首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
The mitotic inducer Cdc2 is negatively regulated, in part, by phosphorylation on tyrosine 15. Human Wee1 is a tyrosine-specific protein kinase that phosphorylates Cdc2 on tyrosine 15. Human Wee1 is subject to multiple levels of regulation including reversible phosphorylation, proteolysis, and protein-protein interactions. Here we have investigated the contributions made by 14-3-3 binding to human Wee1 regulation and function. We report that the interactions of 14-3-3 proteins with human Wee1 are reduced during mitosis and are stable in the presence of the protein kinase inhibitor UCN-01. A mutant of Wee1 that is incapable of binding to 14-3-3 proteins has lower enzymatic activity, and this likely accounts for its reduced potency relative to wild-type Wee1 in inducing a G(2) cell cycle delay when overproduced in vivo. These findings indicate that 14-3-3 proteins function as positive regulators of the human Wee1 protein kinase.  相似文献   

2.
Viral protein R (Vpr), an accessory protein of human immunodeficiency virus type 1 (HIV-1), induces the G2 cell cycle arrest in fission yeast for which host factors, such as Wee1 and Rad24, are required. Catalyzing the inhibitory phosphorylation of Cdc2, Wee1 is known to serve as a major regulator of G2/M transition in the eukaryotic cell cycle. It has been reported that the G2 checkpoint induced by DNA damage or incomplete DNA replication is associated with phosphorylation and upregulation of Wee1 for which Chk1 and Cds1 kinase is required. In this study, we demonstrate that the G2 arrest induced by HIV-1 Vpr in fission yeast is also associated with increase in the phosphorylation and amount of Wee1, but in a Chk1/Cds1-independent manner. Rad24 and human 14-3-3 appear to contribute to Vpr-induced G2 arrest by elevating the level of Wee1 expression. It appears that Vpr could cause the G2 arrest through a mechanism similar to, but distinct from, the physiological G2 checkpoint controls. The results may provide useful insights into the mechanism by which HIV-1 Vpr causes the G2 arrest in eukaryotic cells. Vpr may also serve as a useful molecular tool for exploring novel cell cycle control mechanisms.  相似文献   

3.
The Cdc2 protein kinase is a key regulator of the G1-S and G2-M cell cycle transitions in the fission yeast Schizosaccharomyces pombe. The activation of Cdc2 at the G2-M transition is triggered by dephosphorylation at a conserved tyrosine residue Y15. The level of Y15 phosphorylation is controlled by the Wee1 and Mik1 protein kinases acting in opposition to the Cdc25 protein phosphatase. Here, we demonstrate that Wee1 overexpression leads to a high stoichiometry of phosphorylation at a previously undetected site in S. pombe Cdc2, T14. T14 phosphorylation was also detected in certain cell cycle mutants blocked in progression through S phase, indicating that T14 phosphorylation might normally occur at low stoichiometry during DNA replication or early G2. Strains in which the chromosomal copy of cdc2 was replaced with either a T14A or a T14S mutant allele were generated and the phenotypes of these strains are consistent with T14 phosphorylation playing an inhibitory role in the activation of Cdc2 as it does in higher eukaryotes. We have also obtained evidence that Wee1 but not Mik1 or Chk1 is required for phosphorylation at this site, that the Mik1 and Chk1 protein kinases are unable to drive T14 phosphorylation in vivo, that residue 14 phosphorylation requires previous phosphorylation at Y15, and that the T14A mutant, unlike Y15F, is recessive to wild-type Cdc2 activity. Finally, the normal duration of G2 delay after irradiation or hydroxyurea treatment in a T14A mutant strain indicates that T14 phosphorylation is not required for the DNA damage or replication checkpoint controls.  相似文献   

4.
Human immunodeficiency virus type 1 Vpr is a virion-associated accessory protein that has multiple activities within an infected cell. One of the most dramatic effects of Vpr is the induction of cell cycle arrest at the G(2)/M boundary, followed by apoptosis. This effect has implications for CD4(+) cell loss in AIDS. In normal cell cycle regulation, Wee1, a key regulator for G(2)-M progression, phosphorylates Tyr15 on Cdc2 and thereby blocks the progression of cells into M phase. We demonstrate that Vpr physically interacts with Wee1 at the N lobe of the kinase domain analogous to that present in other kinases. This interaction with Vpr enhances Wee1 kinase activity for Cdc2. Overexpression of Wee1 kinase-deficient mutants competes for Vpr-mediated cell cycle arrest, and deletion of the region of Wee1 that binds Vpr abrogates that competition. However, the Vpr mutants I74P and I81P, which fail to induce G(2) arrest, can bind to and increase the kinase activity of Wee1 to the same extent as wild-type Vpr. Therefore, we conclude that the binding of Vpr to Wee1 is not sufficient for Vpr to activate the G(2) checkpoint, and it may reflect an independent function of Vpr.  相似文献   

