首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, we combined remote sensing data and in situ observations to explore the potential habitats of macroalgae at Libukang Island, Indonesia. High-resolution satellite images from the GeoEye-1 were used to estimate and to map the geomorphological structures together with macroalgal species in the study area. Seasonal variations of percentage cover and biomass of macroalgae associated with substrates were investigated in May and November 2014, and June 2015, using quadrats as sampling unit. A total of nine common genera were found in the study area with three dominant genera: Sargassum, Padina, and Turbinaria. Most of macroalgae was observed in the eastern part of the Island, on several substrate types and particular oceanographic conditions (wave and current). Mean biomasses of Sargassum and Padina were high in May (1189.6 ± 455 and 166.7 ± 15.4 g DW.m?2, respectively), while the biomass of Turbinaria was high in November (3245 ± 599.8 g DW.m?2). The map accuracy of image classification for all typology substrates was 74.19%. Overall, approximately 62.3% of the total study area can be considered as potential for natural macroalgae habitats. Spectral response characteristic of shallow water substrates at study area based on GeoEye-1 is also presented. The results of this study exhibit a potential utilization of natural macroalgae in the study area, and provide information for a possible diversification of the use of macroalgae in Indonesia. The method could be useful for habitat management and future biomonitoring in the study area or other similar areas in Indonesia.  相似文献   

2.
The cell division and vegetative growth of the thalli of simply differentiated macroalgae with a diffuse growth type—Ulva pseudocurvata (Chlorophyta) and Porphyra umbilicalis (Rhodophyta)-have been studied under natural and laboratory conditions. For this purpose the mitotic index and growth rate of algae were measured over 18 days. A diurnal rhythm of the mitotic index was revealed: the minimal mitotic index was registered in morning and daylight hours (for U. pseudocurvata 1–4%, for P. umbilicalis 0.5–2%), in the afternoon the index grew and reached its maximum 1 hour before dark (for U. pseudocurvata 12%, for P. umbilicalis 7%), then it slowly decreased during the night. In the studied algal species 2–3-and 6-day rhythms of mitotic index and growth rate were found for the first time both under natural and laboratory conditions. With constant white light these rhythms persisted for 9 days, this confirms the endogenous regulation of these rhythmic variations.  相似文献   

3.
To restore deteriorated lake ecosystems, it is important to identify environmental factors that influence submerged macrophyte communities. While sediment is a critical environmental factor for submerged macrophytes and many studies have examined effects of sediment type on the growth of individual submerged macrophytes, very few have tested how sediment type affects the growth and species composition of submerged macrophyte communities. We constructed submerged macrophyte communities containing four co-occurring submerged macrophytes (Hydrilla verticillata, Myriophyllum spicatum, Ceratophyllum demersum and Chara fragilis) and subjected them to three sediment treatments, i.e., clay, a mixture of clay and quartz sand at a volume ratio of 1:1 and a mixture at a volume ratio of 1:4. Compared to the clay, the 1:1 mixture treatment greatly increased overall biomass, number of shoot nodes and shoot length of the community, but decreased its diversity. This was because it substantially promoted the growth of H. verticillata within the community, making it the most abundant species in the mixture sediment, but decreased that of M. spicatum and C. demersum. The sediment type had no significant effects on the growth of C. fragilis. As a primary nutrient source for plant growth, sediment type can have differential effects on various submerged macrophyte species and 1:1 mixture treatment could enhance the performance of the communities, increasing the overall biomass, number of shoot nodes and shoot length by 39.03%, 150.13% and 9.94%, respectively, compared to the clay treatment. Thus, measures should be taken to mediate the sediment condition to restore submerged macrophyte communities with different dominant species.  相似文献   

