首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Polyploids account for approximately 70% of flowering plants, including many field, horticulture and forage crops. Cottons are a world-leading fiber and important oilseed crop, and a model species for study of plant polyploidization, cellulose biosynthesis and cell wall biogenesis. This study has addressed the concerns of physical mapping of polyploids with BACs and/or BIBACs by constructing a physical map of the tetraploid cotton, Gossypium hirsutum L. The physical map consists of 3,450 BIBAC contigs with an N50 contig size of 863 kb, collectively spanning 2,244 Mb. We sorted the map contigs according to their origin of subgenome, showing that we assembled physical maps for the A- and D-subgenomes of the tetraploid cotton, separately. We also identified the BIBACs in the map minimal tilling path, which consists of 15,277 clones. Moreover, we have marked the physical map with nearly 10,000 BIBAC ends (BESs), making one BES in approximately 250 kb. This physical map provides a line of evidence and a strategy for physical mapping of polyploids, and a platform for advanced research of the tetraploid cotton genome, particularly fine mapping and cloning the cotton agronomic genes and QTLs, and sequencing and assembling the cotton genome using the modern next-generation sequencing technology.  相似文献   

2.
Generating a contiguous, ordered reference sequence of a complex genome such as hexaploid wheat (2n = 6x = 42; approximately 17 GB) is a challenging task due to its large, highly repetitive, and allopolyploid genome. In wheat, ordering of whole‐genome or hierarchical shotgun sequencing contigs is primarily based on recombination and comparative genomics‐based approaches. However, comparative genomics approaches are limited to syntenic inference and recombination is suppressed within the pericentromeric regions of wheat chromosomes, thus, precise ordering of physical maps and sequenced contigs across the whole‐genome using these approaches is nearly impossible. We developed a whole‐genome radiation hybrid (WGRH) resource and tested it by genotyping a set of 115 randomly selected lines on a high‐density single nucleotide polymorphism (SNP) array. At the whole‐genome level, 26 299 SNP markers were mapped on the RH panel and provided an average mapping resolution of approximately 248 Kb/cR1500 with a total map length of 6866 cR1500. The 7296 unique mapping bins provided a five‐ to eight‐fold higher resolution than genetic maps used in similar studies. Most strikingly, the RH map had uniform bin resolution across the entire chromosome(s), including pericentromeric regions. Our research provides a valuable and low‐cost resource for anchoring and ordering sequenced BAC and next generation sequencing (NGS) contigs. The WGRH developed for reference wheat line Chinese Spring (CS‐WGRH), will be useful for anchoring and ordering sequenced BAC and NGS based contigs for assembling a high‐quality, reference sequence of hexaploid wheat. Additionally, this study provides an excellent model for developing similar resources for other polyploid species.  相似文献   

3.
Genome-wide physical mapping with bacteria-based large-insert clones (e.g., BACs, PACs, and PBCs) promises to revolutionize genomics of large, complex genomes. To accelerate rice and other grass species genome research, we developed a genome-wide BAC-based map of the rice genome. The map consists of 298 BAC contigs and covers 419 Mb of the 430-Mb rice genome. Subsequent analysis indicated that the contigs constituting the map are accurate and reliable. Particularly important to proficiency were (1) a high-resolution, high-throughput DNA sequencing gel-based electrophoretic method for BAC fingerprinting, (2) the use of several complementary large-insert BAC libraries, and (3) computer-aided contig assembly. It has been demonstrated that the fingerprinting method is not significantly influenced by repeated sequences, genome size, and genome complexity. Use of several complementary libraries developed with different restriction enzymes minimized the "gaps" in the physical map. In contrast to previous estimates, a clonal coverage of 6.0-8.0 genome equivalents seems to be sufficient for development of a genome-wide physical map of approximately 95% genome coverage. This study indicates that genome-wide BAC-based physical maps can be developed quickly and economically for a variety of plant and animal species by restriction fingerprint analysis via DNA sequencing gel-based electrophoresis.  相似文献   

