首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.

Introduction

Antibodies towards type II collagen (CII) are detected in patients with rheumatoid arthritis (RA) and in non-human primates and rodents with collagen induced arthritis (CIA). We have previously shown that antibodies specific for several CII-epitopes are pathogenic using monoclonal antibodies from arthritic mice, although the role of different anti-CII epitopes has not been investigated in detail in other species. We therefore performed an inter-species comparative study of the autoantibody response to CII in patients with RA versus monkeys and mice with CIA.

Methods

Analysis of the full epitope repertoire along the disease course of CIA was performed using a library of CII triple-helical peptides. The antibody responses to the major CII epitopes were analyzed in sera and synovial fluid from RA patients, and in sera from rhesus monkeys (Macaca mulatta), common marmosets (Callithrix jacchus) and mice.

Results

Many CII epitopes including the major C1, U1, and J1 were associated with established CIA and arginine residues played an important role in the anti-CII antibody interactions. The major epitopes were also recognized in RA patients, both in sera and even more pronounced in synovial fluid: 77% of the patients had antibodies to the U1 epitope. The anti-CII immune response was not restricted to the anti-citrulline protein antibodies (ACPA) positive RA group.

Conclusion

CII conformational dependent antibody responses are common in RA and are likely to originate from rheumatoid joints but did not show a correlation with ACPA response. Importantly, the fine specificity of the anti-CII response is similar with CIA in monkeys and rodents where the recognized epitopes are conserved and have a major pathogenic role. Thus, anti-CII antibodies may both contribute to, as well as be the consequence of, local joint inflammation.  相似文献   

2.
Song X  Shen J  Wen H  Zhong Z  Luo Q  Chu D  Qi Y  Xu Y  Wei W 《PloS one》2011,6(8):e23453

Background

The hygiene hypothesis suggests that helminth infections prevent a range of autoimmune diseases.

Methodology/Principal Findings

To investigate the effects of S. japonicum infection on collagen-induced arthritis (CIA), male DBA/1 mice were challenged with unisexual or bisexual S. japonicum cercariae two weeks prior to bovine type II collagen (CII) immunization or at the onset of CIA. S. japonicum infection prior to CII immunization significantly reduced the severity of CIA. ELISA (enzyme linked immunosorbent assay) showed that the levels of anti-CII IgG and IgG2a were reduced in prior schistosome-infected mice, while anti-CII IgG1 was elevated. Splenocyte proliferation against both polyclonal and antigen-specific stimuli was reduced by prior schistosome infection as measured by tritiated thymidine incorporation (3H-TdR). Cytokine profiles and CD4+ T cells subpopulation analysis by ELISA and flow cytometry (FCM) demonstrated that prior schistosome infection resulted in a significant down-regulation of pro-inflammatory cytokines (IFN-γ, TNF-α, IL-1β and IL-6) and Th1 cells, together with up-regulation of the anti-inflammatory cytokine IL-10 and Th2 cells. Interestingly, the expansion of Treg cells and the reduction of Th17 cells were only observed in bisexually infected mice. In addition, prior schistosome infection notably reduced the expression of pro-inflammatory cytokines and receptor activator of NF-κB ligand (RANKL) in the inflamed joint. However, the disease was exacerbated at one week after infection when established CIA mice were challenged with bisexual cercariae.

Conclusion/Significance

Our data provide direct evidence that the Th2 response evoked by prior S. japonicum infection can suppress the Th1 response and pro-inflammatory mediator and that bisexual infection with egg-laying up-regulates the Treg response and down-regulates the Th17 response, resulting in an amelioration of autoimmune arthritis. The beneficial effects might depend on the establishment of a Th2-dominant response rather than the presence of the eggs. Our results suggest that anti-inflammatory molecules from the parasite could treat autoimmune diseases.  相似文献   

3.

Objective

To evaluate the ability of the glycolytic enzyme alpha-enolase (ENO1) or its immunodominant peptide (pEP1) to reduce the severity of CIA in DBA/1 mice when injected in a prophylactic way.

Methods

Mice were treated with mouse ENO1 or pEP1 one day prior to collagen II immunization. Clinical assessment was evaluated using 4 parameters (global and articular scores, ankle thickness and weight). Titers of serum anti-ENO1, anti-cyclic citrullinated peptides (anti-CCP) and anti-CII (total IgG and IgG1/IgG2a isotypes) antibodies were measured by ELISA at different time-points. Disease activity was assessed by histological analysis of both anterior and hind paws at the end of experimentation.