4.
To predict selenium cycling in sediments, it is crucial to identify and quantify the processes leading to selenium sequestration in sediments. More specifically, it is essential to obtain environmentally-relevant kinetic parameters for selenium reduction and information on how they spatially vary in sediments. The Salton Sea (California, USA) is an ideal model system to examine selenium processes in sediments due to its semi-enclosed conditions and increasing selenium concentration over the last century. Selenium enters the Salton Sea mainly as selenate and might be sequestered in the sediment through microbial reduction. To determine the potential selenium sequestration of Salton Sea littoral sediments and which sediment properties are controlling selenate reduction kinetics, we determined the centimeter-scale vertical distribution of potential selenate reduction rates and apparent kinetic parameters (maximum selenate reduction rates, Vmax, and selenate half-saturation concentration, Km) using flow-through reactor (FTR) experiments. We compared sediments from two littoral sites (South and North) and four depth intervals (0–2, 2–4, 4–6 and 6–8 cm). Furthermore, we characterized the selenium fractions in the sediment recovered from the FTR experiments to identify the processes leading to the sequestration of selenium. Our results reveal higher potential for selenium reduction and sequestration in the topmost sediment (0–2 cm) suggesting that microorganisms inhabiting surface sediment are well adapted to reduce selenate entering the Salton Sea. As apparent Km values (103–2144 µM) exceed the average selenium concentration in the overlying water (6–25 nM), in situ selenate reduction is limited by the low availability of selenate and the resident selenate-reducing microorganisms operate well below their Vmax (11 and 43 nmol cm?3 h?1). Selenium speciation after FTR experiments confirms the primary sequestration of reduced biomass-associated and elemental selenium (68–99% of total selenium) in the sediment. Further, the absence of correlation between the tested sediment physical (porosity, bulk density, clay content), chemical (Corg, Ntot, total selenium content) and biological characteristics (abundance of culturable selenate-reducers) with the kinetic parameters of selenate reduction indicates that these sediment characteristics cannot be used as predictors of apparent Vmax or Km. Conclusively, microbial selenate reduction is an important, if not the primary process, leading to the sequestration of reduced selenium in the Salton Sea sediments and making the surficial Salton Sea sediments an important selenium sink.  相似文献   

5.
The occurrence of non-native species at high densities may generate competition for resources and possibly exclude native species in various environments. We evaluated the effects of increased densities of the non-native invasive macrophyte Hydrilla verticillata on the growth of the native species Egeria najas in different sediment types and with only root interactions or root?+?shoot interactions. We tested the hypothesis that the effect of the invasive on the native species is density dependent and that it is greater when competition for light and nutrients occurs (root?+?shoot interactions). The results of these experiments demonstrated that increased density of the invasive species H. verticillata significantly decreased the growth of the native species independent of sediment type (sand or mud sediments). When plants competed for water and sediment resources (root?+?shoot interactions), the native species was more impacted by the invasive than when they competed only for water resources (only shoots interacting). Our results show that E. najas is probably unable to colonize sites highly colonized by hydrilla, and this applies to both sand and mud sediments. This outcome suggests that H. verticillata is a threat for E. najas and likely other native submerged species in South America.  相似文献   

6.
Although reef corals are dependent of the dinoflagellate Symbiodinium, the large majority of corals spawn gametes that do not contain their vital symbiont. This suggests the existence of a pool of Symbiodinium in the environment, of which surprisingly little is known. Reefs around Curaçao (Caribbean) were sampled for free-living Symbiodinium at three time periods (summer 2009, summer 2010, and winter 2010) to characterize different habitats (water column, coral rubble, sediment, the macroalgae Halimeda spp., Dictyota spp., and Lobophora variegata, and the seagrass Thalassia testudinum) that could serve as environmental sources of symbionts for corals. We detected the common clades of Symbiodinium that engage in symbiosis with Caribbean coral hosts A, B, and C using Symbiodinium-specific primers of the hypervariable region of the chloroplast 23S ribosomal DNA gene. We also discovered clade G and, for the first time in the Caribbean, the presence of free-living Symbiodinium clades F and H. Additionally, this study expands the habitat range of free-living Symbiodinium as environmental Symbiodinium was detected in T. testudinum seagrass beds. The patterns of association between free-living Symbiodinium types and habitats were shown to be complex. An interesting, strong association was seen between some clade A sequence types and sediment, suggesting that sediment could be a niche where clade A radiated from a free-living ancestor. Other interesting relationships were seen between sequence types of Symbiodinium clade C with Halimeda spp. and clades B and F with T. testudinium. These relationships highlight the importance of some macroalgae and seagrasses in hosting free-living Symbiodinium. Finally, studies spanning beyond a 1-yr cycle are needed to further expand on our results in order to better understand the variation of Symbiodinium in the environment through time. All together, results presented here showed that the great diversity of free-living Symbiodinium has a dynamic distribution across habitats and time.  相似文献   

