首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated how temperature and nutrient availability regulate fine-root productivity in nine tropical rainforest ecosystems on two altitudinal gradients with contrasting soil phosphorus (P) availabilities on Mount Kinabalu, Borneo. We measured the productivity and the nutrient contents of fine roots, and analyzed the relationships between fine-root parameters and environmental factors. The fine-root net primary productivity (NPP), total NPP, and ratio of fine-root NPP to total NPP differed greatly among the sites, ranging from 72 to 228 (g m?2 year?1), 281–2240 (g m?2 year?1), and 0.06–0.30, respectively. A multiple-regression analysis suggested a positive effect of P availability on total NPP, whereas fine-root NPP was positively correlated with mean annual temperature and with P and negatively correlated with N. The biomass and longevity of fine roots increased in response to the impoverishment of soil P. The carbon (C) to P ratio (C/P) of fine roots was significantly and positively correlated with the P-use efficiency of above-ground litter production, indicating that tropical rainforest trees dilute P in fine roots to maintain the C allocation ratio to these roots. We highlighted the mechanisms regulating the fine-root productivity of tropical rainforest ecosystems in relation to the magnitude of nutrient deficiency. The trees showed C-conservation mechanisms rather than C investment as responses to decreasing soil P availability, which demonstrates that the below-ground systems at these sites are strongly limited by P, similar to the above-ground systems.  相似文献   

2.
We tested the hypothesis that plants adjust to nutrient availability by altering carbon allocation patterns and nutrient-use efficiency (NUE = net primary production [NPP] per unit nutrient uptake), but are constrained by a trade-off between NUE and light-use efficiency () = NPP per unit intercepted light). NPP, NUE and ) were measured in montane Metrosideros polymorpha forest across a 4.1 x 106 yr space for time substitution chronosequence in which available soil N and P pools change with site age. Although the range of N and P availability across sites was broad, there was little difference in NPP between sites, and in contrast to theories of carbon allocation relative to limiting resources, we found no consistent relationships in production allocation to leaves, fine roots or wood. However, canopy nutrient pools and fluxes were correlated with the mass of fine roots per unit soil volume and there was a weak but positive correlation of NPP with LAI. Patterns of ) and NUE across the soil developmental sequence were opposite to each other. ) increased as nutrient availability and nutrient turnover increased, while NUE decreased in response to the same influences but reached its highest values where either N or P availability and turnover of both N and P were low. A negative correlation between ) and NUE supports the hypothesis that a trade-off exists between ) and leaf characteristics affecting NUE.  相似文献   

3.
We formulate a dynamic evolutionary optimization problem to predict the optimal pattern by which carbon (C) and nitrogen (N) are co-allocated to fine-root, leaf, and wood production, with the objective of maximizing height growth rate, year by year, in an even-aged stand. Height growth is maximized with respect to two adaptive traits, leaf N concentration and the ratio of fine-root mass to sapwood cross-sectional area. Constraints on the optimization include pipe-model structure, the C cost of N acquisition, and agreement between the C and N balances. The latter is determined by two models of height growth rate, one derived from the C balance and the other from the N balance; agreement is defined by identical growth rates. Predicted time-courses of maximized height growth rate accord with general observations. Across an N gradient, higher N availability leads to greater N utilization and net primary productivity, larger trees, and greater stocks of leaf and live wood biomass, with declining gains as a result of saturation effects at high N availability. Fine-root biomass is greatest at intermediate N availability. Predicted leaf and fine-root stocks agree with data from coniferous stands across Finland. Optimal C-allocation patterns agree with published observations and model analyses.  相似文献   