Results

Prophylactic injection of 100 μg of ENO1 reduced severity of CIA. Serum levels of anti-CII antibodies were reduced in ENO1-treated mice. Concordantly, ENO1-treated mice joints presented less severe histological signs of arthritis. ENO1 did not induce a shift toward a Th2 response since IgG1/IgG2a ratio of anti-CII antibodies remained unchanged and IL-4 serum levels were similar to those measured in the control group.

Conclusions

Pre-immunization with ENO1 or its immunodominant peptide pEP1 reduces CIA severity at the clinical, immunological and histological levels. Effects of pEP1 were less pronounced. This immunomodulatory effect is associated with a reduction in anti-CII antibodies production but is not due to a Th1/Th2 shift.  相似文献   

4.

Objective

The present study aimed to explore the hypothesis that bile salt-stimulated lipase (BSSL), in addition to being a key enzyme in dietary fat digestion during early infancy, plays an important role in inflammation, notably arthritis.

Methods

Collagen-induced arthritis (CIA) and pristane-induced arthritis (PIA) in rodents are commonly used experimental models that reproduce many of the pathogenic mechanisms of human rheumatoid arthritis, i.e. increased cellular infiltration, synovial hyperplasia, pannus formation, and erosion of cartilage and bone in the distal joints. We used the CIA model to compare the response in BSSL wild type (BSSL-WT) mice with BSSL-deficient ‘knock-out’ (BSSL-KO) and BSSL-heterozygous (BSSL-HET) littermates. We also investigated if intraperitoneal injection of BSSL-neutralizing antibodies affected the development or severity of CIA and PIA in mice and rats, respectively.

Results

In two consecutive studies, we found that BSSL-KO male mice, in contrast to BSSL-WT littermates, were significantly protected from developing arthritis. We also found that BSSL-HET mice were less prone to develop disease compared to BSSL-WT mice, but not as resistant as BSSL-KO mice, suggesting a gene-dose effect. Moreover, we found that BSSL-neutralizing antibody injection reduced both the incidence and severity of CIA and PIA in rodents.

Conclusion

Our data strongly support BSSL as a key player in the inflammatory process, at least in rodents. It also suggests the possibility that BSSL-neutralizing agents could serve as a therapeutic model to reduce the inflammatory response in humans.  相似文献   

5.

Introduction

Interleukin (IL)-36 refers to three related IL-1 family cytokines, IL-36α, IL-36β, and IL-36γ, that bind to the IL-36 receptor (IL-36R). IL-36 exerts proinflammatory effects in skin and lung and stimulates T cell responses. In the present study, we examined the expression and function of IL-36R and its ligands in experimental arthritis.

Methods

Collagen-induced arthritis (CIA), antigen-induced arthritis (AIA), and K/BxN serum transfer-induced arthritis were induced according to standard protocols. Messenger RNA levels for IL-36R and its ligands in the joints of mice with CIA were determined by RT-qPCR. Mice with CIA were injected with a blocking monoclonal anti-IL-36R, a blocking anti-IL-1RI, or their isotype-matched control antibodies at the time of arthritis onset. Anti-IL-36R or control antibodies were also injected at the time of AIA induction. Finally, IL-36R-deficient mice were examined in AIA and serum transfer-induced arthritis. The development and severity of arthritis were assessed by clinical and histological scoring.

Results

IL-36R, IL-36Ra and IL-36γ mRNA were detected in the joints of mice with CIA, but their levels did not correlate with arthritis severity. As opposed to anti-IL-1RI antibody treatment, the injection of an anti-IL-36R antibody was devoid of effect on the development and severity of CIA. The severity of joint inflammation and structural damage in AIA was also unaltered by anti-IL-36R antibody treatment. Finally, the severity of AIA and K/BxN serum transfer-induced arthritis was similar in IL-36R-deficient and wild-type mice.

Conclusions

The development and severity of experimental arthritis are independent of IL-36R signaling.  相似文献   

6.

Objective

Tolerogenic dendritic cells (tDCs) are immunosuppressive cells with potent tolerogenic ability and are promising immunotherapeutic tools for treating rheumatoid arthritis (RA). However, it is currently unknown whether allogeneic tDCs (allo-tDCs) induce tolerance in RA, and whether the numbers of adoptively transferred allo-tDCs, or the requirement for pulsing with relevant auto-antigens are important.