7.
Massive parallel sequencing (the Roche 454 platform) of the 16S rRNA gene fragments was used to investigate microbial diversity in the sediments of the Posolsk Bank cold methane seep. Bacterial communities from all sediment horizons were found to contain members of the phyla Actinobacteria, Bacteroidetes, Deinococcus-Thermus, Firmicutes, Nitrospirae, Chloroflexi, Proteobacteria, and the candidate phyla Aminicenantes (OP8) and Atribacteria (OP9). Among Bacteria, members of the Chloroflexi and Proteobacteria were the most numerous (42 and 46%, respectively). Among archaea, the Thaumarchaeota predominated in the upper sediment layer (40.1%), while Bathyarchaeota (54.2%) and Euryarchaeota (95%) were predominant at 70 and 140 cm, respectively. Specific migration pathways of fluid flows circulating in the zone of gas hydrate stability (400 m) may be responsible for considerable numbers of the sequences of Chloroflexi, Acidobacteria, and the candidate phyla Aminicenantes and Atribacteria in the upper sediment layers and of the Deinococcus-Thermus phylum in deep bottom sediments.  相似文献   

8.
Marine macroalgae are emerging as an untapped source of novel microbial diversity and, therefore, of new bioactive secondary metabolites. This study was aimed at assessing the diversity and antimicrobial activity of the culturable Gram-positive bacteria associated with the surface of three co-occurring Antarctic macroalgae. Specimens of Adenocystis utricularis (brown alga), Iridaea cordata (red alga) and Monostroma hariotii (green alga) were collected from the intertidal zone of King George Island, Antarctica. Gram-positive bacteria were investigated by cultivation-based methods and 16S rRNA gene sequencing, and screened for antimicrobial activity against a panel of pathogenic microorganisms. Isolates were found to belong to 12 families, with a dominance of Microbacteriaceae and Micrococcaceae. Seventeen genera of Actinobacteria and 2 of Firmicutes were cultured from the three macroalgae, containing 29 phylotypes. Three phylotypes within Actinobacteria were regarded as potentially novel species. Sixteen isolates belonging to the genera Agrococcus, Arthrobacter, Micrococcus, Pseudarthrobacter, Pseudonocardia, Sanguibacter, Staphylococcus, Streptomyces and Tessaracoccus exhibited antibiotic activity against at least one of the indicator strains. The bacterial phylotype composition was distinct among the three macroalgae species, suggesting that these macroalgae host species-specific Gram-positive associates. The results highlight the importance of Antarctic macroalgae as a rich source of Gram-positive bacterial diversity and potentially novel species, and a reservoir of bacteria producing biologically active compounds with pharmacological potential.  相似文献   

