首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microbial genes that are “novel” (no detectable homologs in other species) have become of increasing interest as environmental sampling suggests that there are many more such novel genes in yet-to-be-cultured microorganisms. By analyzing known microbial genomic islands and prophages, we developed criteria for systematic identification of putative genomic islands (clusters of genes of probable horizontal origin in a prokaryotic genome) in 63 prokaryotic genomes, and then characterized the distribution of novel genes and other features. All but a few of the genomes examined contained significantly higher proportions of novel genes in their predicted genomic islands compared with the rest of their genome (Paired t test = 4.43E-14 to 1.27E-18, depending on method). Moreover, the reverse observation (i.e., higher proportions of novel genes outside of islands) never reached statistical significance in any organism examined. We show that this higher proportion of novel genes in predicted genomic islands is not due to less accurate gene prediction in genomic island regions, but likely reflects a genuine increase in novel genes in these regions for both bacteria and archaea. This represents the first comprehensive analysis of novel genes in prokaryotic genomic islands and provides clues regarding the origin of novel genes. Our collective results imply that there are different gene pools associated with recently horizontally transmitted genomic regions versus regions that are primarily vertically inherited. Moreover, there are more novel genes within the gene pool associated with genomic islands. Since genomic islands are frequently associated with a particular microbial adaptation, such as antibiotic resistance, pathogen virulence, or metal resistance, this suggests that microbes may have access to a larger “arsenal” of novel genes for adaptation than previously thought.  相似文献   

2.
Han K  Lee J  Meyer TJ  Wang J  Sen SK  Srikanta D  Liang P  Batzer MA 《PLoS genetics》2007,3(10):1939-1949
With more than 1.2 million copies, Alu elements are one of the most important sources of structural variation in primate genomes. Here, we compare the chimpanzee and human genomes to determine the extent of Alu recombination-mediated deletion (ARMD) in the chimpanzee genome since the divergence of the chimpanzee and human lineages (~6 million y ago). Combining computational data analysis and experimental verification, we have identified 663 chimpanzee lineage-specific deletions (involving a total of ~771 kb of genomic sequence) attributable to this process. The ARMD events essentially counteract the genomic expansion caused by chimpanzee-specific Alu inserts. The RefSeq databases indicate that 13 exons in six genes, annotated as either demonstrably or putatively functional in the human genome, and 299 intronic regions have been deleted through ARMDs in the chimpanzee lineage. Therefore, our data suggest that this process may contribute to the genomic and phenotypic diversity between chimpanzees and humans. In addition, we found four independent ARMD events at orthologous loci in the gorilla or orangutan genomes. This suggests that human orthologs of loci at which ARMD events have already occurred in other nonhuman primate genomes may be “at-risk” motifs for future deletions, which may subsequently contribute to human lineage-specific genetic rearrangements and disorders.  相似文献   

3.

Background

Bacteriophages that infect the opportunistic pathogen Pseudomonas aeruginosa have been classified into several groups. One of them, which includes temperate phage particles with icosahedral heads and long flexible tails, bears genomes whose architecture and replication mechanism, but not their nucleotide sequences, are like those of coliphage Mu. By comparing the genomic sequences of this group of P. aeruginosa phages one could draw conclusions about their ontogeny and evolution.

Results

Two newly isolated Mu-like phages of P. aeruginosa are described and their genomes sequenced and compared with those available in the public data banks. The genome sequences of the two phages are similar to each other and to those of a group of P. aeruginosa transposable phages. Comparing twelve of these genomes revealed a common genomic architecture in the group. Each phage genome had numerous genes with homologues in all the other genomes and a set of variable genes specific for each genome. The first group, which comprised most of the genes with assigned functions, was named “core genome”, and the second group, containing mostly short ORFs without assigned functions was called “accessory genome”. Like in other phage groups, variable genes are confined to specific regions in the genome.