5.
The infectious cycle of human papillomavirus type 1 (HPV1) is accompanied by abundant expression of the full-length E1;E4 protein (17-kDa) and smaller E4 polypeptides (16-, 11-, and 10-kDa) that arise by sequential loss of N-terminal E1;E4 sequences. HPV1 E4 inhibits G(2)-to-M transition of the cell cycle. Here, we show that HPV1 E4 proteins mediate inhibition of cell division by more than one mechanism. Cells arrested by coexpression of E1;E4 (E4-17K) and a truncated protein equivalent to the 16-kDa species (E4-16K) contain inactive cyclin B1-cdk1 complexes. Inactivation of cdk1 is through inhibitory Tyr(15) phosphorylation, with cells containing elevated levels of Wee1, the kinase responsible for inhibitory cdk1 phosphorylation. Consistent with these findings, overexpression of Wee1 enhanced the extent to which E4-17K/16K-expressing cells arrest in G(2), indicating that maintenance of Wee1 activity is necessary for inhibition of cell division induced by coexpression of the two E4 proteins. Moreover, we have determined that depletion of Wee1 by small interfering RNA (siRNA) alleviates the G(2) block imposed by E4-17K/16K. In contrast however, maintenance of Wee1 activity is not necessary for G(2)-to-M inhibition mediated by E4-16K alone, as overexpression or depletion of Wee1 does not influence the G(2) arrest function of E4-16K. Cells arrested by E4-16K expression contain low levels of active cyclin B1-cdk1 complexes. We hypothesize that differential expression of HPV1 E4 proteins during the viral life cycle determines the host cell cycle status. Different mechanisms of inhibition of G(2)-to-M transition reinforce the supposition that distinct E4 functions are important for HPV replication.  相似文献   

6.
Positive regulation of Wee1 by Chk1 and 14-3-3 proteins   总被引:1,自引:0,他引:1  
Wee1 inactivates the Cdc2-cyclin B complex during interphase by phosphorylating Cdc2 on Tyr-15. The activity of Wee1 is highly regulated during the cell cycle. In frog egg extracts, it has been established previously that Xenopus Wee1 (Xwee1) is present in a hypophosphorylated, active form during interphase and undergoes down-regulation by extensive phosphorylation at M-phase. We report that Xwee1 is also regulated by association with 14-3-3 proteins. Binding of 14-3-3 to Xwee1 occurs during interphase, but not M-phase, and requires phosphorylation of Xwee1 on Ser-549. A mutant of Xwee1 (S549A) that cannot bind 14-3-3 is substantially less active than wild-type Xwee1 in its ability to phosphorylate Cdc2. This mutation also affects the intranuclear distribution of Xwee1. In cell-free kinase assays, Xchk1 phosphorylates Xwee1 on Ser-549. The results of experiments in which Xwee1, Xchk1, or both were immunodepleted from Xenopus egg extracts suggested that these two enzymes are involved in a common pathway in the DNA replication checkpoint response. Replacement of endogenous Xwee1 with recombinant Xwee1-S549A in egg extracts attenuated the cell cycle delay induced by addition of excess recombinant Xchk1. Taken together, these results suggest that Xchk1 and 14-3-3 proteins act together as positive regulators of Xwee1.  相似文献   

7.
Activated lymphocytes synthesize and secrete substantial amounts of the beta-chemokines macrophage inflammatory protein (MIP)-1 alpha/CCL3 and MIP-1 beta/CCL4, both of which inhibit infection of cells with human immunodeficiency virus type 1 (HIV-1). The native form of MIP-1 beta secreted by activated human peripheral blood lymphocytes (MIP-1 beta(3-69)) lacks the two NH(2)-terminal amino acids of the full-length protein. This truncated form of MIP-1 beta has now been affinity-purified from the culture supernatant of such cells, and its structure has been confirmed by mass spectrometry. Functional studies of the purified protein revealed that MIP-1 beta(3-69) retains the abilities to induce down-modulation of surface expression of the chemokine receptor CCR5 and to inhibit the CCR5-mediated entry of HIV-1 in T cells. Characterization of the chemokine receptor specificity of MIP-1 beta(3-69) showed that the truncated protein not only shares the ability of intact MIP-1 beta to induce Ca(2+) signaling through CCR5, but unlike the full-length protein, it also triggers a Ca(2+) response via CCR1 and CCR2b. These results demonstrate that NH(2)-terminally truncated MIP-1 beta functions as a chemokine agonist with expanded receptor reactivity, which may represent an important mechanism for regulation of immune cell recruitment during inflammatory and antiviral responses.  相似文献   