9.
This study describes the taxonomic diversity of pigmented, agar-degrading bacteria isolated from the surface of macroalgae collected in King George Island, Antarctica. A total of 30 pigmented, agarolytic bacteria were isolated from the surface of the Antarctic macroalgae Adenocystis utricularis, Monostroma hariotii, Iridaea cordata, and Pantoneura plocamioides. Based on the 16S rRNA data, the agarolytic isolates were affiliated to the genera Algibacter, Arthrobacter, Brachybacterium, Cellulophaga, Citricoccus, Labedella, Microbacterium, Micrococcus, Salinibacterium, Sanguibacter, and Zobellia. Isolates phylogenetically related to Cellulophaga algicola showed the highest agarase activity in culture supernatants when tested at 4 and 37 °C. This is the first investigation of pigmented agar-degrading bacteria, members of microbial communities associated with Antarctic macroalgae, and the results suggest that they represent a potential source of cold-adapted agarases of possible biotechnological interest.  相似文献   

10.
Sediments in the Houston Ship Channel and upper Galveston Bay, Texas, USA, are polluted with polychlorinated dibenzo-p-dioxins/furans (PCDD/F; ≤46,000 ng/kg dry weight (wt.)) with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), the most toxic congener, contributing >50 % of the total toxic equivalents (TEQ) at most locations. We measured PCDD/F concentrations in sediments and evaluated the potential for enhanced in situ biodegradation by surveying for Dehalococcoides mccartyi, an obligate organohalide respiring bacterium. Dehalococcoides spp. (98 % similar to D. mccartyi) and 22 other members of the class Dehalococcoidia were predominant 16S ribosomal RNA (rRNA) phylotypes. Dehalococcoides spp. were also present in the active fraction of the bacterial community. Presence/absence PCR screening detected D. mccartyi in sediment cores and sediment grab samples having at least 1 ng/kg dry wt. TEQ at salinities ranging from 0.6 to 19.5 PSU, indicating that they are widespread in the estuarine environment. Organic carbon-only and organic carbon + sulfate-amended sediment microcosm experiments resulted in ~60 % reduction of ambient 2,3,7,8-TCDD in just 24 months leading to reductions in total TEQs by 38.4 and 45.0 %, respectively, indicating that 2,3,7,8-TCDD degradation is occurring at appreciable rates.  相似文献   

11.
Korean Saccharina japonica is highly valued, both for human consumption and abalone feed. For the stable production of abalone feed, fresh seaweed biomass is required throughout the year. However, currently, the production of farmed Saccharina is limited by environmental conditions such as temperature, irradiance, and nutrient availability between August and November. Due to shortages experienced in supply, the production of early-season biomass can be highly profitable and, therefore, some famers attempt to start their cultivation activities before prevailing, surface seawater temperatures (SST) are optimal. However, attempting to cultivate too early, can lead to total crop failure. Young kelp sporophytes are easily destroyed between 18 and 22 °C SST, which can occur during the early nursery period when the materials are confined to tanks. This study investigated the growth of S. japonica thalli and photosynthetic quantum yield (Fv/Fm) under five temperatures (i.e., 18–26 °C, at 2° increments) and five irradiances (i.e., 5, 10, 20, 40, and 80 μmol photons m?2 s?1). This was undertaken for four different size groups of sporophyte thalli (i.e., 0.25, 1, 5, 10 mm). There were different responses of the initial groups of S. japonica showing different tolerances to temperature and irradiance. In general, the smaller plants (1 mm) were more tolerant of sub-optimal conditions than their larger cohorts. These results indicated the optimum temperature and irradiance ranges for different size groups of S. japonica thalli which, if adopted in management protocols, could contribute to enhanced profitability and a more stable and evenly distributed production of Saccharina raw materials over an entire annual basis.  相似文献   