Methods

tDCs were derived from bone marrow precursors of C57BL/B6 mice, which were induced in vitro by GM-CSF, IL-10 and TGF-β1. Collagen-induced arthritis (CIA) was modeled in D1 mice by immunization with type II collagen (CII) to test the therapeutic ability of allo-tDCs against CIA. Clinical and histopathologic scores, arthritic incidence, cytokine and anti-CII antibody secretion, and CD4+Th subsets were analyzed.

Results

tDCs were characterized in vitro by a stable immature phonotype and a potent immunosuppressive ability. Following adoptive transfer of low doses (5×105) of CII-loaded allo-tDCs, a remarkable anti-arthritic activity, improved clinical scores and histological end-points were found. Serological levels of inflammatory cytokines and anti-CII antibodies were also significantly lower in CIA mice treated with CII-pulsed allo-tDCs as compared with allo-tDCs. Moreover, treatment with allo-tDCs altered the proportion of Treg/Th17 cells.

Conclusion

These findings suggested that allo-tDCs, especially following antigen loading, reduced the severity of CIA in a dose-dependent manner. The dampening of CIA was associated with modulated cytokine secretion, Treg/Th17 polarization and inhibition of anti-CII secretion. This study highlights the potential therapeutic utility of allo-tDCs in autoimmune arthritis and should facilitate the future design of allo-tDC immunotherapeutic strategies against RA.  相似文献   

7.

Introduction

Statins (hydroxymethylglutaryl coenzyme A reductase inhibitors) are effective in reducing the risk of cardiovascular morbidity and mortality in patients with hyperlipidemia, hypertension, or type II diabetes. Next to their cholesterol-lowering activity, statins have immunomodulatory properties. Based on these properties, we hypothesized that statin use may eventually lead to dysregulation of immune responses, possibly resulting in autoimmunity. We have recently shown in an observational study that statin use was associated with an increased risk of developing rheumatoid arthritis. Our objective was to investigate whether a causal relationship could be established for this finding.

Methods

The mouse collagen type II (CII)-induced arthritis (CIA) model was used, with immunization, challenge, and euthanasia at days 0, 21, and 42, respectively. Statins were given orally before (day -28 until day 21) or after (day 21 until day 42) CIA induction. Atorvastatin (0.2 mg/day) or pravastatin (0.8 mg/day) was administered. Arthritis was recorded three times a week. Serum anti-CII autoantibodies and cytokines in supernatants from Concanavalin-A-stimulated lymph node cells and CII-stimulated spleen cells were measured.

Results

Statin administration accelerated arthritis onset and resulted in 100% arthritic animals, whereas only seven out of 12 nonstatin control animals developed arthritis. Atorvastatin administration after CIA induction resulted in earlier onset than atorvastatin administration before induction, or than pravastatin administration before or after induction. The arthritic score of animals given pravastatin before CIA induction was similar to that of the nonstatin controls, whereas the other groups that received statins showed higher arthritic scores. Atorvastatin administration, especially before CIA induction, increased anti-CII autoantibody production. IL-2 and IL-17 production by lymph node and spleen cells was higher in CIA animals than in PBS controls, but was not affected by statin administration. While IFNγ production was not affected by CIA induction, atorvastatin administration before CIA induction increased the production of this cytokine.

Conclusion

These data support previous results from our observational studies, indicating a role for statins in the induction of autoimmunity.  相似文献   

8.

Objective

The aim of this study was to investigate the possibility that periarticular osteophytes plays a role as a appendicular joint stress marker (JSM) which reflects the biomechanical stresses on individuals and populations.

Methods

A total of 366 contemporary Japanese skeletons (231 males, 135 females) were examined closely to evaluate the periarticular osteophytes of six major joints, the shoulder, elbow, wrist, hip, knee, and ankle and osteophyte scores (OS) were determined using an original grading system. These scores were aggregated and analyzed statistically from some viewpoints.

Results

All of the OS for the respective joints were correlated logarithmically with the age-at-death of the individuals. For 70 individuals, in whom both sides of all six joints were evaluated without missing values, the age-standardized OS were calculated. A right side dominancy was recognized in the joints of the upper extremities, shoulder and wrist joints, and the bilateral correlations were large in the three joints on the lower extremity. For the shoulder joint and the hip joint, it was inferred by some distinctions that systemic factors were relatively large. All of these six joints could be assorted by the extent of systemic and local factors on osteophytes formation. Moreover, when the age-standardized OS of all the joints was summed up, some individuals had significantly high total scores, and others had significantly low total scores; namely, all of the individuals varied greatly in their systemic predisposition for osteophytes formation.