4.
Why do some forests produce biomass more efficiently than others? Variations in Carbon Use Efficiency (CUE: total Net Primary Production (NPP)/ Gross Primary Production (GPP)) may be due to changes in wood residence time (Biomass/NPPwood), temperature, or soil nutrient status. We tested these hypotheses in 14, one ha plots across Amazonian and Andean forests where we measured most key components of net primary production (NPP: wood, fine roots, and leaves) and autotrophic respiration (Ra; wood, rhizosphere, and leaf respiration). We found that lower fertility sites were less efficient at producing biomass and had higher rhizosphere respiration, indicating increased carbon allocation to belowground components. We then compared wood respiration to wood growth and rhizosphere respiration to fine root growth and found that forests with residence times <40 yrs had significantly lower maintenance respiration for both wood and fine roots than forests with residence times >40 yrs. A comparison of rhizosphere respiration to fine root growth showed that rhizosphere growth respiration was significantly greater at low fertility sites. Overall, we found that Amazonian forests produce biomass less efficiently in stands with residence times >40 yrs and in stands with lower fertility, but changes to long‐term mean annual temperatures do not impact CUE.  相似文献   

5.
Autotrophic respiration may regulate how ecosystem productivity responds to changes in temperature, atmospheric [CO2] and N deposition. Estimates of autotrophic respiration are difficult for forest ecosystems, because of the large amount of biomass, different metabolic rates among tissues, and seasonal variation in respiration rates. We examined spatial and seasonal patterns in autotrophic respiration in a Pinus strobus ecosystem, and hypothesized that seasonal patterns in respiration rates at a common temperature would vary with [N] for fully expanded foliage and fine roots, with photosynthesis for foliage, and with growth for woody tissues (stems, branches, and coarse roots). We also hypothesized that differences in [N] would largely explain differences in maintenance or dormant‐season respiration among tissues. For April–November, mean respiration at 15 °C varied from 1.5 to 2.8 μmol kg?1 s?1 for fully expanded foliage, 1.7–3.0 for growing foliage, 0.8–1.6 for fine roots, 0.6–1.1 (sapwood) for stems, 0.5–1.8 (sapwood) for branches, and 0.2–1.5 (sapwood) for coarse roots. Growing season variation in respiration for foliage produced the prior year was strongly related to [N] (r2 = 0.94), but fine root respiration was not related to [N]. For current‐year needles, respiration did not covary with [N]. Night‐time foliar respiration did not vary in concert with previous‐day photosynthesis for either growing or fully expanded needles. Stem growth explained about one‐third of the seasonal variation in stem respiration (r2 = 0.38), and also variation among trees (r2 = 0.43). We did not determine the cause of seasonal variation in branch and coarse root respiration, but it is unlikely to be directly related to growth, as the pattern of respiration in coarse roots and branches was not synchronized with stem growth. Seasonal variations in temperature‐corrected respiration rates were not synchronized among tissues, except foliage and branches. Spatial variability in dormant‐season respiration rates was significantly related to tissue N content in foliage (r2 = 0.67), stems (r2 = 0.45), coarse roots (r2 = 0.36), and all tissues combined (r2 = 0.83), but not for fine roots and branches. Per unit N, rates for P. strobus varied from 0.22 to 3.4 μmol molN?1 s?1 at 15 °C, comparable to those found for other conifers. Accurate estimates of annual autotrophic respiration should reflect seasonal and spatial variation in respiration rates of individual tissues.  相似文献   

6.
Changes in resource availability often cause competitively driven changes in tree allocation to foliage, wood, and fine roots, either via plastic changes within individuals or through turnover of individuals with differing strategies. Here, we investigate how optimally competitive tree allocation should change in response to elevated atmospheric CO2 along a gradient of nitrogen and light availability, together with how those changes should affect carbon storage in living biomass. We present a physiologically‐based forest model that includes the primary functions of wood and nitrogen. From a tree's perspective, wood is an offensive and defensive weapon used against neighbors in competition for light. From a biogeochemical perspective, wood is the primary living reservoir of stored carbon. Nitrogen constitutes a tree's photosynthetic machinery and the support systems for that machinery, and its limited availability thus reduces a tree's ability to fix carbon. This model has been previously successful in predicting allocation to foliage, wood, and fine roots along natural productivity gradients. Using game theory, we solve the model for competitively optimal foliage, wood, and fine root allocation strategies for trees in competition for nitrogen and light as a function of CO2 and nitrogen mineralization rate. Instead of down‐regulating under nitrogen limitation, carbon storage under elevated CO2 relative to carbon storage at ambient CO2 is approximately independent of the nitrogen mineralization rate. This surprising prediction is a consequence of both increased competition for nitrogen driving increased fine root biomass and increased competition for light driving increased allocation to wood under elevated CO2.  相似文献   

