首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ba 3-type cytochrome c oxidase from Thermus thermophilus is phylogenetically very distant from the aa 3–type cytochrome c oxidases. Nevertheless, both types of oxidases have the same number of redox-active metal sites and the reduction of O2 to water is catalysed at a haem a 3-CuB catalytic site. The three-dimensional structure of the ba 3 oxidase reveals three possible proton-conducting pathways showing very low homology compared to those of the mitochondrial, Rhodobacter sphaeroides and Paracoccus denitrificans aa 3 oxidases. In this study we investigated the oxidative part of the catalytic cycle of the ba 3 -cytochrome c oxidase using the flow-flash method. After flash-induced dissociation of CO from the fully reduced enzyme in the presence of oxygen we observed rapid oxidation of cytochrome b (k ≅ 6.8 × 104 s−1) and formation of the peroxy (PR) intermediate. In the next step a proton was taken up from solution with a rate constant of ~1.7 × 104 s−1, associated with formation of the ferryl (F) intermediate, simultaneous with transient reduction of haem b. Finally, the enzyme was oxidized with a rate constant of ~1,100 s−1, accompanied by additional proton uptake. The total proton uptake stoichiometry in the oxidative part of the catalytic cycle was ~1.5 protons per enzyme molecule. The results support the earlier proposal that the PR and F intermediate spectra are similar (Siletsky et al. Biochim Biophys Acta 1767:138, 2007) and show that even though the architecture of the proton-conducting pathways is different in the ba 3 oxidases, the proton-uptake reactions occur over the same time scales as in the aa 3-type oxidases. Smirnova and Zaslavsky contributed equally to the work described in this paper.  相似文献   

2.
Kinetics of the reduction of the hemes in cytochrome c oxidase in the presence of high concentration of ruthenium(III)hexaammine chloride was examined using a stopped-flow spectrophotometer. Upon mixing of the oxidized enzyme with dithionite and Ru(NH3) 6 3+ , three well-resolved phases were observed: heme a reduction reaching completion within a few milliseconds is followed by two slow phases of heme a 3 reduction. The difference spectrum of heme a 3 reduction in the visible region is characterized by a maximum at ~612 nm, rather than at 603 nm as was believed earlier. It is shown that in the case of bovine heart cytochrome c oxidase containing a special cation-binding site in which reversible binding of calcium ion occurs, heme a 3 reduction is slowed down by low concentrations of Ca2+. The effect is absent in the case of the bacterial cytochrome oxidase in which the cation-binding site contains a tightly bound Ca2+ ion. The data corroborate the inhibition of the cytochrome oxidase enzymatic activity by Ca2+ ions discovered earlier and indicate that the cation affects intramolecular electron transfer.  相似文献   

3.
The cytochrome b 6 f (Cyt b 6 f) complex, which functions as a plastoquinol-plastocyanin oxidoreductase and mediates the linear electron flow between photosystem II (PSII) and photosystem I (PSI) and the cyclic electron flow around PSI, was isolated from spinach (Spinacia oleracea L.) chloroplasts using n-octyl-β-D-glucopyranoside (β-OG). The preparation was also able to catalyze the peroxidase-like reaction in the presence of hydrogen peroxide (H2O2) and guaiacol. The optimal conditions for peroxidase activity of the preparation included: pH 3.6, ionic strength 0.1, and temperature 35°C. The apparent Michaelis constant (K m) values for H2O2 and guaiacol were 50 mM and 2 mM, respectively. The bimolecular rate constant (k obs) was about 26 M−1 s−1 and the turnover number (K cat) was about 60 min−1 (20 mM guaiacol, 100 mM sodium phosphate, pH 3.6, 25°C, [H2O2]<100mM). These parameters were similar to those of several other heme-containing proteins, such as myoglobin and Cyt c.  相似文献   