12.
The diversity and ecological significance of bacteria and archaea in deep-sea environments have been thoroughly investigated, but eukaryotic microorganisms in these areas, such as fungi, are poorly understood. To elucidate fungal diversity in calcareous deep-sea sediments in the Southwest India Ridge (SWIR), the internal transcribed spacer (ITS) regions of rRNA genes from two sediment metagenomic DNA samples were amplified and sequenced using the Illumina sequencing platform. The results revealed that 58–63 % and 36–42 % of the ITS sequences (97 % similarity) belonged to Basidiomycota and Ascomycota, respectively. These findings suggest that Basidiomycota and Ascomycota are the predominant fungal phyla in the two samples. We also found that Agaricomycetes, Leotiomycetes, and Pezizomycetes were the major fungal classes in the two samples. At the species level, Thelephoraceae sp. and Phialocephala fortinii were major fungal species in the two samples. Despite the low relative abundance, unidentified fungal sequences were also observed in the two samples. Furthermore, we found that there were slight differences in fungal diversity between the two sediment samples, although both were collected from the SWIR. Thus, our results demonstrate that calcareous deep-sea sediments in the SWIR harbor diverse fungi, which augment the fungal groups in deep-sea sediments. This is the first report of fungal communities in calcareous deep-sea sediments in the SWIR revealed by Illumina sequencing.  相似文献   

13.
Microalgae are ideal candidates for bioremediation and biotechnological applications. However, salinity and nutrient resource availability vary seasonally and between cultivation sites, potentially impacting on biomass productivity. The aim of this study was to screen pollutant-tolerant freshwater microalgae (Desmodesmus armatus, Mesotaenium sp., Scenedesmus quadricauda and Tetraedron sp.), isolated from Tarong power station ash-dam water, for their tolerance to cultivation at a range of salinities. To determine if biochemical composition could be manipulated, the effects of 4-day nutrient limitation were also determined. Microalgae were cultured at 2, 8, 11 and 18 ppt salinity, and nutrient uptake was monitored daily. Growth, total lipid, fatty acid (FA), and amino acid contents were quantified in biomass harvested while nutrient-replete and, after 4 days, nutrient-deplete. D. armatus showed the highest salinity tolerance actively growing in up to 18 ppt while Mesotaenium sp. was the least halotolerant with decreasing growth rates from 11 ppt. However, Mesotaenium sp. at 2 and 8 ppt had the highest biomass productivity and nutrient requirements of the four species, making it ideal for nutrient remediation of eutrophic freshwater effluents. Salinity and nutrient status had minimal influence on total lipid and FA contents in D. armatus and Mesotaenium sp., while nutrient depletion induced an increase of total lipid and FAs in S. quadricauda and Tetraedron sp., which was further increased with increasing salinity. As none of the growth conditions affected amino acid profiles of the species, these findings provide a basis for species selection based on site-specific salinity conditions and nutrient resource availability.  相似文献   

14.
On-farm assessments of Miscanthus × giganteus growth and nutrient export across a wide range of management and environmental conditions are needed to determine and model how this crop performs and where it should be placed on the landscape. Therefore, Miscanthus growth and nutrient concentration and nutrient export at harvest were monitored during 2014 and 2015 at several landscape positions within 22 commercial production fields in central and southwestern Missouri and northeast Arkansas. Miscanthus shoot density and/or yield were best when it was grown: (i) following pasture converted to annual row crops or following row crops, (ii) on soils with colluvium parent material, (iii) on north-facing backslopes or footslopes, (iv) on soils with medium to fine texture, and (v) on well-drained/high runoff/low available water soils. Factors influencing nutrient concentrations varied by nutrient, but all concentrations consistently decreased as stands matured and most were more influenced by weather than were yield or nutrient export. Most effects on nutrient export were similar to effects on yield, but some nutrient exports were also influenced by manure history and weather conditions. Overall, cropping history prior to Miscanthus, landscape position, and soil properties such as parent material, soil textural class, and drainage class had the largest influence on Miscanthus growth and nutrient concentrations and exports. Weather conditions and inferior soils did not strongly influence Miscanthus production, but excessive soil moisture caused by various soil and weather factors often limited its growth. Thus, Miscanthus may be especially well-suited following annual crops on erosion-prone soils that drain well and have slope. These results will assist with the strategic cultivation of Miscanthus on Midwest landscapes.  相似文献   