7.
Forest ecosystems release large amounts of carbon to the atmosphere from fine-root respiration (R(r)), but the control of this flux and its temperature sensitivity (Q(10)) are poorly understood. We attempted to: (1) identify the factors limiting this flux using additions of glucose and an electron transport uncoupler (carbonyl cyanide m-chlorophenylhydrazone); and (2) improve yearly estimates of R(r) by directly measuring its Q(10)in situ using temperature-controlled cuvettes buried around intact, attached roots. The proximal limits of R(r) of loblolly pine (Pinus taeda L.) trees exposed to free-air CO(2) enrichment (FACE) and N fertilization were seasonally variable; enzyme capacity limited R(r) in the winter, and a combination of substrate supply and adenylate availability limited R(r) in summer months. The limiting factors of R(r) were not affected by elevated CO(2) or N fertilization. Elevated CO(2 )increased annual stand-level R(r) by 34% whereas the combination of elevated CO(2) and N fertilization reduced R(r) by 40%. Measurements of in situ R(r) with high temporal resolution detected diel patterns that were correlated with canopy photosynthesis with a lag of 1 d or less as measured by eddy covariance, indicating a dynamic link between canopy photosynthesis and root respiration. These results suggest that R(r) is coupled to daily canopy photosynthesis and increases with carbon allocation below ground.  相似文献   

8.
根系具有高度的形态和生理功能异质性, 在森林生态系统碳和养分循环中起重要作用。根系分枝的顺序构成根序,是根系最基本的构型特征, 根序代表根系不同的发育阶段。然而, 目前直接测定不同根序细根生理功能的研究很少。以落叶松(Larix gmelinii)和水曲柳(Fraxinus mandshurica)的细根为研究对象, 使用气相氧电极测定不同根序细根的呼吸速率, 探讨根系呼吸速率与其形态、结构和组织氮浓度的关系。结果表明: 落叶松和水曲柳细根的直径、根长和维管束直径均随着根序的增加(1–5级)而增加, 而比根长、组织氮浓度和呼吸速率随着根序的增加而降低, 各根序之间差异显著(P < 0.05); 1级根比根长最大、皮层组织发达、组织氮浓度最高且呼吸速率也最高, 其呼吸速率分别为17.57 nmolO2·g–1·s–1(落叶松)和18.80 nmolO2·g–1·s–1(水曲柳), 比5级根分别高148%(落叶松)和124%(水曲柳); 并且, 落叶松根的呼吸速率几乎有96%与根系组织氮浓度相关, 而水曲柳根的呼吸速率则有89%与根系组织氮浓度相关。上述结果说明, 细根的形态和生理功能异质性是紧密相连的, 低级根的形态、结构决定其功能是吸收养分和水, 而高级根的形态、结构决定其功能是运输和贮存养分。  相似文献   

9.
Changes in function as an individual root ages has important implications for understanding resource acquisition, competitive ability and optimal lifespan. Both nitrate uptake and respiration rates of differently aged fine roots of grape (Vitis rupestris x V. riparia cv. 3309 C) were measured. The resulting data were then used to simulate nitrate uptake efficiency and nutrient depletion as a function of root age. Both nitrate uptake and root respiration declined remarkably quickly with increasing root age. The decline in both N uptake and root respiration corresponded with a strong decline in root N concentration, suggesting translocation of nitrogen out of the roots. For simulations where no nutrient depletion occurs at the root surface, daily uptake efficiency was maximal at root birth and lifetime nitrate uptake efficiency slowly increased as the roots aged. Simulations of growth of roots into unoccupied soil using a solute transport model indicated the advantage of high uptake capacity in new roots under competitive conditions where nitrate availability is very transitory.  相似文献   

