首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Type IIs restriction endonucleases recognize asymmetric DNA sequences and cleave both DNA strands at fixed positions, typically several base pairs away from the recognition site. These enzymes are generally monomers that transiently associate to form dimers to cleave both strands. Their reactions could involve bridging interactions between two copies of their recognition sequence. To examine this possibility, several type IIs enzymes were tested against substrates with either one or two target sites. Some of the enzymes cleaved the DNA with two target sites at the same rate as that with one site, but most cut their two-site substrate more rapidly than the one-site DNA. In some cases, the two sites were cut sequentially, at rates that were equal to each other but that exceeded the rate on the one-site DNA. In another case, the DNA with two sites was cleaved rapidly at one site, but the residual site was cleaved at a much slower rate. In a further example, the two sites were cleaved concertedly to give directly the final products cut at both sites. Many type IIs enzymes thus interact with two copies of their recognition sequence before cleaving DNA, although via several different mechanisms.  相似文献   

2.
Several type II restriction endonucleases interact with two copies of their target sequence before they cleave DNA. Three such enzymes, NgoMIV, Cfr10I and NaeI, were tested on plasmids with one or two copies of their recognition sites, and on catenanes containing two interlinked rings of DNA with one site in each ring. The enzymes showed distinct patterns of behaviour. NgoMIV and NaeI cleaved the plasmid with two sites faster than that with one site and the catenanes at an intermediate rate, while Cfr10I gave similar steady-state rates on all three substrates. Both Cfr10I and NgoMIV converted the majority of the substrates with two sites directly to the products cut at both sites, while NaeI cleaved just one site at a time. All three enzymes thus synapse two DNA sites through three-dimensional space before cleaving DNA. With Cfr10I and NgoMIV, both sites are cleaved in one turnover, in a manner consistent with their tetrameric structures, while the cleavage of a single site by NaeI indicates that the second site acts not as a substrate but as an activator, as reported previously. The complexes spanning two sites have longer lifetimes on catenanes with one site in each ring than on circular DNA with two sites, which indicates that the catenanes have more freedom for site juxtaposition than plasmids with sites in cis.  相似文献   

3.
The SfiI restriction endonuclease is a tetramer in which two subunits form a dimeric unit that contains one DNA binding cleft and the other two subunits contain a second cleft on the opposite side of the protein. Full activity requires both clefts to be filled with its recognition sequence: SfiI has low activity when bound to one site. The ability of SfiI to cleave non-cognate sites, one base pair different from the true site, was initially tested on substrates that lacked specific sites but which contained either one or multiple non-cognate sites. No cleavage of the DNA with one non-cognate site was detected, while a small fraction of the DNA with multiple sites was nicked. The alternative sequences were, however, cleaved in both strands, albeit at low levels, when the DNA also carried either a recognition site for SfiI or the termini generated by SfiI. Further tests employed a mutant of SfiI, altered at the dimer interface, which was known to be more active than wild-type SfiI when bound to a single site. This mutant similarly failed to cleave DNA with one non-cognate site, but cleaved the substrates with multiple non-cognate sites more readily than did the native enzyme. To cleave additional sites, SfiI thus needs to interact concurrently with either two non-cognate sites or one non-cognate and one cognate site (or the termini thereof), yet this arrangement is still restrained from cleaving the alternative site unless the communication pathway between the two DNA-binding clefts is disrupted.  相似文献   

4.
The SgrAI endonuclease usually cleaves DNA with two recognition sites more rapidly than DNA with one site, often converting the former directly to the products cut at both sites. In this respect, SgrAI acts like the tetrameric restriction enzymes that bind two copies of their target sites before cleaving both sites concertedly. However, by analytical ultracentrifugation, SgrAI is a dimer in solution though it aggregates to high molecular mass species when bound to its specific DNA sequence. Its reaction kinetics indicate that it uses different mechanisms to cleave DNA with one and with two SgrAI sites. It cleaves the one-site DNA in the style of a dimeric restriction enzyme acting at an individual site, mediating neither interactions in trans, as seen with the tetrameric enzymes, nor subunit associations, as seen with the monomeric enzymes. In contrast, its optimal reaction on DNA with two sites involves an association of protein subunits: two dimers bound to sites in cis may associate to form a tetramer that has enhanced activity, which then cleaves both sites concurrently. The mode of action of SgrAI differs from all restriction enzymes characterised previously, so this study extends the range of mechanisms known for restriction endonucleases.  相似文献   