Conclusions

This study demonstrated the significance of periarticular osteophytes; the evaluating system for OS could be used to detect differences among joints and individuals. Periarticular osteophytes could be applied as an appendicular joint stress marker (JSM); by applying OS evaluating system for skeletal populations, intra-skeletal and inter-skeletal variations in biomechanical stresses throughout the lives could be clarified.  相似文献   

9.

Introduction

The aim of this study was to determine the factors, including markers of bone resorption and bone formation, which determine catabolic and anabolic periarticular bone changes in patients with rheumatoid arthritis (RA).

Methods

Forty RA patients received high-resolution peripheral quantitative computed tomography (HR-pQCT) analysis of the metacarpophalangeal joints II and III of the dominantly affected hand at two sequential time points (baseline, one year follow-up). Erosion counts and scores as well as osteophyte counts and scores were recorded. Simultaneously, serum markers of bone resorption (C-terminal telopeptide of type I collagen (CTX I), tartrate-resistant acid phosphatase 5b (TRAP5b)), bone formation (bone alkaline phosphatase (BAP), osteocalcin (OC)) and calcium homeostasis (parathyroid hormone (PTH), 25-hydroxyvitamin D3 (Vit D)) were assessed. Bone biomarkers were correlated to imaging data by partial correlation adjusting for various demographic and disease-specific parameters. Additionally, imaging data were analyzed by mixed linear model regression.

Results

Partial correlation analysis showed that TRAP5b levels correlate significantly with bone erosions, whereas BAP levels correlate with osteophytes at both time points. In the mixed linear model with erosions as the dependent variable, disease duration (P <0.001) was the key determinant for these catabolic bone changes. In contrast, BAP (P = 0.001) as well as age (P = 0.018), but not disease duration (P = 0.762), were the main determinants for the anabolic changes (osteophytes) of the periarticular bone in patients with RA.

Conclusions

This study shows that structural bone changes assessed with HR-pQCT are accompanied by alterations in systemic markers of bone resorption and bone formation. Besides, it can be shown that bone erosions in RA patients depend on disease duration, whereas osteophytes are associated with age as well as serum level of BAP. Therefore, these data not only suggest that different variables are involved in formation of bone erosions and osteophytes in RA patients, but also that periarticular bone changes correlate with alterations in systemic markers of bone metabolism, pointing out BAP as an important parameter.  相似文献   

10.

Introduction

Endosomal toll-like receptors (TLRs) have recently emerged as potential contributors to the inflammation observed in human and rodent models of rheumatoid arthritis (RA). This study aims to evaluate the role of endosomal TLRs and in particular TLR7 in the murine collagen induced arthritis (CIA) model.

Methods

CIA was induced by injection of collagen in complete Freund''s adjuvant. To investigate the effect of endosomal TLRs in the CIA model, mianserin was administered daily from the day of disease onset. The specific role of TLR7 was examined by inducing CIA in TLR7-deficient mice. Disease progression was assessed by measuring clinical score, paw swelling, serum anti-collagen antibodies histological parameters, cytokine production and the percentage of T regulatory (Treg) cells.

Results

Therapeutic administration of mianserin to arthritic animals demonstrated a highly protective effect on paw swelling and joint destruction. TLR7-/- mice developed a mild arthritis, where the clinical score and paw swelling were significantly compromised in comparison to the control group. The amelioration of arthritis by mianserin and TLR7 deficiency both corresponded with a reduction in IL-17 responses, histological and clinical scores, and paw swelling.

Conclusions

These data highlight the potential role for endosomal TLRs in the maintenance of inflammation in RA and support the concept of a role for TLR7 in experimental arthritis models. This study also illustrates the potential benefit that may be afforded by therapeutically inhibiting the endosomal TLRs in RA.  相似文献   

11.

Introduction

Rheumatoid arthritis (RA) is a systemic disease manifested by chronic inflammation in multiple articular joints, including the knees and small joints of the hands and feet. We have developed a unique modification to a clinically accepted method for delivering therapies directly to the synovium. Our therapy is based on our previous discovery of an analog peptide (A9) with amino acid substitutions made at positions 260 (I to A), 261 (A to B), and 263 (F to N) that could profoundly suppress immunity to type II collagen (CII) and arthritis in the collagen-induced arthritis model (CIA).

Methods

We engineered an adenoviral vector to contain the CB11 portion of recombinant type II collagen and used PCR to introduce point mutations at three sites within (CII124-402, 260A, 261B, 263D), (rCB11-A9) so that the resulting molecule contained the A9 sequence at the exact site of the wild-type sequence.