Conclusion

Based on the known and inferred functions for some of the variable genes of the phages analyzed here, they appear to confer selective advantages for the phage survival under particular host conditions. We speculate that phages have developed a mechanism for horizontally acquiring genes to incorporate them at specific loci in the genome that help phage adaptation to the selective pressures imposed by the host.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1146) contains supplementary material, which is available to authorized users.  相似文献   

4.
The availability of complete pathogen genomes has renewed interest in the development of diagnostics for infectious diseases. Synthetic peptide microarrays provide a rapid, high-throughput platform for immunological testing of potential B-cell epitopes. However, their current capacity prevent the experimental screening of complete “peptidomes”. Therefore, computational approaches for prediction and/or prioritization of diagnostically relevant peptides are required. In this work we describe a computational method to assess a defined set of molecular properties for each potential diagnostic target in a reference genome. Properties such as sub-cellular localization or expression level were evaluated for the whole protein. At a higher resolution (short peptides), we assessed a set of local properties, such as repetitive motifs, disorder (structured vs natively unstructured regions), trans-membrane spans, genetic polymorphisms (conserved vs. divergent regions), predicted B-cell epitopes, and sequence similarity against human proteins and other potential cross-reacting species (e.g. other pathogens endemic in overlapping geographical locations). A scoring function based on these different features was developed, and used to rank all peptides from a large eukaryotic pathogen proteome. We applied this method to the identification of candidate diagnostic peptides in the protozoan Trypanosoma cruzi, the causative agent of Chagas disease. We measured the performance of the method by analyzing the enrichment of validated antigens in the high-scoring top of the ranking. Based on this measure, our integrative method outperformed alternative prioritizations based on individual properties (such as B-cell epitope predictors alone). Using this method we ranked 10 million 12-mer overlapping peptides derived from the complete T. cruzi proteome. Experimental screening of 190 high-scoring peptides allowed the identification of 37 novel epitopes with diagnostic potential, while none of the low scoring peptides showed significant reactivity. Many of the metrics employed are dependent on standard bioinformatic tools and data, so the method can be easily extended to other pathogen genomes.  相似文献   

5.
Actinobacteria in the genus Cellulomonas are the only known and reported cellulolytic facultative anaerobes. To better understand the cellulolytic strategy employed by these bacteria, we sequenced the genome of the Cellulomonas fimi ATCC 484T. For comparative purposes, we also sequenced the genome of the aerobic cellulolytic “Cellvibrio gilvus” ATCC 13127T. An initial analysis of these genomes using phylogenetic and whole-genome comparison revealed that “Cellvibrio gilvus” belongs to the genus Cellulomonas. We thus propose to assign “Cellvibrio gilvus” to the genus Cellulomonas. A comparative genomics analysis between these two Cellulomonas genome sequences and the recently completed genome for Cellulomonas flavigena ATCC 482T showed that these cellulomonads do not encode cellulosomes but appear to degrade cellulose by secreting multi-domain glycoside hydrolases. Despite the minimal number of carbohydrate-active enzymes encoded by these genomes, as compared to other known cellulolytic organisms, these bacteria were found to be proficient at degrading and utilizing a diverse set of carbohydrates, including crystalline cellulose. Moreover, they also encode for proteins required for the fermentation of hexose and xylose sugars into products such as ethanol. Finally, we found relatively few significant differences between the predicted carbohydrate-active enzymes encoded by these Cellulomonas genomes, in contrast to previous studies reporting differences in physiological approaches for carbohydrate degradation. Our sequencing and analysis of these genomes sheds light onto the mechanism through which these facultative anaerobes degrade cellulose, suggesting that the sequenced cellulomonads use secreted, multidomain enzymes to degrade cellulose in a way that is distinct from known anaerobic cellulolytic strategies.  相似文献   