5.
Type II restriction enzymes generally recognize continuous sequences of 4-8 consecutive base pairs on DNA, but some recognize discontinuous sites where the specified sequence is interrupted by a defined length of nonspecific DNA. To date, a mechanism has been established for only one type II endonuclease with a discontinuous site, SfiI at GGCCNNNNNGGCC (where N is any base). In contrast to orthodox enzymes such as EcoRV, dimeric proteins that act at a single site, SfiI is a tetramer that interacts with two sites before cleaving DNA. BglI has a similar recognition sequence (GCCNNNNNGGC) to SfiI but a crystal structure like EcoRV. BglI and several other endonucleases with discontinuous sites were examined to see if they need two sites for their DNA cleavage reactions. The enzymes included some with sites containing lengthy segments of nonspecific DNA, such as XcmI (CCANNNNNNNNNTGG). In all cases, they acted at individual sites. Elongated recognition sites do not necessitate unusual reaction mechanisms. Other experiments on BglI showed that it bound to and cleaved DNA in the same manner as EcoRV, thus further delineating a distinct group of restriction enzymes with similar structures and a common reaction mechanism.  相似文献   

6.
The BcgI endonuclease exemplifies a subset of restriction enzymes, the Type IIB class, which make two double-strand breaks (DSBs) at each copy of their recognition sequence, one either side of the site, to excise the sequence from the remainder of the DNA. In this study, we show that BcgI is essentially inactive when bound to a single site and that to cleave a DNA with one copy of its recognition sequence, it has to act in trans, bridging two separate DNA molecules. We also show that BcgI makes the two DSBs at an individual site in a highly concerted manner. Intermediates cut on one side of the site do not accumulate during the course of the reaction: instead, the DNA is converted straight to the final products cut on both sides. On DNA with two sites, BcgI bridges the sites in cis and then generally proceeds to cut both strands on both sides of both sites without leaving the DNA. The BcgI restriction enzyme can thus excise two DNA segments together, by cleaving eight phosphodiester bonds within a single-DNA binding event.  相似文献   

7.
Most restriction endonucleases bridge two target sites before cleaving DNA: examples include all of the translocating Type I and Type III systems, and many Type II nucleases acting at their sites. A subset of Type II enzymes, the IIB systems, recognise bipartite sequences, like Type I sites, but cut specified phosphodiester bonds near their sites, like Type IIS enzymes. However, they make two double-strand breaks, one either side of the site, to release the recognition sequence on a short DNA fragment; 34 bp long in the case of the archetype, BcgI. It has been suggested that BcgI needs to interact with two recognition sites to cleave DNA but whether this is a general requirement for Type IIB enzymes had yet to be established. Ten Type IIB nucleases were tested against DNA substrates with one or two copies of the requisite sequences. With one exception, they all bridged two sites before cutting the DNA, usually in concerted reactions at both sites. The sites were ideally positioned in cis rather than in trans and were bridged through 3-D space, like Type II enzymes, rather than along the 1-D contour of the DNA, as seen with Type I enzymes. The standard mode of action for the restriction enzymes that excise their recognition sites from DNA thus involves concurrent action at two DNA sites.  相似文献   

8.
The diversity of reaction mechanisms employed by Type II restriction enzymes was investigated by analysing the reactions of seven endonucleases at the same DNA sequence. NarI, KasI, Mly113I, SfoI, EgeI, EheI and BbeI cleave DNA at several different positions in the sequence 5′-GGCGCC-3′. Their reactions on plasmids with one or two copies of this sequence revealed five distinct mechanisms. These differ in terms of the number of sites the enzyme binds, and the number of phosphodiester bonds cleaved per turnover. NarI binds two sites, but cleaves only one bond per DNA-binding event. KasI also cuts only one bond per turnover but acts at individual sites, preferring intact to nicked sites. Mly113I cuts both strands of its recognition sites, but shows full activity only when bound to two sites, which are then cleaved concertedly. SfoI, EgeI and EheI cut both strands at individual sites, in the manner historically considered as normal for Type II enzymes. Finally, BbeI displays an absolute requirement for two sites in close physical proximity, which are cleaved concertedly. The range of reaction mechanisms for restriction enzymes is thus larger than commonly imagined, as is the number of enzymes needing two recognition sites.  相似文献   

