increased when mature leaves were depleted of sugars (e.g. during extended dark periods), whereas elevated carbohydrate contents (e.g. following continuous illumination, glucose supply in the dark or nitrogen deficiency during a light/dark cycle) caused a rapid decrease in (1-->3,1-->4)-beta-glucanase abundance or prevented its accumulation in the leaves. The physiological significance of (1-->3,1-->4)-beta-glucanase accumulation under sugar depletion remains to be elucidated.  相似文献   

4.
Propyl and 2-aminoethyl alpha-D-galactopyranosyl-(1-->3')-beta-lactosides (1 and 2) were prepared from the corresponding perbenzylated trisaccharide allyl glycoside 6 which, in turn, was obtained by methyl triflate promoted alpha-galactosylation of benzylated allyl lactoside acceptor 4 with thiogalactoside 3. Transformation of the allyl moiety in compound 6 into 2-azidoethyl one was achieved by cleavage of the double bond followed by reduction into alcohol 9, subsequent mesylation, and mesylate-->azide substitution. Alternatively trisaccharide 2 was synthesized using alpha-galactosylation of selectively benzoylated 2-azidoethyl lactoside 19 with 3 as the key step.  相似文献   

5.
The chemical synthesis of the bacterial O-antigen from Salmonella serogroup E1, 3-O-(4-O-beta-D-mannopyranosyl-alpha-L-rhamnopyranosyl)-alpha-D-galactos e, presents a particular challenge because it contains a beta-(1-->4) mannosidic linkage to L-rhamnose. We report a chemoenzymatic synthesis of this crucial antigenic material which culminates in the enzymatic formation of the critical beta-mannosyl connection catalyzed by Salmonella GDP-alpha-D-Man:alpha Rha1-->3 alpha Gal-PP-Und beta-(1-->4)-mannosyltransferase (ManT beta 4). In comparison with previous synthetic routes, this method is advantageous since it utilizes intermediates, available in significant yield, which can be readily derivatized from the reducing end to present flexibility for analog construction, while the enzymatic construction of the Man1-->4Rha glycosidic bond is both rapid and occurs in high yield. Furthermore, the reported spectroscopic and enzymatic structural characterization of the trisaccharide product furnishes the first indisputable functional link between wbaO and ManT beta 4 and clearly sets the stage for the future mechanistic study and exploitation of this fascinating glycocatalyst.  相似文献   

6.
Chen L  Kong F 《Carbohydrate research》2002,337(15):1373-1380
A practical synthesis of beta-D-GlcA-(1-->3)-beta-D-Gal-(1-->3)-beta-D-Gal-(1-->4)-beta-D-Xyl-(1-->OMe) was achieved by coupling of methyl 2,3,4-tri-O-acetyl-alpha-D-glucopyranosyluronate trichloroacetimidate with a trisaccharide acceptor. The trisaccharide acceptor was obtained by condensation of 3-O-allyl-2,4,6-tri-O-benzoyl-beta-D-galactopyranosyl-(1-->3)-2,4,6-tri-O-benzoyl-alpha-D-galactopyranosyl trichloroacetimidate with methyl 2,3-di-O-benzoyl-beta-D-xylopyranoside, followed by deallylation. The beta-(1-->3)-linked disaccharide was prepared readily with p-methoxyphenyl 3-O-allyl-2,4,6-tri-O-benzoyl-beta-D-galactopyranoside as the key synthon. The alpha-(1-->3)-linkage was formed in considerable amount with galactose mono- and disaccharide trichloroacetimidate donors with C-2 neighboring group participation.  相似文献   

7.
The frequency of Escherichia coli infection has lead to concerns over pathogenic bacteria in our food supply and a demand for therapeutics. Glycolipids on gut cells serve as receptors for the Shiga-like toxin produced by E. coli. Oligosaccharide moiety analogues of these glycolipids can compete with receptors for the toxin, thus acting as antibacterials. An enzymatic synthesis of the P1 trisaccharide (Galalpha1,4Galbeta1,4GlcNAc), one of the oligosaccharide analogues, was assessed in this study. In the proposed synthetic pathway, UDP-glucose was generated from sucrose with an Anabaena sp. sucrose synthase and then converted with an E. coli UDP-glucose 4-epimerase to UDP-galactose. Two molecules of galactose were linked to N-acetylglucosamine subsequently with a Helicobacter pylori beta-l,4-galactosyltransferase and a Neisseria meningitidis alpha-1,4-galactosyltransferase to produce one molecule of P1 trisaccharide. The four enzymes were coexpressed in a single genetically engineered E. coli strain that was then permeabilized and used to catalyze the enzymatic reaction. P1 trisaccharide was accumulated up to 50 mM (5.4 g in a 200-ml reaction volume), with a 67% yield based on the consumption of N-acetylglucosamine. This study provides an efficient approach for the preparative-scale synthesis of P1 trisaccharide with recombinant bacteria.  相似文献   