4.
Zhang X  Zhao C  Huang C  Duan H  Huan P  Liu C  Zhang X  Zhang Y  Li F  Zhang HB  Xiang J 《PloS one》2011,6(11):e27612
Zhikong scallop (Chlamys farreri) is one of the most economically important aquaculture species in China. Physical maps are crucial tools for genome sequencing, gene mapping and cloning, genetic improvement and selective breeding. In this study, we have developed a genome-wide, BAC-based physical map for the species. A total of 81,408 clones from two BAC libraries of the scallop were fingerprinted using an ABI 3130xl Genetic Analyzer and a fingerprinting kit developed in our laboratory. After data processing, 63,641 (~5.8× genome coverage) fingerprints were validated and used in the physical map assembly. A total of 3,696 contigs were assembled for the physical map. Each contig contained an average of 10.0 clones, with an average physical size of 490 kb. The combined total physical size of all contigs was 1.81 Gb, equivalent to approximately 1.5 fold of the scallop haploid genome. A total of 10,587 BAC end sequences (BESs) and 167 markers were integrated into the physical map. We evaluated the physical map by overgo hybridization, BAC-FISH (fluorescence in situ hybridization), contig BAC pool screening and source BAC library screening. The results have provided evidence of the high reliability of the contig physical map. This is the first physical map in mollusc; therefore, it provides an important platform for advanced research of genomics and genetics, and mapping of genes and QTL of economical importance, thus facilitating the genetic improvement and selective breeding of the scallop and other marine molluscs.  相似文献   

5.
As part of a larger project to sequence the Populus genome and generate genomic resources for this emerging model tree, we constructed a physical map of the Populus genome, representing one of the few such maps of an undomesticated, highly heterozygous plant species. The physical map, consisting of 2802 contigs, was constructed from fingerprinted bacterial artificial chromosome (BAC) clones. The map represents approximately 9.4-fold coverage of the Populus genome, which has been estimated from the genome sequence assembly to be 485 ± 10 Mb in size. BAC ends were sequenced to assist long-range assembly of whole-genome shotgun sequence scaffolds and to anchor the physical map to the genome sequence. Simple sequence repeat-based markers were derived from the end sequences and used to initiate integration of the BAC and genetic maps. A total of 2411 physical map contigs, representing 97% of all clones assigned to contigs, were aligned to the sequence assembly (JGI Populus trichocarpa , version 1.0). These alignments represent a total coverage of 384 Mb (79%) of the entire poplar sequence assembly and 295 Mb (96%) of linkage group sequence assemblies. A striking result of the physical map contig alignments to the sequence assembly was the co-localization of multiple contigs across numerous regions of the 19 linkage groups. Targeted sequencing of BAC clones and genetic analysis in a small number of representative regions showed that these co-aligning contigs represent distinct haplotypes in the heterozygous individual sequenced, and revealed the nature of these haplotype sequence differences.  相似文献   

6.
Phytophthora spp. are serious pathogens that threaten numerous cultivated crops, trees, and natural vegetation worldwide. The soybean pathogen P. sojae has been developed as a model oomycete. Here, we report a bacterial artificial chromosome (BAC)-based, integrated physical map of the P. sojae genome. We constructed two BAC libraries, digested 8,681 BACs with seven restriction enzymes, end labeled the digested fragments with four dyes, and analyzed them with capillary electrophoresis. Fifteen data sets were constructed from the fingerprints, using individual dyes and all possible combinations, and were evaluated for contig assembly. In all, 257 contigs were assembled from the XhoI data set, collectively spanning approximately 132 Mb in physical length. The BAC contigs were integrated with the draft genome sequence of P. sojae by end sequencing a total of 1,440 BACs that formed a minimal tiling path. This enabled the 257 contigs of the BAC map to be merged with 207 sequence scaffolds to form an integrated map consisting of 79 superscaffolds. The map represents the first genome-wide physical map of a Phytophthora sp. and provides a valuable resource for genomics and molecular biology research in P. sojae and other Phytophthora spp. In one illustration of this value, we have placed the 350 members of a superfamily of putative pathogenicity effector genes onto the map, revealing extensive clustering of these genes.  相似文献   