9.
Many proteins can sense the relative orientations of two sequences at distant locations in DNA: some require sites in inverted (head-to-head) orientation, others in repeat (head-to-tail) orientation. Like many restriction enzymes, the BspMI endonuclease binds two copies of its target site before cleaving DNA. Its target is an asymmetric sequence so two sites in repeat orientation differ from sites in inverted orientation. When tested against supercoiled plasmids with two sites 700 bp apart in either repeated or inverted orientations, BspMI had a higher affinity for the plasmid with repeated sites than the plasmid with inverted sites. In contrast, on linear DNA or on supercoiled DNA with sites 1605 bp apart, BspMI interacted equally with repeated or inverted sites. The ability of BspMI to detect the relative orientation of two DNA sequences thus depends on both the topology and the length of the intervening DNA. Supercoiling may restrain the juxtaposition of sites 700 bp apart to a particular alignment across the superhelical axis, but the juxtaposition of sites in linear DNA or far apart in supercoiled DNA may occur without restraint. BspMI can therefore act as a sensor of the conformational dynamics of supercoiled DNA.  相似文献   

10.
Many reactions in cells proceed via the sequestration of two DNA molecules in a synaptic complex. SfiI is a member of a growing family of restriction enzymes that can bind and cleave two DNA sites simultaneously. We present here the structures of tetrameric SfiI in complex with cognate DNA. The structures reveal two different binding states of SfiI: one with both DNA-binding sites fully occupied and the other with fully and partially occupied sites. These two states provide details on how SfiI recognizes and cleaves its target DNA sites, and gives insight into sequential binding events. The SfiI recognition sequence (GGCCNNNN[downward arrow]NGGCC) is a subset of the recognition sequence of BglI (GCCNNNN[downward arrow]NGGC), and both enzymes cleave their target DNAs to leave 3-base 3' overhangs. We show that even though SfiI is a tetramer and BglI is a dimer, and there is little sequence similarity between the two enzymes, their modes of DNA recognition are unusually similar.  相似文献   

11.
According to the current paradigm type IIE restriction endonucleases are homodimeric proteins that simultaneously bind to two recognition sites but cleave DNA at only one site per turnover: the other site acts as an allosteric locus, activating the enzyme to cleave DNA at the first. Structural and biochemical analysis of the archetypal type IIE restriction enzyme EcoRII suggests that it has three possible DNA binding interfaces enabling simultaneous binding of three recognition sites. To test if putative synapsis of three binding sites has any functional significance, we have studied EcoRII cleavage of plasmids containing a single, two and three recognition sites under both single turnover and steady state conditions. EcoRII displays distinct reaction patterns on different substrates: (i) it shows virtually no activity on a single site plasmid; (ii) it yields open-circular DNA form nicked at one strand as an obligatory intermediate acting on a two-site plasmid; (iii) it cleaves concertedly both DNA strands at a single site during a single turnover on a three site plasmid to yield linear DNA. Cognate oligonucleotide added in trans increases the reaction velocity and changes the reaction pattern for the EcoRII cleavage of one and two-site plasmids but has little effect on the three-site plasmid. Taken together the data indicate that EcoRII requires simultaneous binding of three rather than two recognition sites in cis to achieve concerted DNA cleavage at a single site. We show that the orthodox type IIP enzyme PspGI which is an isoschisomer of EcoRII, cleaves different plasmid substrates with equal rates. Data provided here indicate that type IIE restriction enzymes EcoRII and NaeI follow different mechanisms. We propose that other type IIE restriction enzymes may employ the mechanism suggested here for EcoRII.  相似文献   

12.
BfiI is a novel type IIs restriction endonuclease that, unlike all other restriction enzymes characterised to date, cleaves DNA in the absence of Mg(2+). The amino acid sequence of the N-terminal part of BfiI has some similarities to Nuc of Salmonella typhimurium, an EDTA-resistant nuclease akin to phospholipase D. The dimeric form of Nuc contains a single active site composed of residues from both subunits. To examine the roles of the amino acid residues of BfiI that align with the catalytic residues in Nuc, a set of alanine replacement mutants was generated by site-directed mutagenesis. The mutationally altered forms of BfiI were all catalytically inactive but were still able to bind DNA specifically. The active site of BfiI is thus likely to be similar to that of Nuc. BfiI was also found by gel-filtration to be a dimer in solution. Both gel-shift and pull-down assays indicated that the dimeric form of BfiI binds two copies of its recognition sequence. In reactions on plasmids with either one or two copies of its recognition sequence, BfiI cleaved the DNA with two sites more rapidly than that with one site. Yet, when bound to two copies of its recognition sequence, the BfiI dimer cleaved only one phosphodiester bond at a time. The dimer thus seems to contain two DNA-binding domains but only one active site.  相似文献   