6.
Wheat and maize genes were hypothesized to be clustered into islands but the hypothesis was not statistically tested. The hypothesis is statistically tested here in four grass species differing in genome size, Brachypodium distachyon, Oryza sativa, Sorghum bicolor, and Aegilops tauschii. Density functions obtained under a model where gene locations follow a homogeneous Poisson process and thus are not clustered are compared with a model-free situation quantified through a non-parametric density estimate. A simple homogeneous Poisson model for gene locations is not rejected for the small O. sativa and B. distachyon genomes, indicating that genes are distributed largely uniformly in those species, but is rejected for the larger S. bicolor and Ae. tauschii genomes, providing evidence for clustering of genes into islands. It is proposed to call the gene islands “gene insulae” to distinguish them from other types of gene clustering that have been proposed. An average S. bicolor and Ae. tauschii insula is estimated to contain 3.7 and 3.9 genes with an average intergenic distance within an insula of 2.1 and 16.5 kb, respectively. Inter-insular distances are greater than 8 and 81 kb and average 15.1 and 205 kb, in S. bicolor and Ae. tauschii, respectively. A greater gene density observed in the distal regions of the Ae. tauschii chromosomes is shown to be primarily caused by shortening of inter-insular distances. The comparison of the four grass genomes suggests that gene locations are largely a function of a homogeneous Poisson process in small genomes. Nonrandom insertions of LTR retroelements during genome expansion creates gene insulae, which become less dense and further apart with the increase in genome size. High concordance in relative lengths of orthologous intergenic distances among the investigated genomes including the maize genome suggests functional constraints on gene distribution in the grass genomes.  相似文献   

7.
Transposable element (TE) amplification has been recognized as a driving force mediating genome size expansion and evolution, but the consequences for shaping 3D genomic architecture remains largely unknown in plants. Here, we report reference-grade genome assemblies for three species of cotton ranging 3-fold in genome size, namely Gossypium rotundifolium (K2), G. arboreum (A2), and G. raimondii (D5), using Oxford Nanopore Technologies. Comparative genome analyses document the details of lineage-specific TE amplification contributing to the large genome size differences (K2, 2.44 Gb; A2, 1.62 Gb; D5, 750.19 Mb) and indicate relatively conserved gene content and synteny relationships among genomes. We found that approximately 17% of syntenic genes exhibit chromatin status change between active (“A”) and inactive (“B”) compartments, and TE amplification was associated with the increase of the proportion of A compartment in gene regions (∼7,000 genes) in K2 and A2 relative to D5. Only 42% of topologically associating domain (TAD) boundaries were conserved among the three genomes. Our data implicate recent amplification of TEs following the formation of lineage-specific TAD boundaries. This study sheds light on the role of transposon-mediated genome expansion in the evolution of higher-order chromatin structure in plants.  相似文献   

8.
Lactobacillus paracasei is a member of the normal human and animal gut microbiota and is used extensively in the food industry in starter cultures for dairy products or as probiotics. With the development of low-cost, high-throughput sequencing techniques it has become feasible to sequence many different strains of one species and to determine its “pan-genome”. We have sequenced the genomes of 34 different L. paracasei strains, and performed a comparative genomics analysis. We analysed genome synteny and content, focussing on the pan-genome, core genome and variable genome. Each genome was shown to contain around 2800–3100 protein-coding genes, and comparative analysis identified over 4200 ortholog groups that comprise the pan-genome of this species, of which about 1800 ortholog groups make up the conserved core. Several factors previously associated with host-microbe interactions such as pili, cell-envelope proteinase, hydrolases p40 and p75 or the capacity to produce short branched-chain fatty acids (bkd operon) are part of the L. paracasei core genome present in all analysed strains. The variome consists mainly of hypothetical proteins, phages, plasmids, transposon/conjugative elements, and known functions such as sugar metabolism, cell-surface proteins, transporters, CRISPR-associated proteins, and EPS biosynthesis proteins. An enormous variety and variability of sugar utilization gene cassettes were identified, with each strain harbouring between 25–53 cassettes, reflecting the high adaptability of L. paracasei to different niches. A phylogenomic tree was constructed based on total genome contents, and together with an analysis of horizontal gene transfer events we conclude that evolution of these L. paracasei strains is complex and not always related to niche adaptation. The results of this genome content comparison was used, together with high-throughput growth experiments on various carbohydrates, to perform gene-trait matching analysis, in order to link the distribution pattern of a specific phenotype to the presence/absence of specific sets of genes.  相似文献   