8.
alpha-Galactosyl epitopes are carbohydrate structures bearing an alpha-Gal-(1-->3)-Gal terminus (alpha-Gal epitopes). The interaction of these epitopes on the surface of animal cells with anti alpha-Gal antibodies in human serum is believed to be the main cause in antibody-mediated hyperacute rejection in xenotransplantation. In this paper, conformational analysis of an N-linked alpha-D-Galp-(1-->3)-beta-D-Galp-(1-->4)-beta-D-Glcp trisaccharide epitope was conducted in terms of each monosaccharide residue conformation, primary hydroxymethyl group configuration, and interglycosidic conformations. Selective 2D J-delta INEPT experiments have been carried out at three different temperatures to evaluate three-bond, long-range 13C-1H coupling constants for the crucial alpha-(1-->3) linkage. The NMR experimental data were complemented by theoretical calculations. The flexibility and dynamics of the trisaccharide have been studied by Metropolis Monte Carlo simulations. Ensemble-averaged three-bond, long-range 13C-1H coupling constants and nuclear Overhauser effects were in good agreement with the experimental data. The alpha-(1-->3) glycosidic linkage has shown a restricted flexibility as indicated by NMR spectroscopy and molecular modeling.  相似文献   

9.
Bovine beta-(1-->4)-galactosyltransferase was assayed with a series of 5a-carba-sugars, i.e., sugar analogues in which the ring oxygen of pyranose is replaced by a methylene group. The analogues are 5a-carba-sugar of 2-acetamido-2-deoxy-alpha-DL-galactopyranose, both alpha and beta anomers of 2-acetamido-2-deoxy-DL-glucopyranose (5a-carba-DL-GlcNAc), and 2-acetamido-2-deoxy-DL-mannopyranose. Of these analogues, both alpha and beta anomers of 5a-carba-DL-GlcNAc act as an acceptor. Enzymatic synthesis using the alpha and beta anomers of 5a-carba-DL-GlcNAc afforded the corresponding D-Gal-beta-(1-->4)-5a-carba-alpha-D-GlcNAc and D-Gal-beta-(1-->4)-5a-carba-beta-D-GlcNAc on a practical scale, and these structures were confirmed by NMR spectroscopy. These results indicate that the ring oxygen atom in the 5a-carba-D-GlcNAc is not used for specific recognition by bovine beta-(1-->4)-galactosyltransferase.  相似文献   

10.
Galactose oxidase (EC 1.1.3.9, GAO) was used to convert the C-6' OH of Galbeta(1 --> 4)Glcbeta-OBn (5) to the corresponding hydrated aldehyde (7). Chemical modification, through dehydratative coupling and reductive amination, gave rise to a small library of Galbeta(1 --> 4)Glcbeta-OBn analogues (9a-f, 10, 11). UDP-[6-(3)H]Gal studies indicated that alpha1,3-galactosyltransferase recognized the C-6' modified Galbeta(1 --> 4)Glcbeta-OBn analogues (9a-f, 10, 11). Preparative scale reactions ensued, utilizing a single enzyme UDP-Gal conversion as well as a dual enzymatic system (GalE and alpha1,3GalT), taking full advantage of the more economical UDP-Glc, giving rise to compounds 6, 15-22. Galalpha(1 --> 3)Galbeta(1 --> 4)Glcbeta-OBn trisaccharide (6) was produced on a large scale (2 g) and subjected to the same chemoenzymatic modification as stated above to produce C-6" modified derivatives (23-30). An ELISA bioassay was performed utilizing human anti-alphaGal antibodies to study the binding affinity of the derivatized epitopes (6, 15-30). Modifications made at the C-6' position did not alter the IgG antibody's ability to recognize the unnatural epitopes. Modifications made at the C-6" position resulted in significant or complete abrogation of recognition. The results indicate that the C-6' OH of the alphaGal trisaccharide epitope is not mandatory for antibody recognition.  相似文献   