8.
The human cruciform binding protein (CBP), a member of the 14-3-3 protein family, has been recently identified as an origin of DNA replication binding protein and involved in DNA replication. Here, pure recombinant 14-3-3zeta tagged with maltose binding protein (r14-3-3zeta-MBP) at its N-terminus was tested for binding to cruciform DNA either in the absence or presence of F(TH), a CBP-enriched fraction, by electromobility shift assay (EMSA), followed by Western blot analysis of the electroeluted CBP-cruciform DNA complex. The r14-3-3zeta-MBP was found to have cruciform binding activity only after preincubation with F(TH). Anti-MBP antibody immunoprecipitation of F(TH) preincubated with r14-3-3zeta-MBP, followed by Western blot analysis with antibodies specific to the beta, gamma, epsilon, zeta, and sigma 14-3-3 isoforms showed that r14-3-3zeta-MBP heterodimerized with the endogenous beta, epsilon, and zeta isoforms present in the F(TH) but not with the gamma or sigma isoforms. Immunoprecipitation of endogenous 14-3-3zeta from nuclear extracts (NE) of HeLa cells that were either serum-starved (s-s) or blocked at the G(1)/S or G(2)/M phases of the cell cycle revealed that at G(1)/S and G(2)/M, the zeta isoform heterodimerized only with the beta and epsilon isoforms, while in s-s extracts, the 14-3-3zeta/epsilon heterodimer was never detected, and the 14-3-3zeta/beta heterodimer was seldom detected. Furthermore, addition of r14-3-3zeta-MBP to HeLa cell extracts used in a mammalian in vitro replication system increased the replication level of p186, a plasmid bearing the minimal 186-bp origin of the monkey origin of DNA replication ors8, by approximately 3.5-fold. The data suggest that specific dimeric combinations of the 14-3-3 isoforms have CBP activity and that upregulation of this activity leads to an increase in DNA replication.  相似文献   

9.
Chemokines are secreted proteins that function as chemoattractants for leukocytes. The chemokines macrophage inflammatory protein 1alpha and 1beta (MIP-1alpha and MIP-1beta) now have been shown to be secreted from activated human monocytes and peripheral blood lymphocytes (PBLs) as a heterodimer. Immunoprecipitation and immunoblot analysis revealed that antibodies to either MIP-1alpha or MIP-1beta precipitated a protein complex containing both MIP-1alpha and MIP-1beta under normal conditions from culture supernatants and lysates of these cells. Mass spectrometry of the complexes, precipitated from the culture supernatants of monocytes and PBLs, revealed the presence of NH(2)-terminal truncated MIP-1alpha (residues 5-70) together with either intact MIP-1beta or NH(2)-terminal truncated MIP-1beta (residues 3-69), respectively. The secreted MIP-1alpha/beta heterodimers were dissociated into their component monomers under acidic conditions. Exposure of monocytes or PBLs to monensin induced the accumulation of heterodimers composed of NH(2)-terminal truncated MIP-1alpha and full-length MIP-1beta in the Golgi complex. The mixing of recombinant chemokines in vitro demonstrated that heterodimerization of MIP-1alpha and MIP-1beta is specific and that it occurs at physiological conditions, pH 7.4, and in the range of nanomolar concentrations. The data presented here provide the first biochemical evidence for the existence of chemokine heterodimers under natural conditions. Formation of heterodimers of MIP-1alpha/beta may have an impact on intracellular signaling events that contribute to CCR5 and possibly to other chemokine receptor functions.  相似文献   