10.
Aims Carbon (C) sequestration in terrestrial ecosystems is strongly regulated by nitrogen (N) processes. However, key parameters that determine the degree of N regulation on terrestrial C sequestration have not been well quantified.Methods Here, we used a Bayesian probabilistic inversion approach to estimate 14 target parameters related to ecosystem C and N interactions from 19 datasets obtained from Duke Forests under ambient and elevated carbon dioxide (CO2).Important findings Our results indicated that 8 of the 14 target parameters, such as C:N ratios in most ecosystem compartments, plant N uptake and external N input, were well constrained by available datasets whereas the others, such as N allocation coefficients, N loss and the initial value of mineral N pool were poorly constrained. Our analysis showed that elevated CO2 led to the increases in C:N ratios in foliage, fine roots and litter. Moreover, elevated CO2 stimulated plant N uptake and increased ecosystem N capital in Duke Forests by 25.2 and 8.5%, respectively. In addition, elevated CO2 resulted in the decrease of C exit rates (i.e. increases in C residence times) in foliage, woody biomass, structural litter and passive soil organic matter, but the increase of C exit rate in fine roots. Our results demonstrated that CO2 enrichment substantially altered key parameters in determining terrestrial C and N interactions, which have profound implications for model improvement and predictions of future C sequestration in terrestrial ecosystems in response to global change.  相似文献   

11.
Despite the importance of nitrogen (N) limitation of forest carbon (C) sequestration at rising atmospheric CO2 concentration, the mechanisms responsible are not well understood. To elucidate the interactive effects of elevated CO2 (eCO2) and soil N availability on forest productivity and C allocation, we hypothesized that (1) trees maximize fitness by allocating N and C to maximize their net growth and (2) that N uptake is controlled by soil N availability and root exploration for soil N. We tested this model using data collected in Free‐Air CO2 Enrichment sites dominated by evergreen (Pinus taeda; Duke Forest) and deciduous [Liquidambar styraciflua; Oak Ridge National Laboratory (ORNL)] trees. The model explained 80–95% of variation in productivity and N‐uptake data among eCO2, N fertilization and control treatments over 6 years. The model explains why fine‐root production increased, and why N uptake increased despite reduced soil N availability under eCO2 at ORNL and Duke. In agreement with observations at other sites, the model predicts that soil N availability reduced below a critical level diminishes all eCO2 responses. At Duke, a negative feedback between reduced soil N availability and N uptake prevented progressive reduction in soil N availability at eCO2. At ORNL, soil N availability progressively decreased because it did not trigger reductions in N uptake; N uptake was maintained at ORNL through a large increase in the production of fast turnover fine roots. This implies that species with fast root turnover could be more prone to progressive N limitation of carbon sequestration in woody biomass than species with slow root turnover, such as evergreens. However, longer term data are necessary for a thorough evaluation of this hypothesis. The success of the model suggests that the principle of maximization of net growth to control growth and allocation could serve as a basis for simplification and generalization of larger scale forest and ecosystem models, for example by removing the need to specify parameters for relative foliage/stem/root allocation.  相似文献   