11.
12.
The chemo-enzymatic synthesis is described of tetrasaccharide beta-D-Galp-(1-->4)-beta-D-Glcp-(1-->6)-[beta-D-Galp-(1-->4)]-beta-D-GlcpNAc-(1-->O(CH(2))(6)NH(2) (1) and octasaccharide beta-D-Galp-(1-->4)-beta-D-Glcp-(1-->6)-[beta-D-Galp-(1-->4)]-beta-D-GlcpNAc-(1-->3)-beta-D-Galp-(1-->4)-beta-D-Glcp-(1-->6)-[beta-D-Galp-(1-->4)]-beta-D-GlcpNAc-(1-->O(CH(2))(6)NH(2) (2), representing one and two tetrasaccharide repeating units of Streptococcus pneumoniae serotype 14 capsular polysaccharide. In a chemical approach, the intermediate linear trisaccharide 3 and hexasaccharide 4 were synthesized. Galactose residues were beta-(1-->4)-connected to the internal N-acetyl-beta-D-glucosamine residues by using bovine milk beta-1,4-galactosyltransferase. Both title oligosaccharides will be conjugated to carrier proteins to be tested as potential vaccines in animal models.  相似文献   

13.
The frequency of Escherichia coli infection has lead to concerns over pathogenic bacteria in our food supply and a demand for therapeutics. Glycolipids on gut cells serve as receptors for the Shiga-like toxin produced by E. coli. Oligosaccharide moiety analogues of these glycolipids can compete with receptors for the toxin, thus acting as antibacterials. An enzymatic synthesis of the P1 trisaccharide (Galα1,4Galβ1,4GlcNAc), one of the oligosaccharide analogues, was assessed in this study. In the proposed synthetic pathway, UDP-glucose was generated from sucrose with an Anabaena sp. sucrose synthase and then converted with an E. coli UDP-glucose 4-epimerase to UDP-galactose. Two molecules of galactose were linked to N-acetylglucosamine subsequently with a Helicobacter pylori β-l,4-galactosyltransferase and a Neisseria meningitidis α-1,4-galactosyltransferase to produce one molecule of P1 trisaccharide. The four enzymes were coexpressed in a single genetically engineered E. coli strain that was then permeabilized and used to catalyze the enzymatic reaction. P1 trisaccharide was accumulated up to 50 mM (5.4 g in a 200-ml reaction volume), with a 67% yield based on the consumption of N-acetylglucosamine. This study provides an efficient approach for the preparative-scale synthesis of P1 trisaccharide with recombinant bacteria.  相似文献   

14.
The title pentasaccharide was synthesized via a 2+3 strategy. The disaccharide donor, 3-O-acetyl-2-O-benzoyl-4,6-O-benzylidene-beta-D-glucopyranosyl-(1-->3)-2-O-benzoyl-4,6-O-benzylidene-alpha-D-glucopyranosyl trichloroacetimidate (8), was obtained by selective coupling of allyl 2-O-benzoyl-4,6-O-benzylidene-alpha-D-glucopyranoside with 3-O-acetyl-2-O-benzoyl-4,6-O-benzylidene-alpha-D-glucopyranosyl trichloroacetimidate (4), followed by deallylation, and trichloroacetimidation. Meanwhile, the trisaccharide acceptor, allyl 2-O-benzoyl-4,6-O-benzylidene-beta-D-glucopyranosyl-(1-->3)-2-O-benzoyl-4,6-O-benzylidene-beta-D-glucopyranosyl-(1-->3)-2-O-benzoyl-4,6-O-benzylidene-beta-D-glucopyranoside (12), was prepared by coupling of allyl 2-O-benzoyl-4,6-O-benzylidene-beta-D-glucopyranosyl-(1-->3)-2-O-benzoyl-4,6-O-benzylidene-beta-D-glucopyranoside with 4, followed by deacetylation. Condensation of 8 with 12, followed by epoxidation, and deprotection, gave the target pentaoside.  相似文献   