15.
The relationships between sponges and macroalgae have been poorly investigated, especially in temperate waters. This work describes the consortium between the dictyoceratid sponge Dysidea pallescens and the red alga Acrochaetium spongicola permeating spongin fibres in the Mediterranean Sea; moreover, this is the first report of a diatom, Amphora pediculus, living also inside the spongin skeleton. The annual trend of the total algal biomass did not vary over time in relation to the temperature, irradiance and incorporation of foreign bodies. Our analyses, conducted by light and electron microscopy, suggest that both the macroalga and the diatom invade the skeleton of the sponge from the external environment, and that the benthic diatom, epiphyte of the macroalga, is passively carried inside the fibres through the growth of Acrochaetium spongicola. All the examined samples of D. pallescens showed that the macroalga permeated at least some fibres, while the presence of the diatom was occasional. The superficial layer of the sponge, thin and reticulate, likely allows the passage of the light and ensures the algal survival inside the sponge tissue. The high occurrence of the association with A. spongicola, together with the morphological adaptations of the sponge favouring the algal life, suggest that the relationship is mutualistic. The possible benefits for the involved partners are hypothesized. The taxonomy and ecology of endozoic Acrochaetiales are controversial due to the reduced size of thalli, the absence of peculiar diagnostic characters and unknown reproductive structures. Therefore, detailed studies on the relationships between the algae and their hosts will provide helpful information for the algal identification.  相似文献   

16.
Both Bacteria and Archaea might be involved in various biogeochemical processes in lacustrine sediment ecosystems. However, the factors governing the intra-lake distribution of sediment bacterial and archaeal communities in various freshwater lakes remain unclear. The present study investigated the sediment bacterial and archaeal communities in 13 freshwater lakes on the Yunnan Plateau. Quantitative PCR assay showed a large variation in bacterial and archaeal abundances. Illumina MiSeq sequencing illustrated high bacterial and archaeal diversities. Bacterial abundance was regulated by sediment total organic carbon and total nitrogen, and water depth, while nitrate nitrogen was an important determinant of bacterial diversity. Proteobacteria, Acidobacteria, Actinobacteria, Bacteroidetes, Chlorobi, Chloroflexi, Cyanobacteria, Firmicutes, Gemmatimonadetes, Nitrospirae, Planctomycetes, and Verrucomicrobia were the major components of sediment bacterial communities. Proteobacteria was the largest phylum, but its major classes and their proportions varied greatly among different lakes, affected by sediment nitrate nitrogen. In addition, both Euryarchaeota and Crenarchaeota were important members in sediment archaeal communities, while unclassified Archaea usually showed the dominance.  相似文献   

17.
Alteration of soil nutrient dynamics has recently garnered more attention as both a cause and an effect of plant invasion. This project examines how nutrient dynamics are affected by native (Elymus elymoides, Pseudoroegneria spicata, and Vulpia microstachys) and invasive (Aegilops triuncialis, Agropyron cristatum, Bromus tectorum, and Taeniatherum caput-medusae) grass species. This research questions whether natives and invasives differ in their effects on nutrient dynamics. A greenhouse study was conducted using two field-collected soils. Effects on nutrient dynamics were compared using an integrated index that evaluates the total nutrients in soil and in plant tissue compared to an unplanted control. With this index, we evaluated whether soil nutrients increased or decreased as a result of plant growth, controlling for plant uptake. We found no consistent support for our hypothesis that invasive grass species as a group influence nutrient dynamics differently than native grass species as a group. Our results indicate species-specific effects on nutrient dynamics. Alteration of nutrient dynamics is not a trait shared by all of the invasive grass species in our study. However, alteration of nutrient dynamics may be a mechanism by which some individual species increase their invasive potential.  相似文献   