9.
10.
Brucella species include important zoonotic pathogens that have a substantial impact on both agriculture and human health throughout the world. Brucellae are thought of as “stealth pathogens” that escape recognition by the host innate immune response, modulate the acquired immune response, and evade intracellular destruction. We analyzed the genome sequences of members of the family Brucellaceae to assess its evolutionary history from likely free-living soil-based progenitors into highly successful intracellular pathogens. Phylogenetic analysis split the genus into two groups: recently identified and early-dividing “atypical” strains and a highly conserved “classical” core clade containing the major pathogenic species. Lateral gene transfer events brought unique genomic regions into Brucella that differentiated them from Ochrobactrum and allowed the stepwise acquisition of virulence factors that include a type IV secretion system, a perosamine-based O antigen, and systems for sequestering metal ions that are absent in progenitors. Subsequent radiation within the core Brucella resulted in lineages that appear to have evolved within their preferred mammalian hosts, restricting their virulence to become stealth pathogens capable of causing long-term chronic infections.  相似文献   

11.

Background

Pseudomonas aeruginosa is an important opportunistic pathogen responsible for many infections in hospitalized and immunocompromised patients. Previous reports estimated that approximately 10% of its 6.6 Mbp genome varies from strain to strain and is therefore referred to as “accessory genome”. Elements within the accessory genome of P. aeruginosa have been associated with differences in virulence and antibiotic resistance. As whole genome sequencing of bacterial strains becomes more widespread and cost-effective, methods to quickly and reliably identify accessory genomic elements in newly sequenced P. aeruginosa genomes will be needed.

Results

We developed a bioinformatic method for identifying the accessory genome of P. aeruginosa. First, the core genome was determined based on sequence conserved among the completed genomes of twelve reference strains using Spine, a software program developed for this purpose. The core genome was 5.84 Mbp in size and contained 5,316 coding sequences. We then developed an in silico genome subtraction program named AGEnt to filter out core genomic sequences from P. aeruginosa whole genomes to identify accessory genomic sequences of these reference strains. This analysis determined that the accessory genome of P. aeruginosa ranged from 6.9-18.0% of the total genome, was enriched for genes associated with mobile elements, and was comprised of a majority of genes with unknown or unclear function. Using these genomes, we showed that AGEnt performed well compared to other publically available programs designed to detect accessory genomic elements. We then demonstrated the utility of the AGEnt program by applying it to the draft genomes of two previously unsequenced P. aeruginosa strains, PA99 and PA103.

Conclusions

The P. aeruginosa genome is rich in accessory genetic material. The AGEnt program accurately identified the accessory genomes of newly sequenced P. aeruginosa strains, even when draft genomes were used. As P. aeruginosa genomes become available at an increasingly rapid pace, this program will be useful in cataloging the expanding accessory genome of this bacterium and in discerning correlations between phenotype and accessory genome makeup. The combination of Spine and AGEnt should be useful in defining the accessory genomes of other bacterial species as well.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-737) contains supplementary material, which is available to authorized users.  相似文献   