15.
alpha-Galactosyl epitopes (or alpha-Gal, oligosaccharides with a terminal Galalpha1,3Gal sequence) are a class of biologically important oligosaccharides in great demand in bulk quantities for basic and clinical studies on preventing hyperacute rejection in pig-to-primate organ xenotransplantation. A truncated bovine alpha-1, 3-galactosyltransferase, the key enzyme responsible for the biosynthesis of the terminal structure of alpha-Gal, was cloned and overexpressed previously. The acceptor specificity was further studied in the present paper, and lactose and galactose derivatives were found to be good acceptors. To develop a more proficient reaction process, we report herein an example of an efficient enzymatic synthesis of alpha-Gal oligosaccharides catalyzed by the combination of two recombinant Escherichia coli whole cells harboring the genes of a UDP-galactose 4-epimerase and the alpha-1, 3-galactosyltransferase, respectively. Using lactosyl azide (LacN(3)) as the acceptor for the glycosyltransferase, the combined use of the two recombinant cells efficiently produced alpha-Gal epitope Gal alpha1,3LacN(3) in 60-68% yield.  相似文献   

16.
Mei X  Heng L  Fu M  Li Z  Ning J 《Carbohydrate research》2005,340(15):2345-2351
A concise and effective synthesis of lauryl heptasaccharide 17 was achieved from the key intermediates lauryl 2,3,4,6-tetra-O-benzoyl-beta-D-galactopyranosyl-(1-->4)-2,3,6-tri-O-benzoyl-beta-D-glucopyranosyl-(1-->3)-2,4-di-O-benzoyl-beta-D-glucopyranoside (10) and isopropyl 2,4,6-tri-O-acetyl-3-O-allyl-beta-D-glucopyranosyl-(1-->3)-[2,3,4,6-tetra-O-benzoyl-beta-D-glucopyranosyl-(1-->6)]-2,4-di-O-acetyl-beta-D-glucopyranosyl-(1-->3)-2,4,6-tri-O-acetyl-1-thio-beta-D-glucopyranoside (15). The key trisaccharide glycosyl acceptor 10 was constructed by coupling 2,3,4,6-tetra-O-benzoyl-beta-D-galactopyranosyl-(1-->4)-2,3,6-tri-O-benzoyl-alpha-D-glucopyranosyl trichloroacetimidate (3) with lauryl 6-O-acetyl-2,4-di-O-benzoyl-beta-D-glucopyranoside (9), followed by deacetylation. The thioglycoside donor 15 was obtained by condensation of 2,4,6-tri-O-acetyl-3-O-allyl-beta-D-glucopyranosyl-(1-->3)-[2,3,4,6-tetra-O-benzoyl-beta-D-glucopyranosyl-(1-->6)]-2,4-di-O-acetyl-alpha-D-glucopyranosyl trichloroacetimidate (11) with isopropyl 4,6-O-benzylidene-1-thio-beta-D-glucopyranoside (12), followed by debenzylidenation and acetylation. A bioassay of the inhibition of S180 noumenal tumors showed that lauryl heptasaccharide 17 could be employed as a potential agent for cancer treatment.  相似文献   

17.
The effect of substitution of the HO-6 of D-galactose with fluorine on the ability of alpha-(1-->3)-galactosyltransferase (EC 2.4.1.151) and beta-(1-->4)-galactosyltransferase (EC 2.4.1.22) to catalyze its transfer from UDP to an appropriate acceptor was determined. HPLC analyses indicated that each transferase properly catalyzed formation of the expected product [beta-D-Gal-(1-->4)-D-GlcNAc] for the beta-(1-->4)-galactosyltransferase and alpha-D-Gal-(1-->3)-beta-D-Gal-(1-->4)-D-GlcNAc for the alpha-(1-->3)-D-galactosyltransferase] when UDP-alpha-D-Gal was the substrate. When UDP-6-deoxy-6-fluoro-alpha-D-galactose (6) was used in conjunction with each transferase, no product indicative of transfer of 6-deoxy-6-fluoro-D-galactose to its respective acceptor sugar was identified. 6-Deoxy-6-fluoro-D-galactose (3) was obtained by hydrolysis of methyl 6-deoxy-6-fluoro-alpha-D-galactopyranoside, synthesized by the selective fluorination of methyl alpha-D-galactopyranoside with diethylaminosulfur trifluoride (DAST), with aqueous trifluoroacetic acid. Acetylation of 3 gave crystalline 1,2,3,4-tetra-O-acetyl-6-deoxy-6-fluoro-beta-D-galactopyranose, which was converted to the corresponding 1-alpha-phosphate and used for the synthesis of 6.  相似文献   