12.
Using a new approach involving one-time measurements of radiocarbon (14C) in fine (<2 mm diameter) root tissues we have directly measured the mean age of fine-root carbon. We find that the carbon making up the standing stock of fine roots in deciduous and coniferous forests of the eastern United States has a mean age of 3-18 years for live fine roots, 10-18 years for dead fine roots, and 3-18 years for mixed live+dead fine roots. These 14C-derived mean ages represent the time C was stored in the plant before being allocated for root growth, plus the average lifespan (for live roots), plus the average time for the root to decompose (for dead roots and mixtures). Comparison of the 14C content of roots known to have grown within 1 year with the 14C of atmospheric CO2 for the same period shows that root tissues are derived from recently fixed carbon, and the storage time prior to allocation is <2 years and likely <1 year. Fine-root mean ages tend to increase with depth in the soil. Live roots in the organic horizons are made of C fixed 3-8 years ago compared with 11-18 years in the mineral B horizons. The mean age of C in roots increases with root diameter and also is related to branching order. Our results differ dramatically from previous estimates of fine-root mean ages made using mass balance approaches and root-viewing cameras, which generally report life spans (mean ages for live roots) of a few months to 1-2 years. Each method for estimating fine-root dynamics, including this new radiocarbon method, has biases. Root-viewing approaches tend to emphasize more rapidly cycling roots, while radiocarbon ages tend to reflect those components that persist longest in the soil. Our 14C-derived estimates of long mean ages can be reconciled with faster estimates only if fine-root populations have varying rates of root mortality and decomposition. Our results indicate that a standard definition of fine roots, as those with diameters of <2 mm, is inadequate to determine the most dynamic portion of the root population. Recognition of the variability in fine-root dynamics is necessary to obtain better estimates of belowground C inputs.  相似文献   

13.
Rising atmospheric [CO2] has the potential to alter soil carbon (C) cycling by increasing the content of recalcitrant constituents in plant litter, thereby decreasing rates of decomposition. Because fine root turnover constitutes a large fraction of annual NPP, changes in fine root decomposition are especially important. These responses will likely be affected by soil resource availability and the life history characteristics of the dominant tree species. We evaluated the effects of elevated atmospheric [CO2] and soil resource availability on the production and chemistry, mycorrhizal colonization, and decomposition of fine roots in an early- and late-successional tree species that are economically and ecologically important in north temperate forests. Open-top chambers were used to expose young trembling aspen (Populus tremuloides) and sugar maple (Acer saccharum) trees to ambient (36 Pa) and elevated (56 Pa) atmospheric CO2. Soil resource availability was composed of two treatments that bracketed the range found in the Upper Lake States, USA. After 2.5 years of growth, sugar maple had greater fine root standing crop due to relatively greater allocation to fine roots (30% of total root biomass) relative to aspen (7% total root biomass). Relative to the low soil resources treatment, aspen fine root biomass increased 76% with increased soil resource availability, but only under elevated [CO2]. Sugar maple fine root biomass increased 26% with increased soil resource availability (relative to the low soil resources treatment), and showed little response to elevated [CO2]. Concentrations of N and soluble phenolics, and C/N ratio in roots were similar for the two species, but aspen had slightly higher lignin and lower condensed tannins contents compared to sugar maple. As predicted by source-sink models of carbon allocation, pooled constituents (C/N ratio, soluble phenolics) increased in response to increased relative carbon availability (elevated [CO2]/low soil resource availability), however, biosynthetically distinct compounds (lignin, starch, condensed tannins) did not always respond as predicted. We found that mycorrhizal colonization of fine roots was not strongly affected by atmospheric [CO2] or soil resource availability, as indicated by root ergosterol contents. Overall, absolute changes in root chemical composition in response to increases in C and soil resource availability were small and had no effect on soil fungal biomass or specific rates of fine root decomposition. We conclude that root contributions to soil carbon cycling will mainly be influenced by fine root production and turnover responses to rising atmospheric [CO2], rather than changes in substrate chemistry.  相似文献   

