首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The effect of somatostatin-(1-14) (S1-14) on the gastrin- and histamine-induced acid secretion and gastrin-evoked vascular histamine release was studied in isolated vascularly perfused rat stomachs being continuously perfused by a gassed buffer containing 10% ovine erythrocytes and 50 microM isobutyl methylxanthine (IMX). Concentrations of gastrin (520 pM) and histamine, (0.5 microM) were chosen to give acid secretion in the same range (61.5 +/- 7.0 and 49.4 +/- 9.4 mumol/60 min). S1-14 induced a concentration-dependent decrease in acid secretion stimulated by both gastrin and histamine. Even at the lowest concentration examined (0.1 nM) somatostatin gave a significant inhibition of both gastrin- and histamine-stimulated acid secretion. The inhibitory effect was, however, most marked for gastrin-stimulated acid secretion (P less than 0.05 at 1 nM concentration of S1-14). Gastrin gave an immediate and marked vascular histamine release which was inhibited by somatostatin in the higher concentrations (1.0 and 5.0 nM). Somatostatin at the lowest concentration tested (0.1 nM) did not inhibit the gastrin-induced vascular histamine release although it did inhibit acid secretion. Furthermore, baseline histamine release was not affected by somatostatin. This study suggests that somatostatin inhibits acid secretion both via a direct effect of the parietal cell and by inhibiting gastrin-induced histamine release. Baseline histamine release is regulated by a mechanism not sensitive to somatostatin.  相似文献   

2.
Acid secretion and histamine release from the totally isolated vascularly perfused rat stomach are sensitive parameters for the biological effects of gastrin. By optimalizing the Ca2+ concentration of the vascular perfusate the sensitivity for stimulation of acid secretion was improved from 65 to 16 pmol/l gastrin 1-17 (G-17). Measurement of venous histamine before and after gastrin in each stomach preparation excluded inter-stomach variability and improved the sensitivity to 2 pmol/l G-17. This is the most sensitive gastrin bioassay reported, with a detection limit comparable to that of radioimmunoassay.  相似文献   

3.
4.
Neurotensin stimulates pancreatic secretion directly and by potentiating the effect of secretin. Neurotensin also inhibits gastric secretion. Secretin inhibits gastric secretion as well, but whether it also interacts with neurotensin is not known. Secretin is known to inhibit gastric mucosal blood flow (GMBF). The effect of neurotensin on GMBF is not known. Acid secretion (triple lumen perfused orogastric tube) and GMBF ([14C]aminopyrine clearance) were therefore measured in 6 subjects during neurotensin, secretin and neurotensin plus secretin infusions. Neurotensin plus secretin reduced acid secretion by a median 130 (range 34-394) mumol/min which was significantly greater than either neurotensin at 36 (7-67) mumol/min or secretin 54 (20-347) mumol/min alone (P less than 0.05). This effect appeared independent of GMBF. Neurotensin plus secretin reduced GMBF by 14 (12-27) ml/min but not significantly more than neurotensin at 11 (3-20) ml/min or secretin 18 (2-27) ml/min alone. Further, there was no correlation between changes in acid output and GMBF during infusion of the peptides. We conclude that the inhibitory effects of neurotensin and secretin on gastric secretion are at least additive and together they may function as an 'enterogastrone'.  相似文献   

5.
王立东  周吕 《生理学报》1989,41(6):575-182
本工作利用血管灌流离体大鼠胃研究促胰液素和生长抑素对泌酸的影响及其与内源性前列腺素E(PGE)和前列环素(PGI_2)释放的关系。结果表明:(1)促胰液素和生长抑素都能有效地抑制五肽胃泌素(G_5)促进胃酸分泌的作用,消炎病可翻转这种抑制作用。(2)促胰液素能显著促进PGE和PGI_2代谢产物6-酮-前列腺素F_(1α)(6-Keto-PGF_(1α))释放;生长抑素只能促进FGE释放。消炎痛分别阻断促胰液素对PGE和6-keto-PGF_(1α)释放及生长抑素对PGE释放的促进作用。上述结果提示:(1)促胰液素的抑酸效应由促进PGI_2和PGE释放介导;(2)生长抑素的抑酸效应通过促进PGE释放介导。  相似文献   

