首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The responses of dairy cows to the substitution of beet pulp (BP) for grain or forage are not consistent, and heat stress may affect the response of dairy cows to this substitution. The effects of substituted BP for corn silage and barley grain on feed intake, performance, and ruminal parameters were evaluated using eight multiparous Holstein cows in a duplicated 4 × 4 Latin square design with 21-day periods. Cows were in mid-lactation (45.4 ± 3.6 kg/day milk production and 116 ± 10 days in milk) with an average BW of 664 ± 41.2 kg. Dietary treatments were as follows: 1) 0% BP (0BP, control, 38.5% barley grain, and 20.3% corn silage); 2) 12% BP (12BP, 32.5% barley grain, and 14.3% corn silage); 3) 18% BP (18BP, 29.5% barley grain, and 11.3% corn silage); and 4) 24% BP (24BP, 26.5% barley grain, and 8.3% corn silage). Cows were under mild heat stress and the average temperature–humidity index was 70.5; increasing BP caused a linear decrease in respiration rate (P < 0.01). Higher BP in the diet caused a linear increase in DM intake (P = 0.01) and NDF digestibility (P = 0.03). Dry and organic matter (OM) digestibilities tended to increase linearly with higher BP (P < 0.10). Milk yield, energy-corrected milk, protein, lactose, and fat production and content were not affected by the treatments. Increasing BP in the diet caused a linear decrease in feed efficiency and rumen ammonia (P < 0.05) and a tendency to a linear decrease in milk urea nitrogen (P < 0.10). Rumen pH and acetate to propionate ratio were not affected by the replacement. Total volatile fatty acid concentration in the rumen increased linearly with increasing the BP inclusion (P = 0.04). Acetate and butyrate (P = 0.07) proportion tended to increase, whereas propionate (P = 0.06) and isovalerate (P = 0.08) proportion tended to decrease linearly as BP was substituted for corn silage and barley grain. The results indicated that under mild heat stress condition, BP can be successfully substituted for barley grain and corn silage up to 24% of the diet without any negative effect on production and ruminal pH.  相似文献   

2.
Using corn germ (CG) instead of corn grain could maintain dairy cow performance and might increase the efficiency of human food production. The primary objective of this study was to evaluate the effects of replacing corn grain with CG on the performance, nutrient intake, and digestibility of dairy cows. It also aimed to investigate the effect of CG on the efficiency of human food production in high-producing Holstein dairy cows in early lactation. Nine multiparous Holstein cows with 65.6 ± 8.5 DIM, milk yield of 55.6 ± 4.5 kg/d, and body weight of 611.3 ± 43.3 kg (mean ± SD) were used in a 3 × 3 Latin square design with 21-d periods. Treatments were (1) control treatment (CT, diet contains corn grain), (2) alternative treatment (AT, diet where corn grain was replaced with CG), and (3) balanced treatment (BT, diet where corn grain was replaced with CG but with the same energy content as CT). Control and balanced diets were isoenergetic (6.61 MJ/kg of DM); however, AT had higher energy (6.77 MJ/kg of DM). Treatments had no effect on dry and organic matter intake. NDF intake, however, was higher in CG diets compared with CT (P = 0.0001). Total-tract digestibility of DM tended to be reduced (P = 0.08), and OM digestibility was reduced (P = 0.05) by the inclusion of CG in diets. Whole and energy-corrected milk production were greater in AT compared with CT and BT (P < 0.05). Milk yield was similar in cows fed CT and BT. Treatments had no effect on milk composition or feed efficiency. Diet CT, when compared with CG diets, had lower efficiency in terms of human-edible feed conversion efficiency (HeFCE) and net food production (P < 0.05). Diet BT had greater HeFCE and net production of human-edible CP than AT (P < 0.05). Plasma BHBA, non-esterified fatty acids, and glucose concentrations were not affected by treatments, but plasma cholesterol was higher in cows that consumed CG diets (P = 0.04). The results indicate that, in high-producing early lactation dairy cows fed high concentrate diets, net food protein production can be substantially improved without lowering milk production through the reduction of dietary starch from 30.2 to 24.8% by replacing corn grain with CG.  相似文献   