14.
15.
水曲柳和落叶松细根寿命的估计   总被引:9,自引:3,他引:6       下载免费PDF全文
树木细根(直径≤2 mm)是控制树木与其周围环境进行能量交换和物质分配的主要器官,其寿命的长短决定了每年被分配到土壤中碳和养分的数量。我们使用微根管技术监测了水曲柳(Fraxinus mandshurica)和落叶松(Larix gmelinii)细根生长、衰老、死亡的动态过程,运用Kaplan-Meier方法估计细根存活率及中位值寿命(Median root lifespan,MRL),做存活曲线(Survival curve)。用对数秩检验(Log-rank test)比较不同树种、不同土壤层次、不同季节出生的细根寿命差异程度。研究结果表明,随观测期延长,细根存活率逐渐下降,在观测期内的各个时点上,水曲柳细根存活率显著高于落叶松(p<0.001),说明水曲柳细根寿命明显长于落叶松,两树种的MRL分别为111±7 d和77±4 d。无论是水曲柳还是落叶松,土壤下层(20~40 cm)的细根存活率始终高于上层(0~20 cm),差异程度均达到显著水平(p=0.001, p<0.001),落叶松上下两层的MRL分别为62±11 d 和95±11 d,水曲柳为111±6 d和124±20 d,这与土壤环境因子的垂直分布有关,下层土壤延长细根寿命。不同同龄根群(Root cohort)的细根寿命不同。落叶松夏季产生的细根存活率显著高于春季(p=0.042),中位值寿命分别是MRL=47±13 d,MRL=82±6 d。水曲柳不同细根同龄根群与落叶松具有相似的季节性,夏季产生的细根存活率在同一时间点上要显著高于春季(p=0.014)。  相似文献   

16.
* A dual-isotope, microcosm experiment was conducted with Quercus rubra (red oak) seedlings to test the hypothesis that foliar herbivory would increase belowground carbon allocation (BCA), carbon (C) rhizodeposition and nitrogen (N) uptake. Plant BCA links soil ecosystems to aboveground processes and can be affected by insect herbivores, though the extent of herbivore influences on BCA is not well understood in woody plants. * Microcosms containing 2-yr-old Q. rubra seedlings and soil collected from the Coweeta Hydrologic Laboratory (NC, USA) were subjected to herbivory or left as undamaged controls. All microcosms were then injected with 15N-glycine and pulsed with 13CO2. * Contrary to our hypothesis, herbivore damage reduced BCA to fine roots by 63% and correspondingly increased allocation of new C to foliage. However, 13C recoveries in soil pools were similar between treatments, suggesting that exudation of C from roots is an actively regulated component of BCA. Herbivore damage also reduced N allocation to fine roots by 39%, apparently in favor of storage in taproot and stem tissues. * Oak seedlings respond to moderate insect herbivore damage with a complex suite of allocation shifts that may simultaneously increase foliar C, maintain C rhizodeposition and N assimilation, and shift N resources to storage.  相似文献   

17.
Characterization of turnover times of fine roots is essential to understanding patterns of carbon allocation in plants and describing forest C cycling. We used the rate of decline in the ratio of 14C to 12C in a mature hardwood forest, enriched by an inadvertent 14C pulse, to investigate fine-root turnover and its relationship with fine-root diameter and soil depth. Biomass and Delta14C values were determined for fine roots collected during three consecutive winters from four sites, by depth, diameter size classes (< 0.5 or 0.5-2 mm), and live-or-dead status. Live-root pools retained significant 14C enrichment over 3 yr, demonstrating a mean turnover time on the order of years. However, elevated Delta14C values in dead-root pools within 18 months of the pulse indicated an additional component of live roots with short turnover times (months). Our results challenge assumptions of a single live fine-root pool with a unimodal and normal age distribution. Live fine roots < 0.5 mm and those near the surface, especially those in the O horizon, had more rapid turnover than 0.5-2 mm roots and deeper roots, respectively.  相似文献   