6.
The effect of intravenously administered calcitonin and secretin on bombesin-stimulated serum gastrin and gastric acid secretion was studied in 7 volunteers. Secretin G.I.H. (1 C.U./kg per h) and calcitonin (0.5 I.U./kg per h) significantly (P < 0.05) inhibited the serum gastrin and gastric acid responses to bombesin-14 (90 pmol/kg per h). Inhibition of gastrin release could not fully account for the inhibition of gastric acid secretion.  相似文献   

7.
Pancreatico-biliary secretion is reduced during acute hyperglycemia. We investigated whether alterations in pancreatico-biliary flow or volume output are responsible for the observed reduction in duodenal output of pancreatic enzymes and bilirubin during hyperglycemia. Eight healthy subjects were studied on two occasions during normoglycemia and hyperglycemia (15 mmol/l). Pancreatico-biliary output was measured by aspiration using a recovery marker under basal conditions (60 min), during secretin infusion (0.1 CU/kg.h) for 60 min and during secretin + CCK (0.5 IDU/kg.h) infusion for 60 min. Secretin was infused to stimulate pancreatico-biliary flow and volume output. Secretin significantly (P<0.005-P<0.05) increased volume and bicarbonate output and CCK significantly (P<0.01) increased the output of bilirubin, pancreatic enzymes, bicarbonate and volume, both during normoglycemia and hyperglycemia. During hyperglycemia basal, secretin stimulated and secretin + CCK stimulated total pancreatico-biliary output were significantly (P<0.005-P<0.05) reduced compared to normoglycemia. The incremental outputs, however, were not significantly different between hyper- and normoglycemia. Pancreatic volume output was significantly (P<0.05) reduced during hyperglycemia compared to normoglycemia under basal conditions (31+/-16 m/h versus 132+/-33 m/h) during secretin infusion (130+/-17 ml/h versus 200+/-34 m/h) and during secretin + CCK infusion (370+/-39 ml/h versus 573+/-82 ml/h). Plasma PP levels were significantly (P<0.05) reduced during hyperglycemia. It is concluded that 1) hyperglycemia significantly reduces basal pancreatico-biliary output 2) the incremental pancreaticobiliary output in response to secretin or secretin + CCK infusion is not significantly affected during hyperglycemia, 3) a reduction in volume output contributes to the inhibitory effect of hyperglycemia on pancreatico-biliary secretion, 4) hyperglycemia reduces PP secretion suggesting vagal-cholinergic inhibition of pancreatico-biliary secretion and volume during hyperglycemia.  相似文献   

8.
A secretin releasing peptide exists in dog pancreatic juice   总被引:1,自引:0,他引:1  
Li P  Song Y  Lee KY  Chang TM  Chey WY 《Life sciences》2000,66(14):1307-1316
Canine pancreatic juice has been shown to stimulate exocrine pancreatic secretion in the dog. In the present study we investigated whether there is a secretin-releasing peptide in canine pancreatic juice. Pancreatic juice was collected from the dogs with Thomas gastric and duodenal cannulas while pancreatic secretion was stimulated by intravenous administration of secretin at 0.5 microg/kg/h and CCK-8 at 0.2 microg/kg/h, respectively. The pancreatic juice was separated into three different molecular weight (MW) fractions (Fr) by ultrafiltration (Fr 1; MW > 10,000, Fr 2; MW=10,000-4,000 and Fr 3; MW < 4,000), respectively. All the fractions were bioassayed in anesthetized rats. Fraction 3 dose-dependently and significantly stimulated pancreatic juice flow volume from 78.0% to 99.4% (p<0.05) and bicarbonate output from 128.9% to 202.1% (p<0.01), respectively. Plasma secretin concentration also increased from 1.2 +/- 0.5 pM to 5.0 +/- 0.8 pM and 6.0 +/- 1.0 pM (p<0.05). None of these fractions increased pancreatic protein secretion or plasma CCK level. The stimulatory effect of Fraction 3 on pancreatic secretion and the release of secretin was completely abolished by treatment with trypsin (1 mg/ml for 60 min at 37 degrees C) but not by heating (100 degrees C, 10 min). Intravenous injection of a rabbit anti-secretin serum, which rendered plasma secretin almost undetectable in rat plasma, also abolished Fr 3-stimulated pancreatic secretion of fluid and bicarbonate secretion. These observations suggest that a secretin-releasing peptide exists in the canine pancreatic juice. It is trypsin-sensitive and heat-resistant. This peptide may play a significant physiological role on the release of secretin and regulation of exocrine pancreatic secretion.  相似文献   