3.
Chemical and physical treatments of barley grain increase ruminally resistant starch and can improve the rumen fermentation pattern. The objective of the present study was to evaluate the effects of chemical (addition of citric acid, CA) and physical (grinding to two different particle sizes, PS) treatment of barley grain on performance, rumen fermentation, microbial protein yield in the rumen and selected blood metabolites in growing calves. In all, 28 male Holstein calves (172±5.1 kg initial BW) were used in a complete randomised design with a factorial arrangement of 2 barley grain particle sizes×2 levels of citric acid. The diets were as follows: (i) small PS (average 1200 µm) barley grain soaked in water (no CA addition); (ii) small PS barley grain soaked in a CA solution (adding 20 g CA/kg barley); (iii) large PS (average 2400 µm) barley grain soaked in water (no citric acid addition) and (iv) large PS barley grain soaked in a citric acid solution (adding 20 g CA/kg barley). Barley grain was then incorporated at 35% in a total mixed ration and fed to the calves for 11 weeks. Feeding small PS barley decreased feed intake (P=0.02) and average daily weight gain (P=0.01). The addition of CA to barley grain did not affect intake but increased weight gain (P<0.01) and improved feed to gain ratio (P=0.03). Digestibility of organic matter and NDF tended (P<0.10) to increase, whereas faecal scoring was improved (P=0.03) and the presence of undigested grain particles in faeces was reduced (P<0.01) with CA-treated barley grain. Glucose and urea concentrations were increased (P<0.01) in the blood of calves fed the CA-treated barley grain. Ruminal pH tended (P=0.08) to be decreased with more finely ground barley and was increased when barley grain was treated with CA. Total volatile fatty acid concentrations in the rumen did not differ among treatments (P>0.05). However, the molar proportion of propionate was increased (P=0.03) when barley was more finely ground, and that of acetate was increased (P=0.04) when CA was added to barley grain. The ruminal concentration of ammonia nitrogen was increased (P<0.01) and microbial nitrogen synthesis in the rumen tended to decrease by adding CA to barley. Treating barley grain with citric acid increased fibre digestibility of total mixed rations, attenuated the decrease in ruminal pH, and improved weight gain and feed efficiency in male Holstein growing calves fed a high-cereal diet (550 g cereal grain/kg diet).  相似文献   

4.
This study presents the first application of metabolomics to evaluate changes in rumen metabolites of dairy cows fed increasing proportions of barley grain (i.e., 0, 15, 30, and 45% of diet dry matter). 1H-NMR spectroscopy was used to analyze rumen fluid samples representing 4 different diets. Results showed that for cows fed 30 and 45% grain, increases were observed in the concentration of rumen methylamine as well as glucose, alanine, maltose, propionate, uracil, valerate, xanthine, ethanol, and phenylacetate. These studies also revealed lower rumen 3-phenylpropionate in cows fed greater amounts of cereal grain. Furthermore, ANOVA tests showed noteworthy increases in rumen concentrations of N-nitrosodimethylamine, dimethylamine, lysine, leucine, phenylacetylglycine, nicotinate, glycerol, fumarate, butyrate, and valine with an enriched grain diet. Using principal component analysis it was also found that each of the 4 diets could be distinguished on the basis of the measured rumen metabolites. The two closest clusters corresponded to the 0 and 15% grain diets, whereas the 45% barley grain diet was significantly separated from the other clusters. Unhealthly levels of a number of potentially toxic metabolites were found in the rumen of cattle fed 30 and 45% grain diets. These results may have a number of implications regarding the influence of grain on the overall health of dairy cows.  相似文献   