10.
Hsp90 phosphorylation,Wee1 and the cell cycle   总被引:1,自引:0,他引:1  
Heat Shock Protein 90 (Hsp90) is an essential molecular chaperone in eukaryotic cells, and it maintains the functional conformation of a subset of proteins that are typically key components of multiple regulatory and signaling networks mediating cancer cell proliferation, survival, and metastasis. It is possible to selectively inhibit Hsp90 using natural products such as geldanamycin (GA) or radicicol (RD), which have served as prototypes for development of synthetic Hsp90 inhibitors. These compounds bind within the ADP/ATP-binding site of the Hsp90 N-terminal domain to inhibit its ATPase activity. As numerous N-terminal domain inhibitors are currently undergoing extensive clinical evaluation, it is important to understand the factors that may modulate in vivo susceptibility to these drugs. We recently reported that Wee1Swe1-mediated, cell cycle-dependent, tyrosine phosphorylation of Hsp90 affects GA binding and impacts cancer cell sensitivity to Hsp90 inhibition. This phosphorylation also affects Hsp90 ATPase activity and its ability to chaperone a selected group of clients, comprised primarily of protein kinases. Wee1 regulates the G2/M transition. Here we present additional data demonstrating that tyrosine phosphorylation of Hsp90 by Wee1Swe1 is important for Wee1Swe1 association with Hsp90 and for Wee1Swe1 stability. Yeast expressing non-phosphorylatable yHsp90-Y24F, like swe1? yeast, undergo premature nuclear division that is insensitive to G2/M checkpoint arrest. These findings demonstrate the importance of Hsp90 phosphorylation for proper cell cycle regulation.  相似文献   

11.
12.
Ubiquitin mediated proteolysis is required for transition from one cell cycle phase to another. For instance, the mitosis inhibitor Wee1 is targeted for degradation during S phase and G2 to allow mitotic entry. Wee1 is an essential tyrosine kinase required for the G2/M transition and S-phase progression. Although several studies have concentrated on Wee1 regulation during mitosis, few have elucidated its degradation during interphase. Our prior studies have demonstrated that Wee1 is degraded via CK1δ dependent phosphorylation during the S and G2/M phases of the cell cycle. Here we demonstrate that GSK3β may work in concert with CK1δ to induce Wee1 destruction during interphase. We generated small molecules that specifically stabilized Wee1. We profiled these compounds against 296 kinases and found that they inhibit GSK3α and GSK3β, suggesting that Wee1 may be targeted for proteolysis by GSK3. Consistent with this notion, known GSK3 inhibitors stabilized Wee1 and GSK3β depletion reduced Wee1 turnover. Given Wee1's central role in cell cycle progression, we predicted that GSK3 inhibitors should limit cell proliferation. Indeed, we demonstrate that GSK3 inhibitors potently inhibited proliferation of the most abundant cell in the mammalian brain, the cerebellar granule cell progenitor (GCP). These studies identify a previously unappreciated role for GSK3β mediated regulation of Wee1 during the cell cycle and in neurogenesis. Furthermore, they suggest that pharmacological inhibition of Wee1 may be therapeutically attractive in some cancers where GSK-3β or Wee1 are dysregulated.  相似文献   

13.
Ubiquitin mediated proteolysis is required for transition from one cell cycle phase to another. For instance, the mitosis inhibitor Wee1 is targeted for degradation during S phase and G2 to allow mitotic entry. Wee1 is an essential tyrosine kinase required for the G2/M transition and S-phase progression. Although several studies have concentrated on Wee1 regulation during mitosis, few have elucidated its degradation during interphase. Our prior studies have demonstrated that Wee1 is degraded via CK1δ dependent phosphorylation during the S and G2/M phases of the cell cycle. Here we demonstrate that GSK3β may work in concert with CK1δ to induce Wee1 destruction during interphase. We generated small molecules that specifically stabilized Wee1. We profiled these compounds against 296 kinases and found that they inhibit GSK3α and GSK3β, suggesting that Wee1 may be targeted for proteolysis by GSK3. Consistent with this notion, known GSK3 inhibitors stabilized Wee1 and GSK3β depletion reduced Wee1 turnover. Given Wee1''s central role in cell cycle progression, we predicted that GSK3 inhibitors should limit cell proliferation. Indeed, we demonstrate that GSK3 inhibitors potently inhibited proliferation of the most abundant cell in the mammalian brain, the cerebellar granule cell progenitor (GCP). These studies identify a previously unappreciated role for GSK3β mediated regulation of Wee1 during the cell cycle and in neurogenesis. Furthermore, they suggest that pharmacological inhibition of Wee1 may be therapeutically attractive in some cancers where GSK-3β or Wee1 are dysregulated.  相似文献   