9.
The effect of short-term (7 days) total parenteral nutrition (TPN) on gastrin release was studied in vivo and in the isolated vascularly perfused rat stomach. The daily plasma gastrin concentration of parenterally fed rats was significantly lower than in ad lib fed control animals (53 +/- 17 pg/ml vs 159 +/- 32 pg/ml, P less than 0.05) as early as day 2 and a similar pattern was observed on days 4 and 6. The fasting plasma gastrin concentration of control animals was 2-fold greater than of the parenterally fed group (P less than 0.05). Following oral peptone, the gastrin response of TPN and control animals doubled although peak gastrin levels were greatly reduced in TPN rats. Basal gastrin release from the perfused stomachs of control rats was 2-fold greater than from TPN rats (P less than 0.05). Electrical stimulation of the vagal trunks resulted in a significantly greater elevation in gastrin secretion from control stomachs compared to TPN animals (4-fold vs. 2.4-fold increase, P less than 0.05). Quantification of the antral G-cell population revealed a significant reduction in the number of G-cell of TPN rats compared to controls (97 +/- 8 cells/mm vs 76 +/- 6 cells/mm, P less than 0.05). These results indicate that luminal nutrient stimulation is necessary for the maintenance of normal G-cell secretory activity in vivo and from the in vitro stomach. G-cell hypoplasia appears to be partially responsible for reduced gastrin output to basal and stimulated conditions after TPN.  相似文献   

10.
Pituitary adenylate cyclase-activating polypeptide (PACAP), existing in two variants, PACAP-27 and PACAP-38, is found in the enteric nervous system and regulates function of the digestive system. However, the regulatory mechanism of PACAP on gastric acid secretion has not been well elucidated. We investigated the inhibitory action of PACAP-27 on acid secretion and its mechanism in isolated vascularly perfused rat stomach. PACAP-27 in four graded doses (5, 10, 20, and 50 microg/h) was vascularly infused to determine its effect on basal and pentagastrin (50 ng/h)-stimulated acid secretion. To study the inhibitory mechanism of PACAP-27 on acid secretion, a rabbit antisecretin serum, antisomatostatin serum, or indomethacin was administered. Concentrations of secretin, somatostatin, PGE(2), and histamine in portal venous effluent were measured by RIA. PACAP-27 dose-dependently inhibited both basal and pentagastrin-stimulated acid secretion. PACAP-27 at 10 microg/h significantly increased concentrations of secretin, somatostatin, and PGE(2) in basal or pentagastrin-stimulated state. The inhibitory effect of PACAP-27 on pentagastrin-stimulated acid secretion was reversed 33% by an antisecretin serum, 80.0% by an antisomatostatin serum, and 46.1% by indomethacin. The antisecretin serum partially reduced PACAP-27-induced local release of somatostatin and PGE(2). PACAP-27 at 10 microg/h elevated histamine level in portal venous effluent, which was further increased by antisomatostatin serum. However, antisomatostatin serum did not significantly increase acid secretion. It is concluded that PACAP-27 inhibits both basal and pentagastrin-stimulated gastric acid secretion. The effect of PACAP-27 is mediated by local release of secretin, somatostatin, and PGE(2) in isolated perfused rat stomach. The increase in somatostatin and PGE(2) levels in portal venous effluent is, in part, attributable to local action of the endogenous secretin.  相似文献   