12.
The oceanic cyanobacteria Prochlorococcus are globally important, ecologically diverse primary producers. It is thought that their viruses (phages) mediate population sizes and affect the evolutionary trajectories of their hosts. Here we present an analysis of genomes from three Prochlorococcus phages: a podovirus and two myoviruses. The morphology, overall genome features, and gene content of these phages suggest that they are quite similar to T7-like (P-SSP7) and T4-like (P-SSM2 and P-SSM4) phages. Using the existing phage taxonomic framework as a guideline, we examined genome sequences to establish “core” genes for each phage group. We found the podovirus contained 15 of 26 core T7-like genes and the two myoviruses contained 43 and 42 of 75 core T4-like genes. In addition to these core genes, each genome contains a significant number of “cyanobacterial” genes, i.e., genes with significant best BLAST hits to genes found in cyanobacteria. Some of these, we speculate, represent “signature” cyanophage genes. For example, all three phage genomes contain photosynthetic genes (psbA, hliP) that are thought to help maintain host photosynthetic activity during infection, as well as an aldolase family gene (talC) that could facilitate alternative routes of carbon metabolism during infection. The podovirus genome also contains an integrase gene (int) and other features that suggest it is capable of integrating into its host. If indeed it is, this would be unprecedented among cultured T7-like phages or marine cyanophages and would have significant evolutionary and ecological implications for phage and host. Further, both myoviruses contain phosphate-inducible genes (phoH and pstS) that are likely to be important for phage and host responses to phosphate stress, a commonly limiting nutrient in marine systems. Thus, these marine cyanophages appear to be variations of two well-known phages—T7 and T4—but contain genes that, if functional, reflect adaptations for infection of photosynthetic hosts in low-nutrient oceanic environments.  相似文献   

13.
Here, we report the genome of one gammaproteobacterial member of the gut microbiota, for which we propose the name “Candidatus Schmidhempelia bombi,” that was inadvertently sequenced alongside the genome of its host, the bumble bee, Bombus impatiens. This symbiont is a member of the recently described bacterial order Orbales, which has been collected from the guts of diverse insect species; however, “Ca. Schmidhempelia” has been identified exclusively with bumble bees. Metabolic reconstruction reveals that “Ca. Schmidhempelia” lacks many genes for a functioning NADH dehydrogenase I, all genes for the high-oxygen cytochrome o, and most genes in the tricarboxylic acid (TCA) cycle. “Ca. Schmidhempelia” has retained NADH dehydrogenase II, the low-oxygen specific cytochrome bd, anaerobic nitrate respiration, mixed-acid fermentation pathways, and citrate fermentation, which may be important for survival in low-oxygen or anaerobic environments found in the bee hindgut. Additionally, a type 6 secretion system, a Flp pilus, and many antibiotic/multidrug transporters suggest complex interactions with its host and other gut commensals or pathogens. This genome has signatures of reduction (2.0 megabase pairs) and rearrangement, as previously observed for genomes of host-associated bacteria. A survey of wild and laboratory B. impatiens revealed that “Ca. Schmidhempelia” is present in 90% of individuals and, therefore, may provide benefits to its host.  相似文献   

14.
The macronuclear genome of the ciliate Oxytricha trifallax displays an extreme and unique eukaryotic genome architecture with extensive genomic variation. During sexual genome development, the expressed, somatic macronuclear genome is whittled down to the genic portion of a small fraction (∼5%) of its precursor “silent” germline micronuclear genome by a process of “unscrambling” and fragmentation. The tiny macronuclear “nanochromosomes” typically encode single, protein-coding genes (a small portion, 10%, encode 2–8 genes), have minimal noncoding regions, and are differentially amplified to an average of ∼2,000 copies. We report the high-quality genome assembly of ∼16,000 complete nanochromosomes (∼50 Mb haploid genome size) that vary from 469 bp to 66 kb long (mean ∼3.2 kb) and encode ∼18,500 genes. Alternative DNA fragmentation processes ∼10% of the nanochromosomes into multiple isoforms that usually encode complete genes. Nucleotide diversity in the macronucleus is very high (SNP heterozygosity is ∼4.0%), suggesting that Oxytricha trifallax may have one of the largest known effective population sizes of eukaryotes. Comparison to other ciliates with nonscrambled genomes and long macronuclear chromosomes (on the order of 100 kb) suggests several candidate proteins that could be involved in genome rearrangement, including domesticated MULE and IS1595-like DDE transposases. The assembly of the highly fragmented Oxytricha macronuclear genome is the first completed genome with such an unusual architecture. This genome sequence provides tantalizing glimpses into novel molecular biology and evolution. For example, Oxytricha maintains tens of millions of telomeres per cell and has also evolved an intriguing expansion of telomere end-binding proteins. In conjunction with the micronuclear genome in progress, the O. trifallax macronuclear genome will provide an invaluable resource for investigating programmed genome rearrangements, complementing studies of rearrangements arising during evolution and disease.  相似文献   