18.
Synthases of cellulose, chitin, hyaluronan, and all other polymers containing (1-->4)beta-linked glucosyl, mannosyl and xylosyl units have overcome a substrate orientation problem in catalysis because the (1-->4)beta-linkage requires that each of these sugar units be inverted nearly 180 degrees with respect to its neighbors. We and others have proposed that this problem is solved by two modes of glycosyl transfer within a single catalytic subunit to generate disaccharide units, which, when linked processively, maintain the proper orientation without rotation or re-orientation of the synthetic machinery in 3-dimensional space. A variant of the strict (1-->4)beta-D-linkage structure is the mixed-linkage (1-->3),(1-->4)beta-D-glucan, a growth-specific cell wall polysaccharide found in grasses and cereals. beta-Glucan is composed primarily of cellotriosyl and cellotetraosyl units linked by single (1-->3)beta-D-linkages. In reactions in vitro at high substrate concentration, a polymer composed of almost entirely cellotriosyl and cellopentosyl units is made. These results support a model in which three modes of glycosyl transfer occur within the synthase complex instead of just two. The generation of odd numbered units demands that they are connected by (1-->3)beta-linkages and not (1-->4)beta-. In this short review of beta-glucan synthesis in maize, we show how such a model not only provides simple mechanisms of synthesis for all (1-->4)beta-D-glycans but also explains how the synthesis of callose, or strictly (1-->3)beta-D-glucans, occurs upon loss of the multiple modes of glycosyl transfer to a single one.  相似文献   

19.
P Xu  J Wang  G B Fincher 《Gene》1992,120(2):157-165
The (1-->3)-beta-D-glucan glucanohydrolases [(1-->3)-GGH; EC 3.2.1.39] of barley (Hordeum vulgare L., cv Clipper) are encoded by a small gene family. Amino acid sequences deduced from cDNA and genomic clones for six members of the family exhibit overall positional identities ranging from 44% to 78%. Specific DNA and oligodeoxyribonucleotide (oligo) probes have been used to demonstrate that the (1-->3)-GGH-encoding genes are differentially transcribed in young roots, young leaves and the aleurone of germinated grain. The high degree of sequence homology, coupled with characteristic patterns of codon usage and insertion of a single intron at a highly conserved position in the signal peptide region, indicate that the genes have shared a common evolutionary history. Similar structural features in genes encoding barley (1-->3,1-->4)-beta-glucan 4-glucanohydrolases [(1-->3,1-->4)-GGH; EC 3.2.1.73] further indicate that the (1-->3)-GGHs and (1-->3,1-->4)-GGHs are derived from a single 'super' gene family, in which genes encoding enzymes with related yet quite distinct substrate specificities have evolved, with an associated specialization of function. The (1-->3,1-->4)-GGHs mediate in plant cell wall metabolism through their ability to hydrolyse the (1-->3,1-->4)-beta-glucans that are the major constituents in barley walls, while the (1-->3)-GGHs, which are unable to degrade the plant (1-->3,1-->4)-beta-glucans, can hydrolyse the (1-->3)- and (1-->3,1-->6)-beta-glucans of fungal cell walls.  相似文献   

20.
(1-->3)-beta-D-Glucans have been recognized as a potential causative agent responsible for bioaerosol-induced respiratory symptoms observed in both indoor and occupational environments. A specific enzyme immunoassay was developed to quantify (1-->6) branched, (1-->3)-beta-D-glucans in environmental samples. The assay was based on the use of a high-affinity receptor (galactosyl ceramide) specific for (1-->3)-beta-D-glucans as a capture reagent and a monoclonal antibody specific for fungal cell wall beta-D-glucans as a detector reagent. The assay was highly specific for (1-->6) branched, (1-->3)-beta-D-glucans (such as that from Saccharomyces cerevisiae) and did not show any response at 200 ng/ml to curdlan, laminarin, pustulan, dextran, mannan, carboxymethyl cellulose, and endotoxins. The detection level was 0.8 ng/ml for baker's yeast glucan and Betafectin. A coefficient of variation of 7.8% was obtained for (1-->3)-beta-D-glucans in house dust samples. Metal working fluids spiked with (1-->3)-beta-D-glucans inhibited the glucan assay. Because the assay is specific for (1-->6) branched, (1-->3)-beta-D-glucans and is sensitive and reproducible, it will be useful for the investigation of health effects from exposure to this class of biologically active molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号