11.
The present study examined and compared the effects of muscarinic blockade, beta-adrenergic blockade and immunoneutralization of the neuropeptide gastrin-releasing peptide (GRP) on distention-induced gastric acid secretion and gastrin release. In response to distention of rat stomachs with 0.9% NaCl, acid output rose from 3.5 +/- 0.5 mumol H+/30 min to 15.4 +/- 2.5 mumol H+/30 min (P less than 0.01). Intravenous administration of 4 mg/kg propranolol did not affect the acid secretory response to distention, however both 2 mg/kg atropine and 6 mg/kg pirenzepine significantly decreased gastric acid secretion by 44.8 +/- 7.8% and 40.9 +/- 5.7% (P less than 0.05), respectively. When specific antibodies to GRP were infused intravenously, the acid secretory response to distention was nearly abolished, decreasing to 5.1 +/- 0.8 mumol H+/30 min (P less than 0.01). In contrast to the effects on acid secretion, GRP antiserum did not significantly alter the gastrin release observed following distention. Results of these studies indicate that, under the conditions of these experiments, the acid secretory response to gastric distention may be independent of its effect on gastrin release. Although distention-induced gastric acid secretion may be partially governed by muscarinic pathways, the acid secretory response to distention in the rat appears to involve GRP-containing neurons.  相似文献   

12.
K Tazi-Saad  J Chariot  C Rozé 《Peptides》1992,13(2):233-239
Previous studies of the control of pepsin secretion by neurohumoral agents showed some discrepancies between in vitro (isolated cells) and in vivo experiments. In the present work, the effects on pepsin secretion of CCK, pentagastrin, secretin, VIP, neurotensin, histamine, and methacholine were reinvestigated in conscious gastric fistula rats, in comparison to acid secretion. ED50's and doses inducing maximal responses were measured to directly compare the potency and efficacy of these substances. Methacholine was the most efficient (maximal response = 4.5 x basal level, ED50 = 1.3 mumol/kg.h) and CCK the most potent (ED50 = 1.9 nmol/kg.h) stimulant, whereas secretin was a potent (ED50 regulators of pepsin secretion in the rat. Pentagastrin and histamine did not stimulate pepsin output, as found by others with isolated chief cells in vitro. Neurotensin and large doses of VIP marginally inhibited pepsin secretion.  相似文献   

13.
Rats with chronic gastric fistulas were stimulated for 12 or 24 h with constant intravenous infusion of pentagastrin. When secretin was also infused for the last half period of the experiment, respectively, 6 or 12 h, the volume of gastric secretion and HCl output were significantly reduced but the concentration of pepsin was significantly increased. The dissociated effect of secretin on gastric acid and pepsin secretion reported previously in man, dog and cat was also found in the rat.  相似文献   

14.
Only one secretin receptor has been cloned and its properties characterized in native and transfected cells. To test the hypothesis that stimulatory and inhibitory effects of secretin are mediated by different secretin receptor subtypes, pancreatic and gastric secretory responses to secretin and secretin-Gly were determined in rats. Pancreatic fluid secretion was increased equipotently by secretin and secretin-Gly, but secretin was markedly more potent for inhibition of basal and gastrin-induced acid secretion. In Chinese hamster ovary cells stably transfected with the rat secretin receptor, secretin and secretin-Gly equipotently displaced (125)I-labeled secretin (IC(50) values 5.3 +/- 0.5 and 6.4 +/- 0.6 nM, respectively). Secretin, but not secretin-Gly, caused release of somatostatin from rat gastric mucosal D cells. Thus the equipotent actions of secretin and secretin-Gly on pancreatic secretion appear to result from equal binding and activation of the pancreatic secretin receptor. Conversely, secretin more potently inhibited gastric acid secretion in vivo, and only secretin released somatostatin from D cells in vitro. These results support the existence of a secretin receptor subtype mediating inhibition of gastric acid secretion that is distinct from the previously characterized pancreatic secretin receptor.  相似文献   