13.
In contrast to many type II restriction enzymes, dimeric proteins that cleave DNA at individual recognition sites 4-6 bp long, the SfiI endonuclease is a tetrameric protein that binds to two copies of an elongated sequence before cutting the DNA at both sites. The mode of action of the SfiI endonuclease thus seems more appropriate for DNA rearrangements than for restriction. To elucidate its biological function, strains of Escherichia coli expressing the SfiI restriction-modification system were transformed with plasmids carrying SfiI sites. The SfiI system often failed to restrict the survival of a plasmid with one SfiI site, but plasmids with two or more sites were restricted efficiently. Plasmids containing methylated SfI sites were not restricted. No rearrangements of the plasmids carrying SfiI sites were detected among the transformants. Hence, provided the target DNA contains at least two recognition sites, SfiI displays all of the hallmarks of a restriction-modification system as opposed to a recombination system in E. coli cells. The properties of the system in vivo match those of the enzyme in vitro. For both restriction in vivo and DNA cleavage in vitro, SfiI operates best with two recognition sites on the same DNA.  相似文献   

14.
The SgrAI endonuclease displays its maximal activity on DNA with two copies of its recognition sequence, cleaving both sites concertedly. While most restriction enzymes that act concurrently at two sites are tetramers, SgrAI is a dimer in solution. Its reaction at two cognate sites involves the association of two DNA-bound dimers. SgrAI can also bridge cognate and secondary sites, the latter being certain sequences that differ from the cognate by one base-pair. The mechanisms for cognate-cognate and cognate-secondary communications were examined for sites in the following topological relationships: in cis, on plasmids with two sites in a single DNA molecule; on catenanes containing two interlinked rings of DNA with one site in each ring; and in trans, on oligoduplexes carrying either a single site or the DNA termini generated by SgrAI. Both cognate-cognate and cognate-secondary interactions occur through 3-D space and not by 1-D tracking along the DNA. Both sorts of communication arise more readily when the sites are tethered to each other, either in cis on the same molecule of DNA or by the interlinking of catenane rings, than when released from the tether. However, the dimer bound to an oligoduplex carrying either a cognate or a secondary site could be activated to cleave that duplex by interacting with a second dimer bound to the recognition site, provided both duplexes are at least 30 base-pairs long: the second dimer could alternatively be bound to the two duplexes that correspond to the products of DNA cleavage by SgrAI.  相似文献   

15.
Formation of MboII vectors and cassettes using asymmetric MboII linkers   总被引:2,自引:0,他引:2  
R B Gayle  E A Auger  G R Gough  P T Gilham  G N Bennett 《Gene》1987,54(2-3):221-228
Class-IIS restriction endonucleases such as MboII cleave DNA at a specified distance away from their recognition sequences. This feature was exploited to cleave DNA at previously inaccessible locations by preparing special asymmetric linker/adapters containing the MboII recognition sequence. These could be joined to DNA fragments and subsequently cleaved by MboII. Attachment of a 3' phosphate to one of the two different oligodeoxynucleotides comprising the asymmetric duplex prevented ligation at the improper end of the linker. Plasmids were constructed containing a unique BamHI or BclI site between the recognition and cleavage site of MboII. These sites were used to introduce a foreign fragment into the plasmid at a position permitting MboII to cleave within the newly inserted fragment. Once cleaved at the unique MboII site, another DNA fragment was inserted. DNA was thus inserted at a sequence not previously accessible to specific cleavage by a restriction enzyme. A cassette containing an identifiable marker, the lac operator, between two oppositely oriented MboII/BamHI linkers was made and tested in a random insertion linker mutagenesis experiment.  相似文献   

16.
The FokI restriction endonuclease recognizes an asymmetric DNA sequence and cuts both strands at fixed positions upstream of the site. The sequence is contacted by a single monomer of the protein, but the monomer has only one catalytic centre and forms a dimer to cut both strands. FokI is also known to cleave DNA with two copies of its site more rapidly than DNA with one copy. To discover how FokI acts at a single site and how it acts at two sites, its reactions were examined on a series of plasmids with either one recognition site or with two sites separated by varied distances, sometimes in the presence of a DNA-binding defective mutant of FokI. These experiments showed that, to cleave DNA with one site, the monomer bound to that site associates via a weak protein–protein interaction with a second monomer that remains detached from the recognition sequence. Nevertheless, the second monomer catalyses phosphodiester bond hydrolysis at the same rate as the DNA-bound monomer. On DNA with two sites, two monomers of FokI interact strongly, as a result of being tethered to the same molecule of DNA, and sequester the intervening DNA in a loop.  相似文献   