15.
Biovar 1 of the genus Agrobacterium consists of at least nine genomic species that have not yet received accepted species names. However, rapid identification of these organisms in various biotopes is needed to elucidate crown gall epidemiology, as well as Agrobacterium ecology. For this purpose, the AFLP methodology provides rapid and unambiguous determination of the genomic species status of agrobacteria, as confirmed by additional DNA-DNA hybridizations. The AFLP method has been proven to be reliable and to eliminate the need for DNA-DNA hybridization. In addition, AFLP fragments common to all members of the three major genomic species of agrobacteria, genomic species G1 (reference strain, strain TT111), G4 (reference strain, strain B6, the type strain of Agrobacterium tumefaciens), and G8 (reference strain, strain C58), have been identified, and these fragments facilitate analysis and show the applicability of the method. The maximal infraspecies current genome mispairing (CGM) value found for the biovar 1 taxon is 10.8%, while the smallest CGM value found for pairs of genomic species is 15.2%. This emphasizes the gap in the distribution of genome divergence values upon which the genomic species definition is based. The three main genomic species of agrobacteria in biovar 1 displayed high infraspecies current genome mispairing values (9 to 9.7%). The common fragments of a genomic species are thus likely “species-specific” markers tagging the core genomes of the species.  相似文献   

16.
Phages, like many parasites, tend to have small genomes and may encode autonomous functions or manipulate those of their hosts''. Recombination functions are essential for phage replication and diversification. They are also nearly ubiquitous in bacteria. The E. coli genome encodes many copies of an octamer (Chi) motif that upon recognition by RecBCD favors repair of double strand breaks by homologous recombination. This might allow self from non-self discrimination because RecBCD degrades DNA lacking Chi. Bacteriophage Lambda, an E. coli parasite, lacks Chi motifs, but escapes degradation by inhibiting RecBCD and encoding its own autonomous recombination machinery. We found that only half of 275 lambdoid genomes encode recombinases, the remaining relying on the host''s machinery. Unexpectedly, we found that some lambdoid phages contain extremely high numbers of Chi motifs concentrated between the phage origin of replication and the packaging site. This suggests a tight association between replication, packaging and RecBCD-mediated recombination in these phages. Indeed, phages lacking recombinases strongly over-represent Chi motifs. Conversely, phages encoding recombinases and inhibiting host recombination machinery select for the absence of Chi motifs. Host and phage recombinases use different mechanisms and the latter are more tolerant to sequence divergence. Accordingly, we show that phages encoding their own recombination machinery have more mosaic genomes resulting from recent recombination events and have more diverse gene repertoires, i.e. larger pan genomes. We discuss the costs and benefits of superseding or manipulating host recombination functions and how this decision shapes phage genome structure and evolvability.  相似文献   

17.
De novo microbial genome sequencing reached a turning point with third-generation sequencing (TGS) platforms, and several microbial genomes have been improved by TGS long reads. Bacillus subtilis natto is closely related to the laboratory standard strain B. subtilis Marburg 168, and it has a function in the production of the traditional Japanese fermented food “natto.” The B. subtilis natto BEST195 genome was previously sequenced with short reads, but it included some incomplete regions. We resequenced the BEST195 genome using a PacBio RS sequencer, and we successfully obtained a complete genome sequence from one scaffold without any gaps, and we also applied Illumina MiSeq short reads to enhance quality. Compared with the previous BEST195 draft genome and Marburg 168 genome, we found that incomplete regions in the previous genome sequence were attributed to GC-bias and repetitive sequences, and we also identified some novel genes that are found only in the new genome.  相似文献   