4.
The generation of superoxide anion radical (O2 ·−) in the cytochrome b 6 f complex (Cyt b 6 f) of spinach under high-light illumination was studied using electron paramagnetic resonance spectroscopy. The generation of O2 ·− was lost in the absence of molecular oxygen. It was also suppressed in the presence of NaN3 and could be scavenged by extraneous antioxidants such as ascorbate, β-carotene, and glutathione. The results also indicate that O2 ·−, which is produced under high-light illumination of the Cyt b 6 f from spinach, might be generated from a reaction involing 1O2, and the Rieske Fe-S protein could serve as the electron donor in the O2 ·− production. The mechanism of photoprotection of the Cyt b 6 f complex by antioxidants is discussed.  相似文献   

5.
The 16-kDa diheme cytochrome c from the bacterium Shewanella baltica OS155 (Sb-DHC) was cloned and expressed in Escherichia coli and investigated through UV–vis, magnetic circular dichroism, and 1H NMR spectroscopies and protein voltammetry. The model structure was obtained by means of comparative modeling using the X-ray structure of Rhodobacter sphaeroides diheme cytochrome c (Rs-DHC) (with a 37% pairwise sequence identity) as a template. Sb-DHC folds into two distinct domains, each containing one heme center with a bis-His axial ligation. Both secondary and tertiary structures of the N-terminal domain resemble those of class I cytochrome c, displaying three α-helices and a compact overall folding. The C-terminal domain is less helical than the corresponding domain of Rs-DHC. The two heme groups are bridged by Tyr26 in correspondence with the shortest edge-to-edge distance, a feature which would facilitate fast internal electron transfer. The electronic properties of the two prosthetic centers are equivalent and sensitive to two acid–base equilibria with pK a values of approximately 2.4 and 5, likely corresponding to protonation and detachment of the axial His ligands from the heme iron and a pH-linked conformational change of the protein, respectively. Reduction potentials of −0.144 and −0.257 V (vs. the standard hydrogen electrode), were determined for the C- and N-terminal heme groups, respectively. An approach based on the extended Debye–Hückel equation was applied for the first time to a two-centered metalloprotein and was found to reproduce successfully the ionic strength dependence of E°′.  相似文献   

6.
A micropropagation protocol through multiple shoot formation was developed for Thlaspi caerulescens L., one of the most important heavy metals hyperaccumulator plants. In vitro seed-derived young seedlings were used for the initiation of multiple shoots on Murashige and Skoog (MS) medium with combinations of benzylaminopurine (BA; 0.5–1.0 mg dm−3), naphthaleneacetic acid (NAA; 0–0.2 mg dm−3), gibberellic acid (GA3; 0–1.0 mg dm−3) and riboflavin (0–3.0 mg dm−3). The maximum number of shoots was developed on medium containing 1.0 mg dm−3 BA and 0.2 mg dm−3 NAA. GA3 (0.5 mg dm−3) in combination with BA significantly increased shoot length. In view of shoot numbers, shoot length and further rooting rate, the best combination was 1.0 mg dm−3 BA + 0.5 mg dm−3 GA3 + 1.0 mg dm−3 riboflavin. Well-developed shoots (35–50 mm) were successfully rooted at approximately 95 % on MS medium containing 20 g dm−3 sucrose, 8 g dm−3 agar and 1.0 mg dm−3 indolebutyric acid. Almost all in vitro plantlets survived when transferred to pots.  相似文献   

7.
The pre-steady states of Pseudomonas species lipase inhibitions by p-nitrophenyl-N-substituted carbamates (1–6) are composed of two steps: (1) formation of the non-covalent enzyme–inhibitor complex (E:I) from the inhibitor and the enzyme and (2) formation of the tetrahedral enzyme–inhibitor adduct (E–I) from the E:I complex. From a stopped-flow apparatus, the dissociation constant for the E:I complex, KS, and the rate constant for formation of the tetrahedral E–I adduct from the E:I complex, k2 are obtained from the non-linear least-squares of curve fittings of first-order rate constant (kobs) versus inhibition concentration ([I]) plot against kobs=k2+k2[I]/(KS+[I]). Values of pKS, and log k2 are linearly correlated with the σ* values with the ρ* values of −2.0 and 0.36, respectively. Therefore, the E:I complexes are more positive charges than the inhibitors due to the ρ* value of −2.0. The tetrahedral E–I adducts on the other hand are more negative charges than the E:I complexes due to the ρ* value of 0.36. Formation of the E:I complex from the inhibitor and the enzyme are further divided into two steps: (1) the pre-equilibrium protonation of the inhibitor and (2) formation of the E:I complex from the protonated inhibitor and the enzyme.  相似文献   