Results

We used this construct to target intra-articular tissues of mice and utilized the collagen-induced arthritis model to show that this treatment strategy provided a sustained, local therapy for individual arthritic joints, effective whether given to prevent arthritis or as a treatment. We also developed a novel system for in vivo bioimaging, using the firefly luciferase reporter gene to allow serial bioluminescence imaging to show that luciferase can be detected as late as 18 days post injection into the joint.

Conclusions

Our therapy is unique in that we target synovial cells to ultimately shut down T cell-mediated inflammation. Its effectiveness is based on its ability to transform potential inflammatory T cells and/or bystander T cells into therapeutic (regulatory-like) T cells which secrete interleukin (IL)-4. We believe this approach has potential to effectively suppress RA with minimal side effects.  相似文献   

12.

Introduction

Juvenile idiopathic arthritis (JIA) is a disease associated with loss of bone mass, deterioration in bone mass quality and an increased risk of fractures. The objective of this study was to evaluate factors that predict bone mineral density (BMD) alterations in young adult patients with active JIA before and during therapy with tumour necrosis factor α (TNFα) inhibitors.

Methods

Thirty-one patients (twelve males and nineteen females; mean age =25.1 ± 6.1 years) with active JIA (mean Disease Activity Score in 28 joints (DAS28) =6.36 ± 0.64; mean high-sensitivity C-reactive protein (hsCRP) =18.36 ± 16.95 mg/L) were investigated. The control group consisted of 84 healthy individuals matched by sex and age. BMD, bone turnover markers and serum concentrations of soluble receptor activator of nuclear factor κB ligand, osteoprotegerin, dickkopf Wnt signalling pathway inhibitor 1 (Dkk1) and sclerostin were evaluated.

Results

Baseline BMD values in the lumbar spine, proximal femur, femoral neck and distal radius were significantly lower in patients with JIA compared to healthy control participants. Baseline sclerostin serum concentrations were significantly higher in patients with JIA compared to control participants. After 2 years of treatment with TNFα inhibitors, BMD was significantly increased in the lumbar spine. This increase correlated with a drop in DAS28 score. A statistically significant correlation between hsCRP and Dkk1 was found at baseline, as well as during the 2-year follow-up period. A significant reduction in serum sclerostin after 1 year of therapy was predictive of a drop in DAS28 score observed with a 1-year delay after reduction of serum sclerostin.

Conclusion

A significant correlation between the sclerostin serum concentration and the number of tender and swollen joints, but not BMD, supports the hypothesis that chondrocytes and cells of the subchondral bone may contribute to circulating sclerostin in JIA.  相似文献   

13.

Objective

SH3BP2 is a signaling adapter protein which regulates immune and skeletal systems. Gain-of-function mutations in SH3BP2 cause cherubism, characterized by jawbone destruction. This study was aimed to examine the role of SH3BP2 in inflammatory bone loss using a collagen-induced arthritis (CIA) model.

Methods

CIA was induced in wild-type (Sh3bp2+/+) and heterozygous P416R SH3BP2 cherubism mutant knock-in (Sh3bp2KI/+) mice, an SH3BP2 gain-of-function model. Severity of the arthritis was determined by assessing the paw swelling and histological analyses of the joints. Micro-CT analysis was used to determine the levels of bone loss. Inflammation and osteoclastogenesis in the joints were evaluated by quantitating the gene expression of inflammatory cytokines and osteoclast markers. Furthermore, involvement of the T- and B-cell responses was determined by draining lymph node cell culture and measurement of the serum anti-mouse type II collagen antibody levels, respectively. Finally, roles of the SH3BP2 mutation in macrophage activation and osteoclastogenesis were determined by evaluating the TNF-α production levels and osteoclast formation in bone marrow-derived M-CSF-dependent macrophage (BMM) cultures.

Results

Sh3bp2KI/+ mice exhibited more severe inflammation and bone loss, accompanying an increased number of osteoclasts. The mRNA levels for TNF-α and osteoclast marker genes were higher in the joints of Sh3bp2KI/+ mice. Lymph node cell culture showed that lymphocyte proliferation and IFN-γ and IL-17 production were comparable between Sh3bp2+/+ and Sh3bp2KI/+ cells. Serum anti-type II collagen antibody levels were comparable between Sh3bp2+/+ and Sh3bp2KI/+ mice. In vitro experiments showed that TNF-α production in Sh3bp2KI/+ BMMs is elevated compared with Sh3bp2+/+ BMMs and that RANKL-induced osteoclastogenesis is enhanced in Sh3bp2KI/+ BMMs associated with increased NFATc1 nuclear localization.