18.
It is uncertain whether elevated atmospheric CO2 will increase C storage in terrestrial ecosystems without concomitant increases in plant access to N. Elevated CO2 may alter microbial activities that regulate soil N availability by changing the amount or composition of organic substrates produced by roots. Our objective was to determine the potential for elevated CO2 to change N availability in an experimental plant-soil system by affecting the acquisition of root-derived C by soil microbes. We grew Populus tremuloides (trembling aspen) cuttings for 2 years under two levels of atmospheric CO2 (36.7 and 71.5 Pa) and at two levels of soil N (210 and 970 μg N g–1). Ambient and twice-ambient CO2 concentrations were applied using open-top chambers, and soil N availability was manipulated by mixing soils differing in organic N content. From June to October of the second growing season, we measured midday rates of soil respiration. In August, we pulse-labeled plants with 14CO2 and measured soil 14CO2 respiration and the 14C contents of plants, soils, and microorganisms after a 6-day chase period. In conjunction with the August radio-labeling and again in October, we used 15N pool dilution techniques to measure in situ rates of gross N mineralization, N immobilization by microbes, and plant N uptake. At both levels of soil N availability, elevated CO2 significantly increased whole-plant and root biomass, and marginally increased whole-plant N capital. Significant increases in soil respiration were closely linked to increases in root biomass under elevated CO2. CO2 enrichment had no significant effect on the allometric distribution of biomass or 14C among plant components, total 14C allocation belowground, or cumulative (6-day) 14CO2 soil respiration. Elevated CO2 significantly increased microbial 14C contents, indicating greater availability of microbial substrates derived from roots. The near doubling of microbial 14C contents at elevated CO2 was a relatively small quantitative change in the belowground C cycle of our experimental system, but represents an ecologically significant effect on the dynamics of microbial growth. Rates of plant N uptake during both 6-day periods in August and October were significantly greater at elevated CO2, and were closely related to fine-root biomass. Gross N mineralization was not affected by elevated CO2. Despite significantly greater rates of N immobilization under elevated CO2, standing pools of microbial N were not affected by elevated CO2, suggesting that N was cycling through microbes more rapidly. Our results contained elements of both positive and negative feedback hypotheses, and may be most relevant to young, aggrading ecosystems, where soil resources are not yet fully exploited by plant roots. If the turnover of microbial N increases, higher rates of N immobilization may not decrease N availability to plants under elevated CO2. Received: 12 February 1999 / Accepted: 2 March 2000  相似文献   

19.
The Rhinelander free-air CO(2) enrichment (FACE) experiment is designed to understand ecosystem response to elevated atmospheric carbon dioxide (+CO(2)) and elevated tropospheric ozone (+O(3)). The objectives of this study were: to understand how soil respiration responded to the experimental treatments; to determine whether fine-root biomass was correlated to rates of soil respiration; and to measure rates of fine-root turnover in aspen (Populus tremuloides) forests and determine whether root turnover might be driving patterns in soil respiration. Soil respiration was measured, root biomass was determined, and estimates of root production, mortality and biomass turnover were made. Soil respiration was greatest in the +CO(2) and +CO(2) +O(3) treatments across all three plant communities. Soil respiration was correlated with increases in fine-root biomass. In the aspen community, annual fine-root production and mortality (g m(-2)) were positively affected by +O(3). After 10 yr of exposure, +CO(2) +O(3)-induced increases in belowground carbon allocation suggest that the positive effects of elevated CO(2) on belowground net primary productivity (NPP) may not be offset by negative effects of O(3). For the aspen community, fine-root biomass is actually stimulated by +O(3), and especially +CO(2) +O(3).  相似文献   

20.
林木细根寿命及其影响因子研究进展   总被引:27,自引:6,他引:21       下载免费PDF全文
 细根周转要消耗大量的C,它影响森林生态系统C分配格局与过程和养分循环,对生态系统生产力具有重要意义。细根的周转取决于细根的寿命,细根寿命越短,周转越快,根系对C的消耗也越多。大量研究表明,细根的寿命与地上部分C向根系供应的多少有密切关系,同时也与细根直径大小、土壤中N和水分的有效性、土壤温度以及根际周围的土壤动物和微生物的活动有关。本文综述了国外近年来在该领域里的研究进展,特别是对控制细根寿命的机理和主要影响因子进行了评述,目的是引起国内研究者的关注,促进我国根系生态学的研究与发展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号