8.
Recently, the prenyltransferase SirD was found to be responsible for the O-prenylation of tyrosine in the biosynthesis of sirodesmin PL in Leptosphaeria maculans. In this study, the behavior of SirD towards phenylalanine/tyrosine and tryptophan derivatives was investigated. Product formation has been observed with 12 of 19 phenylalanine/tyrosine derivatives. It was shown that the alanine structure attached to the benzene ring and an electron donor, e.g., OH or NH2, at its para-position are essential for the enzyme activity. Modifications were possible both at the side chain and the benzene ring. Enzyme products from seven phenylalanine/tyrosine derivatives were isolated and characterized by MS and NMR analyses including HSQC and HMBC and proven to be O- or N-prenylated derivatives at position C4 of the benzene rings. K M values of six selected derivatives were found in the range of 0.10–0.68 mM. Catalytic efficiencies (K cat/K M ) were determined in the range of 430–1,110 s−1·M−1 with l-tyrosine as the best substrate. In addition, 7 of 14 tested tryptophan analogs were also accepted by SirD and converted to C7-prenylated derivatives, which was confirmed by comparison with products obtained from enzyme assays using a 7-dimethylallyltryptophan synthase 7-DMATS from Aspergillus fumigatus.  相似文献   

9.
Li B  Mao D  Liu Y  Li L  Kuang T 《Photosynthesis research》2005,83(3):297-305
A pure, active cytochrome b 6 f was isolated from the chloroplasts of the marine green alga, Bryopsis corticulans. To investigate and characterize this cytochrome b 6 f complex, sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE), absorption spectra measurement and HPLC were employed. It was shown that this purified complex contained four large subunits with apparent molecular masses of 34.8, 24, 18.7 and 16.7 kD. The ratio of Cyt b 6 to Cytf was 2.01 : 1. The cytochromeb 6 f was shown to catalyze the transfer of 73 electrons from decylplastoquinol to plastocyanin–ferricyanide per Cyt f per second. α-Carotene, one kind of carotenoid that has not been found to present in cytochrome b 6 f complex, was discovered in this preparation by reversed phase HPLC. It was different from β-carotene usually found in cytochrome b 6 f complex. The configuration of the major α-carotene component was assigned to be 9-cis by resonance Raman spectroscopy. Different from the previous reports, the configuration of this α-carotene in dissociated state was determined to be all-trans. Besides this carotene, chlorophyll a was also found in this complex. It was shown that the molecular ratios of chlorophylla, cis and all-trans-α-carotene to Cyt f in this complex were 1.2, 0.7 and 0.2, respectively.  相似文献   

10.
A carbohydrate ligand system has been developed which is composed of self-assembled monolayers (SAMs) of mannosylerythritol lipid-A (MEL-A) from Pseudozyma antarctica, serving for human immunoglobulin G and M (HIgG and HIgM). The estimated binding constants from surface plasmon resonance (SPR) measurement were K a = 9.4 × 106 M−1 for HIgG and 5.4 × 106 M−1 for HIgM, respectively. The binding site was not in the Fc region of immunoglobulin but in the Fab region. Large amounts of HIgG and HIgM bound to MEL-A SAMs were directly observed by atomic force microscopy.  相似文献   