Conclusion

Gain-of-function of SH3BP2 augments inflammation and bone loss in the CIA model through increased macrophage activation and osteoclast formation. Therefore, modulation of the SH3BP2 expression may have therapeutic potential for the treatment of rheumatoid arthritis.  相似文献   

14.

Introduction

Angiogenesis plays a critical role in synovial inflammation and joint destruction in rheumatoid arthritis (RA). Vascular endothelial growth factor A (VEGF-A) and angiopoietins are two important mediators of synovial angiogenesis. We have previously developed a novel chimeric decoy receptor, namely, double-antiangiogenic protein (DAAP), which can both bind VEGF-A and angiopoietins and block their actions. This study was performed to evaluate the antiarthritic effect of DAAP and the combination effect with the tumor necrosis factor α (TNF-α) inhibitor in collagen-induced arthritis (CIA).

Methods

Recombinant DAAP, VEGF-Trap, Tie2-Fc and dimeric Fc proteins were produced and purified from CHO cells in large-scale bioreactors. CIA was induced in DBA/1 mice with type II collagen. The preventive effect of DAAP was determined and compared with other decoy receptors such as VEGF-Trap or Tie2-Fc, which block VEGF-A or angiopoietins, respectively. The clinical, radiographic, pathologic and immunohistochemical analyses were performed in CIA mice. The levels of matrix metalloprotease 3 (MMP-3) and interleukin 1β (IL-1β) were quantified by enzyme-linked immunosorbent assay, and receptor activator of nuclear factor κB ligand (RANKL) mRNA levels were measured by polymerase chain reaction. Finally, we investigated the combination effects of DAAP with a low dose of TNF-α decoy receptor (etanercept 10 mg/kg).

Results

On the basis of clinical and radiographic evaluation, DAAP had a much greater inhibitory effect than VEGF-Trap or Tie2-Fc on arthritis severity and bone destruction. These inhibitory effects were accompanied by significantly diminishing pathologic abnormalities, CD31-positive vasculature and synovial infiltration by F4/80-positive macrophages. The levels of MMP-3, IL-1β and RANKL were much lower in the DAAP-injected group than those of the control. Furthermore, DAAP showed a therapeutic effect and a combination effect with etanercept when injected after arthritis onset in established CIA.

Conclusions

DAAP has not only potent prophylactic effects on both inflammation and bone destruction but also therapeutic effects, alone and in combination with a TNF-α inhibitor in CIA mice. These results suggest that DAAP could be used as an effective new therapeutic agent for RA.  相似文献   

15.

Introduction

Biological drugs are effective in patients with rheumatoid arthritis (RA), but increase severe infections. The CC chemokine receptor (CCR) 9 antagonist was effective for Crohn’s disease without critical adverse effects including infections in clinical trials. The present study was carried out to explore the pathogenic roles of chemokine (C-C motif) ligand (CCL) 25 and its receptor, CCR9, in autoimmune arthritis and to study if the CCR9 antagonist could be a new treatment for RA.

Methods

CCL25 and CCR9 expression was examined with immunohistochemistry and Western blotting. Concentration of interleukin (IL)-6, matrix metalloproteinase (MMP)-3 and tumor necrosis factor (TNF)-α was measured with enzyme-linked immunosorbent assays. Effects of abrogating CCR9 on collagen-induced arthritis (CIA) was evaluated using CCR9-deficient mice or the CCR9 antagonist, CCX8037. Fluorescence labeled-CD11b+ splenocytes from CIA mice were transferred to recipient CIA mice and those infiltrating into the synovial tissues of the recipient mice were counted.

Results

CCL25 and CCR9 proteins were found in the RA synovial tissues. CCR9 was expressed on macrophages, fibroblast-like synoviocytes (FLS) and dendritic cells in the synovial tissues. Stimulation with CCL25 increased IL-6 and MMP-3 production from RA FLS, and IL-6 and TNF-α production from peripheral blood monocytes. CIA was suppressed in CCR9-deficient mice. CCX8037 also inhibited CIA and the migration of transferred CD11b+ splenocytes into the synovial tissues.

Conclusions

The interaction between CCL25 and CCR9 may play important roles in cell infiltration into the RA synovial tissues and inflammatory mediator production. Blocking CCL25 or CCR9 may represent a novel safe therapy for RA.  相似文献   

16.