15.
Previous studies have indicated that plasma levels of peptide YY (PYY) increase significantly after a meal. The purpose of this study was to characterize the interaction of PYY and secretin in the inhibition of gastric acid secretion, and to determine whether PYY can influence acid-induced inhibition of gastric acid secretion in conscious dogs. I.v. administration of PYY at 200 pmol/kg/h inhibited pentagastrin (1 microgram/kg/h)-stimulated gastric acid output (P less than 0.05). PYY further augmented i.v. secretin-induced inhibition of pentagastrin-stimulated gastric acid output by 32 +/- 7%, and intraduodenal hydrochloric acid-induced inhibition of pentagastrin-stimulated gastric acid output by 40 +/- 12%. The mean integrated release of secretin response to duodenal acidification (3.9 +/- 1.0 ng-[0-60] min/ml) was not affected by PYY (3.3 +/- 0.9 ng-[0-60] min/ml). The present study demonstrates that PYY can interact with secretin and duodenal acidification in an additive fashion to inhibit pentagastrin-stimulated gastric acid secretion. Our results suggest that several hormones that are released postprandially can interact with each other to inhibit gastric acid secretion.  相似文献   

16.
We investigated the mechanism of action of methionine enkephalin (MEK) on HCl-stimulated secretin release and pancreatic exocrine secretion. Anesthetized rats with pancreatobiliary cannulas and isolated upper small intestinal loops were perfused intraduodenally with 0.01 N HCl while bile and pancreatic juice were diverted. The effect of intravenous MEK on acid-stimulated secretin release and pancreatic exocrine secretion was then studied with or without coinfusion of naloxone, an anti-somatostatin (SS) serum, or normal rabbit serum. Duodenal acid perfusate, which contains secretin-releasing peptide (SRP) activity, was collected from donor rats with or without pretreatment with MEK, MEK + naloxone, or MEK + anti-SS serum, concentrated by ultrafiltration, and neutralized. The concentrated acid perfusate (CAP), which contains SRP bioactivity, was infused intraduodenally into recipient rats. MEK increased plasma SS concentration and inhibited secretin release and pancreatic fluid and bicarbonate secretion dose-dependently. The inhibition was partially reversed by naloxone and anti-SS serum but not by normal rabbit serum. In recipient rats, CAP increased plasma secretin level and pancreatic secretion. CAP SRP bioactivity decreased when it was collected from MEK-treated donor rats; this was partially reversed by coinfusion with naloxone or anti-SS serum. These results suggest that in the rat, MEK inhibition of acid-stimulated pancreatic secretion and secretin release involves suppression of SRP activity release. Thus the MEK inhibitory effect appears to be mediated in part by endogenous SS.  相似文献   

17.
Using isolated perfused rat liver, the direct effect of secretin, glucagon, caerulein, insulin and somatostatin on choleresis was investigated. When the liver was perfused in the absence of sodium taurocholate, the bile volumes were: control, 0.33 +/- 0.01 (mean +/- S.E.M.) ml/10 g liver per 50 min; secretin 0.05 U/ml, 0.39 +/- 0.01 (P less than 0.01); glucagon 10(-10) M, 0.44 +/- 0.02 (P less than 0.01); caerulein 10(-8) M, 0.34 +/- 0.03 (n.s.); insulin 1 mU/ml, 0.35 +/- 0.02 (n.s.); glucagon plus somatostatin 10(-7) M, 0.46 +/- 0.03 (n.s. vs. glucagon alone), respectively. When 10(-5) M sodium taurocholate was present in the perfusate, the bile volumes were: control, 0.61 +/- 0.03; secretin, 0.63 +/- 0.01 (n.s.); glucagon, 0.70 +/- 0.01 (P less than 0.05); caerulein, 0.55 +/- 0.01 (n.s.); insulin, 0.62 +/- 0.04 (n.s.); somatostatin, 0.59 +/- 0.01 (n.s.); respectively. Glucagon increased glucose output and cyclic AMP in the effluent from the liver neither of which were suppressed by somatostatin. Secretin increased cyclic AMP but not glucose output. These results indicate that glucagon has the most potent action on bile acid-independent canalicular bile, that caerulein and insulin do not act on canalicular bile production directly and that somatostatin does not directly suppress canalicular bile production nor hepatic glucose output produced by glucagon in rats.  相似文献   