14.
15.
Various laminin isoforms have specific biological functions depending on their structures. Laminin 5A, which consists of the three truncated chains alpha3A, beta3, and gamma2, is known to have strong activity to promote cell adhesion and migration, whereas a laminin 5 variant consisting of a full-sized alpha3 chain (alpha3Beta) and the beta3 and gamma2 chains, laminin 5B, has not been characterized yet. In the present study, we for the first time cloned a full-length human laminin alpha3B cDNA and isolated the human laminin 5B protein. The molecular size of the mature alpha3B chain (335 kDa) was approximately twice as large as the mature alpha3A chain in laminin 5A. Laminin 5B had significantly higher cell adhesion and cell migration activities than laminin 5A. In addition, laminin 5B potently stimulated cell proliferation when added into the culture medium directly. Furthermore, we found that the alpha3B chain undergoes proteolytic cleavage releasing a 190-kDa NH(2)-terminal fragment. The 190-kDa fragment had activities to promote cellular adhesion, migration, and proliferation through its interaction with integrin alpha(3)beta(1). These activities of the NH(2)-terminal structure of the alpha3B chain seem to contribute to the prominent biological activities and the physiological functions of laminin 5B.  相似文献   

16.
We have investigated the existence of a precoupled form of the distal C-terminal truncated cannabinoid receptor 1 (CB1-417) and heterotrimeric G proteins in a heterologous insect cell expression system. CB1-417 showed higher production levels than the full-length receptor. The production levels obtained in our expression system were double the values reported in the literature. We also observed that at least the distal C-terminus of the receptor was not involved in receptor dimerization, as was predicted in the literature. Using fluorescence resonance energy transfer, we found that CB1-417 and Galpha(i1)beta(1)gamma(2) proteins were colocalized in the cells. GTPgammaS binding assays with the Sf9 cell membranes containing CB1-417 and the G protein trimer showed that the receptor could constitutively activate the Galpha(i1) protein in the absence of agonists. A CB1-specific antagonist (SR 141716A) inhibited this constitutive activity of the truncated receptor. We found that the CB1-417/Galpha(i1)beta(1)gamma(2) complex could be solubilized from Sf9 cell membranes and coimmunoprecipitated. In this study, we have proven that the receptor and G proteins can be coexpressed in higher yields using Sf9 cells, and that the protein complex is stable in detergent solution. Thus, our system can be used to produce sufficient quantities of the protein complex to start structural studies.  相似文献   

17.
18.
19.
Wee1 is a protein kinase that negatively regulates mitotic entry in G2 phase by suppressing cyclin B-Cdc2 activity, but its spatiotemporal regulations remain to be elucidated. We observe the dynamic behavior of Wee1 in Schizosaccharomyces pombe cells and manipulate its localization and kinase activity to study its function. At late G2, nuclear Wee1 efficiently suppresses cyclin B-Cdc2 around the spindle pole body (SPB). During the G2/M transition when cyclin B-Cdc2 is highly enriched at the SPB, Wee1 temporally accumulates at the nuclear face of the SPB in a cyclin B-Cdc2-dependent manner and locally suppresses both cyclin B-Cdc2 activity and spindle assembly to counteract a Polo kinase-dependent positive feedback loop. Then Wee1 disappears from the SPB during spindle assembly. We propose that regulation of Wee1 localization around the SPB during the G2/M transition is important for proper mitotic entry and progression.  相似文献   

20.
Big mitogen-activated kinase 1 (BMK1/ERK5) is a member of the MAPK family activated by growth factors that mediates cell growth and survival. Previous data show that BMK1 can be activated by steady laminar flow and is atheroprotective by preventing endothelial cells from undergoing apoptosis. The primary structure of BMK1 is distinct from other MAPK members by virtue of a unique long C-tail, suggesting specific mechanisms of regulation. To characterize regulatory mechanisms for BMK1 function, we identified binding proteins by yeast two-hybrid analysis. Among these proteins, the scaffolding protein 14-3-3 was identified. BMK1 bound to 14-3-3beta in vitro and in vivo as demonstrated by glutathione S-transferase (GST)-14-3-3beta fusion protein pull-down assays and coimmunoprecipitation. Phosphorylation of BMK1 was most likely required for this interaction. GST-14-3-3beta pull-down assays using truncated constructs of BMK1 and site-directed BMK1 mutants demonstrated that the interaction requires serine 486 within the C terminus of BMK1. BMK1 bound to 14-3-3beta basally, and the interaction was greatly abrogated when BMK1 was activated. The interaction of 14-3-3beta and BMK1 inhibited kinase activities stimulated by constitutively active (CA)-MEK5 and epidermal growth factor. Mutation of serine 486 (BMK1-S486A) prevented the interaction with 14-3-3beta and enhanced BMK1 activity upon epidermal growth factor stimulation. These data demonstrate an inhibitory function for 14-3-3beta binding to BMK1 and show that serine 486 phosphorylation represents a novel regulatory mechanism for BMK1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号