7.
A BAC-based physical map of the channel catfish genome   总被引:3,自引:0,他引:3  
Xu P  Wang S  Liu L  Thorsen J  Kucuktas H  Liu Z 《Genomics》2007,90(3):380-388
Catfish is the major aquaculture species in the United States. To enhance its genome studies involving genetic linkage and comparative mapping, a bacterial artificial chromosome (BAC) contig-based physical map of the channel catfish (Ictalurus punctatus) genome was generated using four-color fluorescence-based fingerprints. Fingerprints of 34,580 BAC clones (5.6x genome coverage) were generated for the FPC assembly of the BAC contigs. A total of 3307 contigs were assembled using a cutoff value of 1x10(-20). Each contig contains an average of 9.25 clones with an average size of 292 kb. The combined contig size for all contigs was 0.965 Gb, approximately the genome size of the channel catfish. The reliability of the contig assembly was assessed by both hybridization of gene probes to BAC clones contained in the fingerprinted assembly and validation of randomly selected contigs using overgo probes designed from BAC end sequences. The presented physical map should greatly enhance genome research in the catfish, particularly aiding in the identification of genomic regions containing genes underlying important performance traits.  相似文献   

8.
Y L Chang  Q Tao  C Scheuring  K Ding  K Meksem  H B Zhang 《Genetics》2001,159(3):1231-1242
The genome of the model plant species Arabidopsis thaliana has recently been sequenced. To accelerate its current genome research, we developed a whole-genome, BAC/BIBAC-based, integrated physical, genetic, and sequence map of the A. thaliana ecotype Columbia. This new map was constructed from the clones of a new plant-transformation-competent BIBAC library and is integrated with the existing sequence map. The clones were restriction fingerprinted by DNA sequencing gel-based electrophoresis, assembled into contigs, and anchored to an existing genetic map. The map consists of 194 BAC/BIBAC contigs, spanning 126 Mb of the 130-Mb Arabidopsis genome. A total of 120 contigs, spanning 114 Mb, were anchored to the chromosomes of Arabidopsis. Accuracy of the integrated map was verified using the existing physical and sequence maps and numerous DNA markers. Integration of the new map with the sequence map has enabled gap closure of the sequence map and will facilitate functional analysis of the genome sequence. The method used here has been demonstrated to be sufficient for whole-genome physical mapping from large-insert random bacterial clones and thus is applicable to rapid development of whole-genome physical maps for other species.  相似文献   

9.
Development of a set of SNP markers present in expressed genes of the apple   总被引:4,自引:0,他引:4  
Molecular markers associated with gene coding regions are useful tools for bridging functional and structural genomics. Due to their high abundance in plant genomes, single nucleotide polymorphisms (SNPs) are present within virtually all genomic regions, including most coding sequences. The objective of this study was to develop a set of SNPs for the apple by taking advantage of the wealth of genomics resources available for the apple, including a large collection of expressed sequenced tags (ESTs). Using bioinformatics tools, a search for SNPs within an EST database of approximately 350,000 sequences developed from a variety of apple accessions was conducted. This resulted in the identification of a total of 71,482 putative SNPs. As the apple genome is reported to be an ancient polyploid, attempts were made to verify whether those SNPs detected in silico were attributable either to allelic polymorphisms or to gene duplication or paralogous or homeologous sequence variations. To this end, a set of 464 PCR primer pairs was designed, PCR was amplified using two subsets of plants, and the PCR products were sequenced. The SNPs retrieved from these sequences were then mapped onto apple genetic maps, including a newly constructed map of a Royal Gala x A689-24 cross and a Malling 9 x Robusta 5, map using a bin mapping strategy. The SNP genotyping was performed using the high-resolution melting (HRM) technique. A total of 93 new markers containing 210 coding SNPs were successfully mapped. This new set of SNP markers for the apple offers new opportunities for understanding the genetic control of important horticultural traits using quantitative trait loci (QTL) or linkage disequilibrium analysis. These also serve as useful markers for aligning physical and genetic maps, and as potential transferable markers across the Rosaceae family.  相似文献   