Introduction

Hepatocyte growth factor (HGF) is a potent proangiogenic molecule that induces neovascularization. The HGF antagonist, NK4, competitively antagonizes HGF binding to its receptor. In the present study, we determined the inhibitory effect of NK4 in a rheumatoid arthritis (RA) model using SKG mice.

Methods

Arthritis was induced in SKG mice by a single intraperitoneal injection of β-glucan. Recombinant adenovirus containing NK4 cDNA (AdCMV.NK4) was also injected intravenously at the time of or 1 month after β-glucan injection. Ankle bone destruction was examined radiographically. The histopathologic features of joints were examined using hematoxylin and eosin and immunohistochemical staining. Enzyme-linked immunosorbent assays were used to determine the serum levels of HGF, interferon γ (IFN-γ, interleukin 4 (IL-4) and IL-17 production by CD4+ T cells stimulated with allogeneic spleen cells.

Results

The intravenous injection of AdCMV.NK4 into SKG mice suppressed the progression of β-glucan-induced arthritis. Bone destruction was also inhibited by NK4 treatment. The histopathologic findings of the ankles revealed that angiogenesis, inflammatory cytokines and RANKL expression in synovial tissues were significantly inhibited by NK4 treatment. Recombinant NK4 (rNK4) proteins inhibited IFN-γ, IL-4 and IL-17 production by CD4+ T cells stimulated with allogeneic spleen cells.

Conclusions

These results indicate that NK4 inhibits arthritis by inhibition of angiogenesis and inflammatory cytokine production by CD4+ T cells. Therefore, molecular targeting of angiogenic inducers by NK4 can potentially be used as a novel therapeutic approach for the treatment of RA.  相似文献   

17.

Introduction

Immune responses against collagen type II (CII) are crucial for the development of collagen-induced arthritis (CIA). The aim of the present study was to evaluate and compare the CII-directed T cell and antibody specificity at different time points in the course of CIA using two mouse strains on the B10 genetic background - B10.Q, expressing Aq MHC class II molecules, and B10.DR4.Ncf1*/*, expressing human rheumatoid arthritis-associated MHC II DR4 molecules (DRA*0101/DRB*0401).

Methods

B10.Q and B10.DR4.Ncf1*/* mice were immunized with CII emulsified in adjuvant and development of CIA was assessed. T cells from draining lymph nodes were restimulated in vitro with CII peptides and interferon-gamma (IFN-γ) levels in culture supernatants were evaluated by ELISA. CII-specific antibody levels in serum samples were measured by ELISA.

Results

At four different CIA time points we analyzed T cell specificity to the immunodominant CII epitope 259-273 (CII259-273) and several posttranslationally modified forms of CII259-273 as well as antibody responses to three B cell immunodominant epitopes on CII (C1, U1, J1). Our data show that CII-specific T and B cell responses increase dramatically after disease onset in both strains and are sustained during the disease course. Concerning anti-CII antibody fine specificity, during all investigated stages of CIA the B10.Q mice responded predominantly to the C1 epitope, whereas the B10.DR4.Ncf1*/* mice also recognized the U1 epitope. In the established disease phase, T cell reactivity toward the galactosylated CII259-273 peptide was similar between the DR4- and the Aq-expressing strains whereas the response to the non-modified CII peptide was dramatically enhanced in the DR4 mice compared with the B10.Q. In addition, we show that the difference in the transgenic DR4-restricted T cell specificity to CII259-273 is not dependent on the degree of glycosylation of the collagen used for immunization.

Conclusions

The present study provides important evaluation of CII-specific immune responses at different phases during CIA development as well as a comparative analysis between two CIA mouse models. We indicate significant differences in CII T cell and antibody specificities between the two strains and highlight a need for improved humanized B10.DR4 mouse model for rheumatoid arthritis.  相似文献   

18.

Introduction

The c-Jun N-terminal kinase (JNK) is a key regulator of matrix metalloproteinase (MMP) and cytokine production in rheumatoid arthritis (RA) and JNK deficiency markedly protects mice in animal models of arthritis. Cytokine-induced JNK activation is strictly dependent on the mitogen-activated protein kinase kinase 7 (MKK7) in fibroblast-like synoviocytes (FLS). Therefore, we evaluated whether targeting MKK7 using anti-sense oligonucleotides (ASO) would decrease JNK activation and severity in K/BxN serum transfer arthritis.