17.
The type IIs restriction endonuclease MboII recognizes nonsymmetrical GAAGA sites, cutting 8 (top strand) and 7 (bottom strand) bases to the right. Gel retardation showed that MboII bound specifically to GAAGA sequences, producing two distinct complexes each containing one MboII and one DNA molecule. Interference analysis indicated that the initial species formed, named complex 1, comprised an interaction between the enzyme and the GAAGA target. Complex 2 involved interaction of the protein with both the GAAGA and the cutting sites. Only in the presence of divalent metal ions such as Ca(2+) is the conversion of complex 1 to 2 rapid. Additionally, a very retarded complex was seen with Ca(2+), possibly a (MboII)(2)-(DNA)(2) complex. Plasmids containing a single GAAGA site were hydrolyzed slowly by MboII. Plasmids containing two sites were cut far more rapidly, suggesting that the enzyme requires two recognition sites in the same DNA molecule for efficient hydrolysis. MboII appears to have a mechanism similar to the best characterized type IIs enzyme, FokI. Both enzymes initially bind DNA as monomers, followed by dimerization to give an (enzyme)(2)-(DNA)(2) complex. Dimerization is efficient only when the two target sites are located in the same DNA molecule and requires divalent metal ions.  相似文献   

18.
Type I restriction enzymes bind to a specific DNA sequence and subsequently translocate DNA past the complex to reach a non-specific cleavage site. We have examined several potential blocks to DNA translocation, such as positive supercoiling or a Holliday junction, for their ability to trigger DNA cleavage by type I restriction enzymes. Introduction of positive supercoiling into plasmid DNA did not have a significant effect on the rate of DNA cleavage by EcoAI endonuclease nor on the enzyme's ability to select cleavage sites randomly throughout the DNA molecule. Thus, positive supercoiling does not prevent DNA translocation. EcoR124II endonuclease cleaved DNA at Holliday junctions present on both linear and negatively supercoiled substrates. The latter substrate was cleaved by a single enzyme molecule at two sites, one on either side of the junction, consistent with a bi-directional translocation model. Linear DNA molecules with two recognition sites for endonucleases from different type I families were cut between the sites when both enzymes were added simultaneously but not when a single enzyme was added. We propose that type I restriction enzymes can track along a DNA substrate irrespective of its topology and cleave DNA at any barrier that is able to halt the translocation process.  相似文献   

19.
BbvCI cleaves an asymmetric DNA sequence, 5'-CC downward arrow TCAGC-3'/5'-GC downward arrow TGAGG-3', as indicated. While many Type II restriction enzymes consist of identical subunits, BbvCI has two different subunits: R(1), which acts at GC downward arrow TGAGG; and R(2), which acts at CC downward arrow TCAGC. Some mutants of BbvCI with defects in one subunit, either R(1)(-)R(2)(+) or R(1)(+)R(2)(-), cleave only one strand, that attacked by the native subunit. In analytical ultracentrifugation at various concentrations of protein, wild-type and mutant BbvCI enzymes aggregated extensively, but are R(1)R(2) heterodimers at the concentrations used in DNA cleavage reactions. On a plasmid with one recognition site, wild-type BbvCI cleaved both strands before dissociating from the DNA, while the R(1)(-)R(2)(+) and R(1)(+)R(2)(-) mutants acted almost exclusively on their specified strands, albeit at relatively slow rates. During the wild-type reaction, the DNA is cleaved initially in one strand, mainly that targeted by the R(1) subunit. The other strand is then cleaved slowly by R(2) before the enzyme dissociates from the DNA. Hence, the nicked form accumulates as a transient intermediate. This behaviour differs from that of many other restriction enzymes, which cut both strands at equal rates. However, the activities of the R(1)(+) and R(2)(+) subunits in the wild-type enzyme can differ from their activities in the R(1)(+)R(2)(-) and R(1)(-)R(2)(+) mutants. Each active site in BbvCI therefore influences the other.  相似文献   

20.
The SfiI endonuclease differs from other type II restriction enzymes by cleaving DNA concertedly at two copies of its recognition site, its optimal activity being with two sites on the same DNA molecule. The nature of this communication event between distant DNA sites was analysed on plasmids with recognition sites for SfiI interspersed with recombination sites for resolvase. These were converted by resolvase to catenanes carrying one SfiI site on each ring. The catenanes were cleaved by SfiI almost as readily as a single ring with two sites, in contrast to the slow reactions on DNA rings with one SfiI site. Interactions between SfiI sites on the same DNA therefore cannot follow the DNA contour and, instead, must stem from their physical proximity. In buffer lacking Mg2+, where SfiI is inactive while resolvase is active, the addition of SfiI to a plasmid with target sites for both proteins blocked recombination by resolvase, due to the restriction enzyme bridging its sites and thus isolating the sites for resolvase into separate loops. The extent of DNA looping by SfiI matched its extent of DNA cleavage in the presence of Mg2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号