10.
Sequencing of the rice genome has provided a platform for functional genomics research of rice and other cereal species. However, multiple approaches are needed to determine the functions of its genes and sequences and to use the genome sequencing results for genetic improvement of cereal crops. Here, we report a plant-transformation-competent, binary bacterial artificial chromosome (BIBAC) and bacterial artificial chromosome (BAC) based map of rice to facilitate these studies. The map was constructed from 20 835 BIBAC and BAC clones, and consisted of 579 overlapping BIBAC/BAC contigs. To facilitate functional analysis of chromosome 8 genomic sequence and cloning of the genes and QTLs mapped to the chromosome, we anchored the chromosomal contigs to the existing rice genetic maps. The chromosomal map consists of 11 contigs, 59 genetic markers, and 36 sequence tagged sites, spanning a total of ca. 38 Mb in physical length. Comparative analysis between the genetic and physical maps of chromosome 8 showed that there are 3 "hot" and 2 "cold" spots of genetic recombination along the chromosomal arms in addition to the "cold spot" in the centromeric region, suggesting that the sequence component contents of a chromosome may affect its local genetic recombination frequencies. Because of its plant transformability, the BIBAC/BAC map could provide a platform for functional analysis of the rice genome sequence and effective use of the sequencing results for gene and QTL cloning and molecular breeding.  相似文献   

11.
A total of 355 simple sequence repeat (SSR) markers were developed, based on expressed sequence tag (EST) and bacterial artificial chromosome (BAC)-end sequence databases, and successfully used to construct an SSR-based genetic linkage map of the apple. The consensus linkage map spanned 1143 cM, with an average density of 2.5 cM per marker. Newly developed SSR markers along with 279 SSR markers previously published by the HiDRAS project were further used to integrate physical and genetic maps of the apple using a PCR-based BAC library screening approach. A total of 470 contigs were unambiguously anchored onto all 17 linkage groups of the apple genome, and 158 contigs contained two or more molecular markers. The genetically mapped contigs spanned ~421 Mb in cumulative physical length, representing 60.0% of the genome. The sizes of anchored contigs ranged from 97 kb to 4.0 Mb, with an average of 995 kb. The average physical length of anchored contigs on each linkage group was ~24.8 Mb, ranging from 17.0 Mb to 37.73 Mb. Using BAC DNA as templates, PCR screening of the BAC library amplified fragments of highly homologous sequences from homoeologous chromosomes. Upon integrating physical and genetic maps of the apple, the presence of not only homoeologous chromosome pairs, but also of multiple locus markers mapped to adjacent sites on the same chromosome was detected. These findings demonstrated the presence of both genome-wide and segmental duplications in the apple genome and provided further insights into the complex polyploid ancestral origin of the apple.  相似文献   

12.
An overview of the apple genome through BAC end sequence analysis   总被引:1,自引:0,他引:1  
The apple, Malus x domestica Borkh., is one of the most important fruit trees grown worldwide. A bacterial artificial chromosome (BAC)-based physical map of the apple genome has been recently constructed. Based on this physical map, a total of approximately 2,100 clones from different contigs (overlapping BAC clones) have been selected and sequenced at both ends, generating 3,744 high-quality BAC end sequences (BESs) including 1,717 BAC end pairs. Approximately 8.5% of BESs contain simple sequence repeats (SSRs), most of which are AT/TA dimer repeats. Potential transposable elements are identified in approximately 21% of BESs, and most of these elements are retrotransposons. About 11% of BESs have homology to the Arabidopsis protein database. The matched proteins cover a broad range of categories. The average GC content of the predicted coding regions of BESs is 42.4%; while, that of the whole BESs is 39%. A small number of BES pairs were mapped to neighboring chromosome regions of A. thaliana and Populus trichocarpa; whereas, no pairs are mapped to the Oryza sativa genome. The apple has a higher degree of synteny with the closely related Populus than with the distantly related Arabidopsis. BAC end sequencing can be used to anchor a small proportion of the apple genome to the Populus and possibly to the Arabidopsis genomes.  相似文献   