Methods

Three 2''-O-methoxyethyl chimeric ASOs for MKK7 and control ASO were injected intravenously in normal C57BL/6 mice. PBS, control ASO or MKK7 ASO was injected from Day -8 to Day 10 in the passive K/BxN model. Ankle histology was evaluated using a semi-quantitative scoring system. Expression of MKK7 and JNK pathways was evaluated by quantitative PCR and Western blot analysis.

Results

MKK7 ASO decreased MKK7 mRNA and protein levels in ankles by about 40% in normal mice within three days. There was no effect of control ASO on MKK7 expression and MKK7 ASO did not affect MKK3, MKK4 or MKK6. Mice injected with MKK7 ASO had significantly less severe arthritis compared with control ASO (P < 0.01). Histologic evidence of synovial inflammation, bone erosion and cartilage damage was reduced in MKK7 ASO-treated mice (P < 0.01). MKK7 deficiency decreased phospho-JNK and phospho-c-Jun in ankle extracts (P < 0.05), but not phospho-MKK4. Interleukin-1beta (IL-1β), MMP3 and MMP13 gene expression in ankle joints were decreased by MKK7 ASO (P < 0.01).

Conclusions

MKK7 plays a critical regulatory role in the JNK pathway in a murine model of arthritis. Targeting MKK7 rather than JNK could provide site and event specificity when treating synovitis.  相似文献   

19.

Objectives

To develop and validate a recombinant vaccine to attenuate inflammation in arthritis by sustained neutralization of the anaphylatoxin C5a.

Methods

We constructed and expressed fusion protein of C5a and maltose binding protein. Efficacy of specific C5a neutralization was tested using the fusion protein as vaccine in three different arthritis mouse models: collagen induced arthritis (CIA), chronic relapsing CIA and collagen antibody induced arthritis (CAIA). Levels of anti-C5a antibodies and anti-collagen type II were measured by ELISA. C5a neutralization assay was done using a rat basophilic leukemia cell-line transfected with the human C5aR. Complement activity was determined using a hemolytic assay and joint morphology was assessed by histology.

Results

Vaccination of mice with MBP-C5a led to significant reduction of arthritis incidence and severity but not anti-collagen antibody synthesis. Histology of the MBP-C5a and control (MBP or PBS) vaccinated mice paws confirmed the vaccination effect. Sera from the vaccinated mice developed C5a-specific neutralizing antibodies, however C5 activation and formation of the membrane attack complex by C5b were not significantly altered.

Conclusions

Exploitation of host immune response to generate sustained C5a neutralizing antibodies without significantly compromising C5/C5b activity is a useful strategy for developing an effective vaccine for antibody mediated and C5a dependent inflammatory diseases. Further developing of such a therapeutic vaccine would be more optimal and cost effective to attenuate inflammation without affecting host immunity.  相似文献   

20.

Introduction

Arthritic bone loss in the joints of patients with rheumatoid arthritis is the result of a combination of osteoclastic bone resorption and osteoblastic bone formation. This process is not completely understood, and especially the importance of local inflammation needs further investigation. We evaluated how bone formation and bone resorption are altered in experimental autoimmune arthritis.

Methods

Twenty-one female SKG mice were randomized to either an arthritis group or a control group. Tetracycline was used to identify mineralizing surfaces. After six weeks the right hind paws were embedded undecalcified in methylmethacrylate. The paws were cut exhaustively according to the principles of vertical sectioning and systematic sampling. 3D design-based methods were used to estimate the total number of osteoclasts, mineralizing surfaces, eroded surfaces, and osteoclast-covered bone surfaces. In addition the presence of adjacent inflammation was ascertained.

Results

The total number of osteoclasts, mineralizing surfaces, eroded surfaces, and osteoclast covered surfaces were elevated in arthritic paws compared to normal paws. Mineralizing surfaces were elevated adjacent to as well as not adjacent to inflammation in arthritic mice compared to normal mice. In arthritic mice, eroded surfaces and osteoclast covered surfaces were larger on bone surfaces adjacent to inflammation than on bone surfaces without adjacent inflammation. However, we found no difference between mineralizing surfaces at bone surfaces with or without inflammation in arthritic mice.

Conclusions

Inflammation induced an increase in resorptive bone surfaces as well as formative bone surfaces. The bone formative response may be more general, since formative bone surfaces were also increased when not associated with inflammation. Thus, the bone loss may be the result of a substantial local bone resorption, which cannot be compensated by the increased local bone formation. These findings may be valuable for the development of new osteoblast targeting drugs in RA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号