18.
Large-scale analyses of protein complexes have recently become available for Escherichia coli and Mycoplasma pneumoniae, yielding 443 and 116 heteromultimeric soluble protein complexes, respectively. We have coupled the results of these mass spectrometry-characterized protein complexes with the 285 “gold standard” protein complexes identified by EcoCyc. A comparison with databases of gene orthology, conservation, and essentiality identified proteins conserved or lost in complexes of other species. For instance, of 285 “gold standard” protein complexes in E. coli, less than 10% are fully conserved among a set of 7 distantly-related bacterial “model” species. Complex conservation follows one of three models: well-conserved complexes, complexes with a conserved core, and complexes with partial conservation but no conserved core. Expanding the comparison to 894 distinct bacterial genomes illustrates fractional conservation and the limits of co-conservation among components of protein complexes: just 14 out of 285 model protein complexes are perfectly conserved across 95% of the genomes used, yet we predict more than 180 may be partially conserved across at least half of the genomes. No clear relationship between gene essentiality and protein complex conservation is observed, as even poorly conserved complexes contain a significant number of essential proteins. Finally, we identify 183 complexes containing well-conserved components and uncharacterized proteins which will be interesting targets for future experimental studies.  相似文献   

19.
Effective use of rapid and inexpensive whole genome sequencing for microbes requires fast, memory efficient bioinformatics tools for sequence comparison. The kSNP v2 software finds single nucleotide polymorphisms (SNPs) in whole genome data. kSNP v2 has numerous improvements over kSNP v1 including SNP gene annotation; better scaling for draft genomes available as assembled contigs or raw, unassembled reads; a tool to identify the optimal value of k; distribution of packages of executables for Linux and Mac OS X for ease of installation and user-friendly use; and a detailed User Guide. SNP discovery is based on k-mer analysis, and requires no multiple sequence alignment or the selection of a single reference genome. Most target sets with hundreds of genomes complete in minutes to hours. SNP phylogenies are built by maximum likelihood, parsimony, and distance, based on all SNPs, only core SNPs, or SNPs present in some intermediate user-specified fraction of targets. The SNP-based trees that result are consistent with known taxonomy. kSNP v2 can handle many gigabases of sequence in a single run, and if one or more annotated genomes are included in the target set, SNPs are annotated with protein coding and other information (UTRs, etc.) from Genbank file(s). We demonstrate application of kSNP v2 on sets of viral and bacterial genomes, and discuss in detail analysis of a set of 68 finished E. coli and Shigella genomes and a set of the same genomes to which have been added 47 assemblies and four “raw read” genomes of H104:H4 strains from the recent European E. coli outbreak that resulted in both bloody diarrhea and hemolytic uremic syndrome (HUS), and caused at least 50 deaths.  相似文献   

20.
Ammonia-oxidizing archaea (AOA) are ubiquitous and abundant and contribute significantly to the carbon and nitrogen cycles in the ocean. In this study, we assembled AOA draft genomes from two deep marine sediments from Donghae, South Korea, and Svalbard, Arctic region, by sequencing the enriched metagenomes. Three major microorganism clusters belonging to Thaumarchaeota, Epsilonproteobacteria, and Gammaproteobacteria were deduced from their 16S rRNA genes, GC contents, and oligonucleotide frequencies. Three archaeal genomes were identified, two of which were distinct and were designated Ca. “Nitrosopumilus koreensis” AR1 and “Nitrosopumilus sediminis” AR2. AR1 and AR2 exhibited average nucleotide identities of 85.2% and 79.5% to N. maritimus, respectively. The AR1 and AR2 genomes contained genes pertaining to energy metabolism and carbon fixation as conserved in other AOA, but, conversely, had fewer heme-containing proteins and more copper-containing proteins than other AOA. Most of the distinctive AR1 and AR2 genes were located in genomic islands (GIs) that were not present in other AOA genomes or in a reference water-column metagenome from the Sargasso Sea. A putative gene cluster involved in urea utilization was found in the AR2 genome, but not the AR1 genome, suggesting niche specialization in marine AOA. Co-cultured bacterial genome analysis suggested that bacterial sulfur and nitrogen metabolism could be involved in interactions with AOA. Our results provide fundamental information concerning the metabolic potential of deep marine sedimentary AOA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号