18.
The aim of the study was to evaluate the dynamic of cadmium, lead, copper, zinc, and iron among lower trophic levels, sea urchins and macroalgae. Diets and isotopic values were used in combination to explore trophic positions and potential transference of metals from primary producers to consumers. Concentrations of trace elements were measured in two species of sea urchin (Tripneustes depressus and Eucidaris thouarsii) and nine macroalgae that are usually used as food in four Sargassum beds, one of which is close to a phosphorite mine. Specimens were collected when Sargassum fronds were at their greatest (winter) and lowest (summer) abundance. Highest concentrations of Cd, and Cu in both urchin species were recorded in winter at the site near the phosphorite mine. Concentrations of Pb in T. depressus were below the detectable limit, whereas E. thouarsii, which in addition to a high concentration of Pb, had high amounts of Cu and Zn. Gut content analysis, indicates that the diet of both sea urchins at the four sites and two collection dates is mainly macroalgae. The δ 15N isotopic values in sea urchins in a typical Sargassum bed were in good agreement with a diet dominated by macroalgae, with T. depressus having herbivorous habits and E. thouarsii having omnivorous habits in this environment. We found macroalgae important in the dynamics of metals in food webs, potentially contributing to transferring Cd, Cu, and Zn to key invertebrate species, such as sea urchins, indicating connectivity of food webs and ecological structuring of marine environments.  相似文献   

19.
Nitrite-dependent anaerobic methane oxidation (n-damo), catalyzed by microorganisms affiliated with bacterial phylum NC10, can have an important contribution to the reduction of the methane emission from anoxic freshwater sediment to the atmosphere. However, information on the variation of sediment n-damo organisms in reservoirs is still lacking. The present study monitored the spatial change of sediment n-damo organisms in the oligotrophic freshwater Xinfengjiang Reservoir (South China). Sediment samples were obtained from six different sampling locations and two sediment depths (0–5 cm, 5–10 cm). Sediment n-damo bacterial abundance was found to vary with sampling location and layer depth, which was likely influenced by pH and nitrogen level. The presence of the n-damo pmoA gene was found in all these samples. A remarkable shift occurred in the diversity and composition of sediment n-damo pmoA gene sequences. A variety of distinctively different n-damo pmoA clusters existed in reservoir sediments. The pmoA sequences affiliated with Candidatus Methylomirabilis oxyfera formed the largest group, while a significant proportion of the obtained n-damo pmoA gene sequences showed no close relationship to those from any known NC10 species. In addition, the present n-damo process was found in reservoir sediment, which could be enhanced by nitrite nitrogen amendment.  相似文献   

20.
Fourteen species of echinoderms and their relationships to the benthic structure of the coral reefs were assessed at 27 sites—with different levels of human disturbances—along the coast of the Mexican Central Pacific. Diadema mexicanum and Phataria unifascialis were the most abundant species. The spatial variation of the echinoderm assemblages showed that D. mexicanum, Eucidaris thouarsii, P. unifascialis, Centrostephanus coronatus, Toxopneustes roseus, Holothuria fuscocinerea, Cucumaria flamma, and Echinometra vanbrunti accounted for the dissimilarities among the sites. The spatial variation among the sites was mainly explained by the cover of the hard corals (Porites, Pocillopora, Pavona, Psammocora), different macroalgae species (turf, encrusting calcareous algae, articulated calcareous algae, fleshy macroalgae), sponges, bryozoans, rocky, coral rubble, sand, soft corals (hydrocorals and octocorals), Tubastrea coccinea coral, Balanus spp., and water depth. The coverage of Porites, Pavona, and Pocillopora corals, soft coral, rock, and Balanos shows a positive relationship with the sampling sites included within the natural protected area with low human disturbances. Contrary, fleshy macroalgae, sponges, and soft coral show a positive relationship with higher disturbance sites. The results presented here show the importance of protecting the structural heterogeneity of coral reef habitats because it is a significant factor for the distribution of echinoderm species and can contribute to the design of conservation programs for the coral reef ecosystem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号