13.
Fusarium graminearum is the primary causal pathogen of Fusarium head blight of wheat and barley. To accelerate genomic analysis of F. graminearum, we developed a bacterial artificial chromosome (BAC)-based physical map and integrated it with the genome sequence and genetic map. One BAC library, developed in the HindIII restriction enzyme site, consists of 4608 clones with an insert size of approximately 107 kb and covers about 13.5 genome equivalents. The other library, developed in the BamHI restriction enzyme site, consists of 3072 clones with an insert size of approximately 95 kb and covers about 8.0 genome equivalents. We fingerprinted 2688 clones from the HindIII library and 1536 clones from the BamHI library and developed a physical map of F. graminearum consisting of 26 contigs covering 39.2 Mb. Comparison of our map with the F. graminearum genome sequence showed that the size of our physical map is equivalent to the 36.1 Mb of the genome sequence. We used 31 sequence-based genetic markers, randomly spaced throughout the genome, to integrate the physical map with the genetic map. We also end-sequenced 17 BamHI BAC clones and identified 4 clones that spanned gaps in the genome sequence. Our new integrated map is highly reliable and useful for a variety of genomics studies.  相似文献   

14.
The pooid subfamily of grasses includes some of the most important crop, forage and turf species, such as wheat, barley and Lolium. Developing genomic resources, such as whole-genome physical maps, for analysing the large and complex genomes of these crops and for facilitating biological research in grasses is an important goal in plant biology. We describe a bacterial artificial chromosome (BAC)-based physical map of the wild pooid grass Brachypodium distachyon and integrate this with whole genome shotgun sequence (WGS) assemblies using BAC end sequences (BES). The resulting physical map contains 26 contigs spanning the 272 Mb genome. BES from the physical map were also used to integrate a genetic map. This provides an independent validation and confirmation of the published WGS assembly. Mapped BACs were used in Fluorescence In Situ Hybridisation (FISH) experiments to align the integrated physical map and sequence assemblies to chromosomes with high resolution. The physical, genetic and cytogenetic maps, integrated with whole genome shotgun sequence assemblies, enhance the accuracy and durability of this important genome sequence and will directly facilitate gene isolation.  相似文献   

15.
Xu Z  Sun S  Covaleda L  Ding K  Zhang A  Wu C  Scheuring C  Zhang HB 《Genomics》2004,84(6):941-951
Genome physical mapping with large-insert clones by fingerprint analysis is becoming an active area of genomics research. Here, we report two new capillary electrophoresis-based fingerprinting methods for genome physical mapping and the effects of different fingerprinting methods and source clone genome coverage on quality physical map construction revealed by computer simulations and laboratory experiments. It was shown that the manual sequencing gel-based two-enzyme fingerprinting method consistently generated larger and more accurate contigs, followed by the new capillary electrophoresis-based three-enzyme method, the new capillary electrophoresis-based five-enzyme (SNaPshot) method, the agarose gel-based one-enzyme method, and the automatic sequencing gel-based four-enzyme method, in descending order, when 1% or fewer questionable clones were allowed. Analysis of clones equivalent to 5x, 8x, 10x, and 15x genomes using the fingerprinting methods revealed that as the number of clones increased from 5x to 10x, the contig length rapidly increased for all methods. However, when the number of clones was increased from 10x to 15x coverage, the contig length at best increased at a lower rate or even decreased. The results will provide useful knowledge and strategies for effective construction of quality genome physical maps for advanced genomics research.  相似文献   

16.
Three linkage maps of flax (Linum usitatissimum L.) were constructed from populations CDC Bethune/Macbeth, E1747/Viking and SP2047/UGG5-5 containing between 385 and 469 mapped markers each. The first consensus map of flax was constructed incorporating 770 markers based on 371 shared markers including 114 that were shared by all three populations and 257 shared between any two populations. The 15 linkage group map corresponds to the haploid number of chromosomes of this species. The marker order of the consensus map was largely collinear in all three individual maps but a few local inversions and marker rearrangements spanning short intervals were observed. Segregation distortion was present in all linkage groups which contained 1–52 markers displaying non-Mendelian segregation. The total length of the consensus genetic map is 1,551?cM with a mean marker density of 2.0?cM. A total of 670 markers were anchored to 204 of the 416 fingerprinted contigs of the physical map corresponding to ~274?Mb or 74?% of the estimated flax genome size of 370?Mb. This high resolution consensus map will be a resource for comparative genomics, genome organization, evolution studies and anchoring of the whole genome shotgun sequence.  相似文献   