11.
The ability of Tetraselmis marina, a green coastal microalga, to remove chlorophenols under photoautotrophic conditions was investigated. T.marina was able to grow in the presence of 20 mg L−1 of the phenolic compounds tested. The EC50 (growth rate) value of p-chlorophenol (p-CP) to T.marina was found to be 25.5 mg L−1. The microalga was able to remove chlorophenols, showing higher efficiency for p-CP. The effect of photoregime and NaHCO3 concentration on p-CP removal was investigated. Under continuous illumination with 1 g L−1 NaHCO3 initial concentration T.marina removed 65% of 20 mg L−1 in a 10-day cultivation period.  相似文献   

12.
The effect of agitation and aeration on the growth and antibiotic production by Xenorhabdus nematophila YL001 grown in batch cultures were investigated. Efficiency of aeration and agitation was evaluated through the oxygen mass transfer coefficient (K L a). With increase in K L a, the biomass and antibiotic activity increased. Activity units of antibiotic and dry cell weight were increased to 232 U ml−1 and 19.58 g l−1, respectively, productivity in cell and antibiotic was up more than 30% when K L a increased from 115.9 h−1 to 185.7 h−1. During the exponential growth phase, DO concentration was zero, the oxygen supply was not sufficient. So, based on process analysis, a three-stage oxygen supply control strategy was used to improved the DO concentration above 30% by controlling the agitation speed and aeration rate. The dry cell weight and activity units of antibiotic were further increased to 24.22 g l−1 and 249 U ml−1, and were improved by 24.0% and 7.0%, compared with fermentation at a constant agitation speed and a constant aeration rate (300 rev min−1, 2.5 l min−1).  相似文献   

13.
Cytochrome bd from Escherichia coli is able to oxidize such substrates as guaiacol, ferrocene, benzohydroquinone, and potassium ferrocyanide through the peroxidase mechanism, while none of these donors is oxidized in the oxidase reaction (i.e. in the reaction that involves molecular oxygen as the electron acceptor). Peroxidation of guaiacol has been studied in detail. The dependence of the rate of the reaction on the concentration of the enzyme and substrates as well as the effect of various inhibitors of the oxidase reaction on the peroxidase activity have been tested. The dependence of the guaiacol-peroxidase activity on the H2O2 concentration is linear up to the concentration of 8 mM. At higher concentrations of H2O2, inactivation of the enzyme is observed. Guaiacol markedly protects the enzyme from inactivation induced by peroxide. The peroxidase activity of cytochrome bd increases with increasing guaiacol concentration, reaching saturation in the range from 0.5 to 2.5 mM, but then starts falling. Such inhibitors of the ubiquinol-oxidase activity of cytochrome bd as cyanide, pentachlorophenol, and 2-n-heptyl 4-hydroxyquinoline-N-oxide also suppress its guaiacol-peroxidase activity; in contrast, zinc ions have no influence on the enzyme-catalyzed peroxidation of guaiacol. These data suggest that guaiacol interacts with the enzyme in the center of ubiquinol binding and donates electrons into the di-heme center of oxygen reduction via heme b 558, and H2O2 is reduced by heme d. Although the peroxidase activity of cytochrome bd from E. coli is low compared to peroxidases, it might be of physiological significance for the bacterium itself and plays a pathophysiological role for humans and animals.  相似文献   

14.
The cytochrome b 6 f complex of oxygenic photosynthesis produces substantial levels of reactive oxygen species (ROS). It has been observed that the ROS production rate by b 6 f is 10–20 fold higher than that observed for the analogous respiratory cytochrome bc1 complex. The types of ROS produced (O2??, 1O2, and, possibly, H2O2) and the site(s) of ROS production within the b 6 f complex have been the subject of some debate. Proposed sources of ROS have included the heme b p , PQ p ?? (possible sources for O2??), the Rieske iron–sulfur cluster (possible source of O2?? and/or 1O2), Chl a (possible source of 1O2), and heme c n (possible source of O2?? and/or H2O2). Our working hypothesis is that amino acid residues proximal to the ROS production sites will be more susceptible to oxidative modification than distant residues. In the current study, we have identified natively oxidized amino acid residues in the subunits of the spinach cytochrome b 6 f complex. The oxidized residues were identified by tandem mass spectrometry using the MassMatrix Program. Our results indicate that numerous residues, principally localized near p-side cofactors and Chl a, were oxidatively modified. We hypothesize that these sites are sources for ROS generation in the spinach cytochrome b 6 f complex.  相似文献   