5.
Whole-plant faba bean silage has a high content in indigestible fiber. Improvement of fiber digestibility of faba bean silage would benefit animal production. However, there is no study on pretreating fibrolytic enzyme in whole-plant faba bean silage-based diet for dairy cows on animal performance. The objectives of this study were to evaluate the effects of pretreating whole-plant faba bean silage-baseddiet with fibrolytic enzyme (a mixture of xylanase and cellulase; AB Vista, UK) derived from Trichoderma reesei (FETR) on lactational performance, digestibility, ruminal fermentation characteristics, and feeding behavior of dairy cows. The animal trial was conducted using eight lactating Holstein cows (BW = 710 ± 44 kg and Days in Milk (DIM) = 121 ± 17 days) with four levels of FETR (0, 0.5, 0.75, and 1.0 mL of FETR/kg DM of silage) in a replicated Latin square design. These enzyme treatments were selected based on the previous in situ and in vitro findings that showed positive responses to the whole-plant faba bean silage. The enzyme treatments were directly applied on the silage prior to mixing process. The total mixed rations contained 31% of faba bean silage, 14% of grass hay, 3.5% of straw, 30% of barley and corn grain and 21.5% of concentrate. There was no significant difference of applying FETR on nutrient intake (P > 0.05) except for CP intake, which was reduced in FETR group compared to control (P < 0.01, 4.4 vs 4.54 kg/d). There was a linear effect found in NDF digestibility when treated with FETR, where maximum improvement was achieved with 0.5 mL of FETR application. The milk fat yield, percentage of milk fat and fat-corrected milk were linearly affected by the increasing level of enzyme. The cows fed a diet supplemented with enzymes tended to have a lower milk fat. Feed efficiency linearly responded to incremental levels of FETR. There was no enzyme effect on feeding behavior and nitrogen balance and utilization. Results from this study indicated that supplementing fibrolytic enzyme on whole-plant faba bean silage diets for dairy cows improved lactational performance, intake and digestibility with 0.5 mL of FETR application. However, adding higher enzyme level resulted in negative effects on animal performance.  相似文献   

6.
The particle size of the forage has been proposed as a key factor to ensure a healthy rumen function and maintain dairy cow performance, but little work has been conducted on ryegrass silage (GS). To determine the effect of chop length of GS and GS:maize silage (MS) ratio on the performance, reticular pH, metabolism and eating behaviour of dairy cows, 16 multiparous Holstein-Friesian cows were used in a 4×4 Latin square design with four periods each of 28-days duration. Ryegrass was harvested and ensiled at two mean chop lengths (short and long) and included at two ratios of GS:MS (100:0 or 40:60 dry matter (DM) basis). The forages were fed in mixed rations to produce four isonitrogenous and isoenergetic diets: long chop GS, short chop GS, long chop GS and MS and short chop GS and MS. The DM intake (DMI) was 3.2 kg/day higher (P<0.001) when cows were fed the MS than the GS-based diets. The short chop length GS also resulted in a 0.9 kg/day DM higher (P<0.05) DMI compared with the long chop length. When fed the GS:MS-based diets, cows produced 2.4 kg/day more (P<0.001) milk than when fed diets containing GS only. There was an interaction (P<0.05) between chop length and forage ratio for milk yield, with a short chop length GS increasing yield in cows fed GS but not MS-based diets. An interaction for DM and organic matter digestibility was also observed (P<0.05), where a short chop length GS increased digestibility in cows when fed the GS-based diets but had little effect when fed the MS-based diet. When fed the MS-based diets, cows spent longer at reticular pH levels below pH 6.2 and pH 6.5 (P<0.01), but chop length had little effect. Cows when fed the MS-based diets had a higher (P<0.05) milk fat concentration of C18 : 2n-6 and total polyunsaturated fatty acids compared with when fed the GS only diets. In conclusion, GS chop length had little effect on reticular pH, but a longer chop length reduced DMI and milk yield but had little effect on milk fat yield. Including MS reduced reticular pH, but increased DMI and milk performance irrespective of the GS chop length.  相似文献   