17.
Physical mapping with large-insert clones is becoming an active area of genomics research, and capillary electrophoresis (CE) promises to revolutionize the physical mapping technology. Here, we demonstrate the utility of the CE technology for genome physical mapping with large-insert clones by constructing a robust, binary bacterial artificial chromosome (BIBAC)-based physical map of Penicillium chrysogenum. We fingerprinted 23.1× coverage BIBAC clones with five restriction enzymes and the SNaPshot kit containing four fluorescent-ddNTPs using the CE technology, and explored various strategies to construct quality physical maps. It was shown that the fingerprints labeled with one or two colors, resulting in 40–70 bands per clone, were assembled into much better quality maps than those labeled with three or four colors. The selection of fingerprinting enzymes was crucial to quality map construction. From the dataset labeled with ddTTP–dROX, we assembled a physical map for P.chrysogenum, with 2–3 contigs per chromosome and anchored the map to its chromosomes. This map represents the first physical map constructed using the CE technology, thus providing not only a platform for genomic studies of the penicillin-producing species, but also strategies for efficient use of the CE technology for genome physical mapping of plants, animals and microbes.  相似文献   

18.
Along with the rapid advances of the nextgen sequencing technologies, more and more species are added to the list of organisms whose whole genomes are sequenced. However, the assembled draft genome of many organisms consists of numerous small contigs, due to the short length of the reads generated by nextgen sequencing platforms. In order to improve the assembly and bring the genome contigs together, more genome resources are needed. In this study, we developed a strategy to generate a valuable genome resource, physical map contig-specific sequences, which are randomly distributed genome sequences in each physical contig. Two-dimensional tagging method was used to create specific tags for 1,824 physical contigs, in which the cost was dramatically reduced. A total of 94,111,841 100-bp reads and 315,277 assembled contigs are identified containing physical map contig-specific tags. The physical map contig-specific sequences along with the currently available BAC end sequences were then used to anchor the catfish draft genome contigs. A total of 156,457 genome contigs (~79% of whole genome sequencing assembly) were anchored and grouped into 1,824 pools, in which 16,680 unique genes were annotated. The physical map contig-specific sequences are valuable resources to link physical map, genetic linkage map and draft whole genome sequences, consequently have the capability to improve the whole genome sequences assembly and scaffolding, and improve the genome-wide comparative analysis as well. The strategy developed in this study could also be adopted in other species whose whole genome assembly is still facing a challenge.  相似文献   

19.
A new YAC (yeast artificial chromosome) physical map of the 12 rice chromosomes was constructed utilizing the latest molecular linkage map. The 1439 DNA markers on the rice genetic map selected a total of 1892 YACs from a YAC library. A total of 675 distinct YACs were assigned to specific chromosomal locations. In all chromosomes, 297 YAC contigs and 142 YAC islands were formed. The total physical length of these contigs and islands was estimated to 270 Mb which corresponds to approximately 63% of the entire rice genome (430 Mb). Because the physical length of each YAC contig has been measured, we could then estimate the physical distance between genetic markers more precisely than previously. In the course of constructing the new physical map, the DNA markers mapped at 0.0-cM intervals were ordered accurately and the presence of potentially duplicated regions among the chromosomes was detected. The physical map combined with the genetic map will form the basis for elucidation of the rice genome structure, map-based cloning of agronomically important genes, and genome sequencing.  相似文献   

20.
The availability of high-density anchored markers is a prerequisite for reliable construction of a deep coverage BAC contig, which leads to creation of a sequence-ready map in the target chromosomal region. Unfortunately, such markers are not available for most plant species, including woody perennial plants. Here, we report on an efficient approach to build a megabase-size sequence-ready map in the apple genome for the Vf region containing apple scab resistance gene(s) by targeting AFLP-derived SCAR markers to this specific genomic region. A total of 11 AFLP-derived SCAR markers, previously tagged to the Vf locus, along with three other Vf-linked SCAR markers have been used to screen two apple genome BAC libraries. A single BAC contig which spans the Vf region at a physical distance of approximately 1,100 kb has been constructed by assembling the recovered BAC clones, followed by closure of inter-contig gaps. The contig is 4 ×deep, and provides a minimal tiling path of 16 contiguous and overlapping BAC clones, thus generating a sequence-ready map. Within the Vf region, duplication events have occurred frequently, and the Vf locus is restricted to the ca. 290 kb region covered by a minimum of three overlapping BAC clones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号