15.
Yarrowia lipolytica converts methyl ricinoleate to γ-decalactone, a high-value fruity aroma compound. The highest amount of 3-hydroxy-γ-decalactone produced by the yeast (263 mg l-1) occurred by increasing the kLa up to 120 h−1 at atmospheric pressure; above it, its concentration decreased, suggesting a predominance of the activity of 3-hydroxyacyl-CoA dehydrogenase. Cultures were grown under high-pressure, i.e., under increased O2 solubility, but, although growth was accelerated, γ-decalactone production decreased. However, by applying 0.5 MPa during growth and biotransformation gave increased concentrations of dec−2-en-4-olide and dec-3-en-4-olide (70 mg l−1).  相似文献   

16.
The mechanism of cyanide’s inhibitory effect on the mitochondrial cytochrome c oxidase (COX) as well as the conditions for its recovery have not yet been fully explained. We investigated three parameters of COX function, namely electron transport (oxygen consumption), proton transport (mitochondrial membrane potential Δψ m) and the enzyme affinity to oxygen (p 50 value) with regard to the inhibition by KCN and its reversal by pyruvate. 250 μM KCN completely inhibited both the electron and proton transport function of COX. The inhibition was reversible as demonstrated by washing of mitochondria. The addition of 60 mM pyruvate induced the maximal recovery of both parameters to 60–80% of the original values. When using low KCN concentrations of up to 5 μM, we observed a profound, 30-fold decrease of COX affinity for oxygen. Again, this decrease was completely reversed by washing mitochondria while pyruvate induced only a partial, yet significant recovery of oxygen affinity. Our results demonstrate that the inhibition of COX by cyanide is reversible and that the potential of pyruvate as a cyanide poisoning antidote is limited. Importantly, we also showed that the COX affinity for oxygen is the most sensitive indicator of cyanide toxic effects.  相似文献   

17.
This work reports the direct electrochemistry of Paracoccus pantotrophus pseudoazurin and the mediated catalysis of cytochrome c peroxidase from the same organism. The voltammetric behaviour was examined at a gold membrane electrode, and the studies were performed in the presence of calcium to enable the peroxidase activation. A formal reduction potential, E 0′, of 230 ± 5 mV was determined for pseudoazurin at pH 7.0. Its voltammetric signal presented a pH dependence, defined by pK values of 6.5 and 10.5 in the oxidised state and 7.2 in the reduced state, and was constant up to 1 M NaCl. This small copper protein was shown to be competent as an electron donor to cytochrome c peroxidase and the kinetics of intermolecular electron transfer was analysed. A second-order rate constant of 1.4 ± 0.2 × 105 M−1 s−1 was determined at 0 M NaCl. This parameter has a maximum at 0.3 M NaCl and is pH-independent between pH 5 and 9.  相似文献   

18.
A genetic transformation system has been developed for callus cells of Crataegus aronia using Agrobacterium tumefaciens. Callus culture was established from internodal stem segments incubated on Murashige and Skoog (MS) medium supplemented with 5 mg l−1 Indole-3-butyric acid (IBA) and 0.5 mg l−1 6-benzyladenine (BA). In order to optimize the callus culture system with respect to callus growth and coloration, different types and concentrations of plant growth regulators were tested. Results indicated that the best average fresh weight of red colored callus was obtained on MS medium supplemented with 2 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D) and 1.5 mg l−1 kinetin (Kin) (callus maintenance medium). Callus cells were co-cultivated with Agrobacterium harboring the binary plasmid pCAMBIA1302 carrying the mgfp5 and hygromycin phosphotransferase (hptII) genes conferring green fluorescent protein (GFP) activity and hygromycin resistance, respectively. Putative transgenic calli were obtained 4 weeks after incubation of the co-cultivated explants onto maintenance medium supplemented with 50 mg l−1 hygromycin. Molecular analysis confirmed the integration of the transgenes in transformed callus. To our knowledge, this is the first time to report an Agrobacterium-mediated transformation system in Crataegus aronia.  相似文献   