18.
Bombesin, acetylcholine, prostaglandins and somatostatin are all thought to be involved in the regulation of gastrin release and gastric secretion. We have studied the effects of low doses of atropine, 16-16(Me)2-prostaglandin E2 (PGE2) and somatostatin-14 on bombesin-stimulated gastrin release and gastric acid and pepsin secretion in conscious fistula dogs. For reference, synthetic gastrin G-17 was studied with and without somatostatin. Bombesin, in a dose-related manner, increased serum gastrin, which in turn stimulated gastric acid and pepsin secretion in a serum gastrin, concentration-dependent manner. Somatostatin inhibited gastrin release by bombesin as well as the secretory stimulation by G-17; the combination of sequential effects resulted in a marked inhibition of bombesin-stimulated gastric acid and pepsin secretion. PGE2 also strongly inhibited gastrin release and acid and pepsin secretion. Atropine had no significant effect on gastrin release, but greatly inhibited gastric secretion. Thus somatostatin and PGE2 inhibited at two sites, gastrin release and gastrin effects, while atropine affected only the latter.  相似文献   

19.
We examined the role of CCK-A receptors in acid inhibition by intestinal nutrients. Gastric acid and plasma CCK and gastrin levels were measured in rats with gastric and duodenal fistulas during intragastric 8% peptone and duodenal perfusion with saline, complete liquid diet (CLD; 20% carbohydrate, 6% fat, and 5% protein), and the individual components of CLD. Acid output was significantly inhibited (50-60%) by CLD, lipid, and dextrose. Plasma CCK was significantly increased by CLD (from 2.6 +/- 0.3 to 4.8 +/- 0.5 pM) and lipid (4.6 +/- 0.5 pM). CCK levels 50-fold higher (218 +/- 33 pM) were required to achieve similar acid inhibition by exogenous CCK-8 (10 nmol x kg(-1) x h(-1) iv). Intestinal soybean trypsin inhibitor elevated CCK (10.9 +/- 2.5 pM) without inhibiting acid secretion. The CCK-A antagonist MK-329 (1 mg/kg iv) reversed acid inhibition caused by CLD, lipid, and dextrose. Peptone-stimulated gastrin (21.7 +/- 1.9 pM) was significantly inhibited by CLD (14.5 +/- 3.6 pM), lipid (12.3 +/- 2.2 pM), and dextrose (11.9 +/- 1.5 pM). Lipid and carbohydrate inhibit acid secretion by activating CCK-A receptors but not by altering plasma CCK concentrations.  相似文献   

20.
H Koop  R Arnold 《Regulatory peptides》1984,9(1-2):101-108
The influence of exogenous serotonin on the secretion of gastric somatostatin and gastrin was investigated under in vitro conditions using an isolated, vascularly perfused rat stomach preparation. Serotonin stimulated gastrin release, maximal effects were observed at 10(-6) M which increased gastrin levels by 78%; on the contrary, somatostatin secretion was inhibited (maximal inhibition of 56% at 10(-6) M). Changes in hormone secretion in response to serotonin were reversed by combined blockade of 5-HT1 and 5-HT2 receptors by methysergide and blockade of 5-HT2 receptors by ketanserin (10(-5) and 10(-6) M, respectively), and of cholinoreceptors by atropine (10(-5) M). It is concluded that in rats in vitro serotonin inhibits release of gastric somatostatin and stimulates gastrin secretion via specific serotonin receptors but muscarinic cholinergic receptors are also involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号