19.
In order to assess the long-term impacts of saline groundwater irrigation to Haloxylon ammodendron, one of the main shrubs in the Tarim desert highway ecological shelterbelt, we irrigated the H. ammodendron seedlings with progressive saline groundwater (3–30 g L−1, simulation environment in the Tarim desert highway ecological shelterbelt) and investigated the diurnal variations of chlorophyll a (Chl a) fluorescence parameters, such as maximal quantum yield of photosystem II (PSII) photochemistry (Fv/Fm), quantum yield of photochemical energy conversion in PSII (YII), the apparent rate of electron transport at the PSII level (ETR), photochemical quenching coefficient (qP), non-photochemical quenching (NPQ), quantum yield of nonregulated non-photochemical energy loss in PSII (YNO) and quantum yield of regulated non-photochemical energy loss in PSII (YII), at approximately 2-h intervals. Fv/Fm with 5 g L−1 (S2) was lower than that with 2 g L−1 (S1) but a little higher than 20 g L−1 (S5), respectively. Under the low light [photosyntheticallyactive radiation (PAR) ≤ 250 μmol m−2 s−1, at 08:00, 10:00 and 20:00 h of the local time], S1 kept the lowest YII and the highest YNPQ; while under the high light (PAR ≥ 1500 μmol m−2 s−1), the YII performed S1>S2>S5, and the reverse YNPQ; under mild light (250 μmol mt-2 s−1 ≤ PAR ≤ 1500 μmol m−2 s−1), S1 remained the highest YII, no matter the light and the salinity, the similar YNO almost occurred basically. The results showed that the sand-binding plant H. ammodendron could regulate its energy-utilizing strategies. The S2 might be the most suitable salinity of the irrigation water for H. ammodendron in the Tarim desert highway ecological shelterbelt in the northwest of China.  相似文献   

20.
Laccases are strong oxidizing enzymes that oxidize chlorinated phenols, synthetic dyes, pesticides, polycyclic aromatic hydrocarbons as well as a very wide range of other compounds with high redox potential. Based on the bias of genetic codons between fungus and yeast, we synthesized a laccase gene GlLCCI, originated from Ganoderma lucidum using optimized codons and a PCR-based two-step DNA synthesis method. The recombinant laccase, GlLCCI was successfully over-expressed in yeast, Pichia pastoris, with an alcohol oxidase1 promoter. The recombinant GlLCCI has a molecular mass of approximately 58 kDa. The K m values of GlLCCI for 2-2′-azino-bis-(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) and guaiacol were 0.9665, and 1.1122 mM, respectively. The V max of GlLCCI for both substrates was 3,024 and 82.13 μM mg−1 min−1. When ABTS was used as a substrate, the enzyme had an optimal temperature of approximately 55°C. The enzyme was detected over pH values from 2 to 8. The enzyme was strongly activated by K+, Na+, Cu2+ and mannitol. Six amino acids (alanine, histidine, glycine, arginine, aspartate and phenylalanine) increased the catalytic ability of the enzyme. The activity of laccase was obviously inhibited by Fe2+, Fe3+, sodium hydrosulphite, and sodium azide. Additionally, under optimal conditions, GlLCCI decolorized 37.62 mg l−1 of azo dye methyl orange (MO) in cultural medium. With a high MO degradation ability, GlLCCI may have potential in the treatment of industrial effluent containing azo dye MO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号