7.
Some grain processing by-products rich in digestible fiber are good feed resources for ruminants. This experiment was conducted to investigate the effects of replacing a portion of corn and corn stover with the combinations of corn bran and soybean hulls in the diet of fattening lambs on nutrient digestion, rumen microbial protein synthesis, and growth performance. A total of 36 Dorper × Small Thin-Tailed crossbred ram lambs (BW = 22.2 ± 0.92 kg; mean ± SD) were randomly divided into three groups, and each group was fed 1 of 3 treatment diets: 1) 0% corn bran and soybean hulls (control); 2) 9% corn bran and 9% soybean hulls (18MIX); and 3) 17% corn bran and 17% soybean hulls (34MIX). The feeding experiment was conducted for 70 days, with the first 10 days for adaption. The DM intake was higher for 34MIX (1635.3 g/d) than for control diet (1434.7 g/d; P = 0.001). Lambs fed 18MIX and 34MIX diets (230.2 and 263.6 g/d, respectively) had higher average daily gain and feed efficiency than those fed control diet (194.8 g/d; P < 0.01). Dry matter and NDF digestibility for 34MIX group (60.9 and 49.5%) were higher than for control (55.2 and 41.3%; P < 0.01). No difference was observed in nitrogen digestibility among treatment diets (P = 0.778). The lambs fed 34MIX diet excreted more urinary purine derivatives, indicating that more microbial protein was yielded than those fed control diet (P < 0.01), while 18MIX was not different from the other two diets (P > 0.05). The metabolizable protein supplies were improved with increasing co-products inclusion rate. The results indicated that corn bran and soybean hulls in combination can effectively replace a portion of corn and corn stover in the ration of finishing lambs with positive effect on nutrient digestion and growth performance.  相似文献   

8.
Pumpkin seed cake (PSC), a byproduct of pumpkin seed oil processing, is used in ruminant feed as a beneficial protein source. Experiments were conducted to evaluate PSC as a substitute for soybean meal in the diets of lactating cows based on performance, rumen fermentation, antioxidant function and nitrogen partitioning. Six multiparous lactating cows were used in a replicated 3 × 3 Latin square experiment with 27-day periods. The cows were randomly divided into three treatment groups: group (1) was fed a diet containing no PSC (0PSC), and groups (2) and (3) were fed diets in which soybean meal was replaced with PSC and dried distillers grains with solubles (DDGS) at levels of 50% (50PSC) and 100% (100PSC), respectively. The diets were isonitrogenous and contained identical roughage but different proportions of PSC and DDGS. Replacement of soybean meal with PSC and DDGS did not influence rumen degradation, milk performance, rumen fermentation, DM intake or apparent total tract digestibility, and nitrogen partitioning between milk, feces and urine did not differ in the animals fed the three diets. However, compared with a diet containing no PSC, the total antioxidant capacity (P < 0.05) and antioxidant enzymes (total superoxide dismutase, glutathione peroxidase and catalase) activities (P < 0.05) were increased in the animals that received the 50PSC and 100PSC diets. In contrast, addition of PSC significantly reduced concentrations of aspartate transaminase (P < 0.05), alkaline phosphatase (P < 0.05) and malondialdehyde (P < 0.05) in the plasma. These results demonstrate that PSC can be completely substituted for soybean meal in the diet of dairy cows without any negative impact on milk performance, rumen fermentation or apparent digestibility and that this dietary change improves antioxidant functions and blood parameters in dairy cows, indicating that PSC has the potential for use as a feed source for dairy cows.  相似文献   

9.
Adding corn silage (CS) instead of alfalfa hay (AH) to the finely ground starter diet would improve calf performance if feed intake or feed efficiency is increased. We investigated the effects of replacing AH with CS in the starter diet on nutrient intake, digestibility, growth performance, rumen fermentation and selected blood metabolites in Holstein calves. Newborn male calves (n = 30; 3 days of age; 40.2 ± 1.28 kg BW) were assigned randomly to three groups receiving starter diets containing chopped AH (10% dry matter (DM) basis; AH diet), CS (10% DM, CS diet) or their combination (each at 5% level; AHCS diet). The starter diets had the same nutrient composition but differed in DM content (91.2%, 87.5% and 83.8% for AH, AHCS and CS, respectively). The calves were weaned on day 50, and the study continued until day 70. Nutrient intake, BW (at weaning and at the end of the study) and body measurements were not affected by the diet. During the post-weaning period, average daily gain tended to be greater on CS than on AH diet. Feed efficiency was greater in CS than in AH or AHCS calves during the post-weaning period. Digestibility of neutral detergent fiber was greater in AHCS and CS compared with AH during the post-weaning period. Concentration and profile of volatile fatty acids and ruminal fluid pH were not affected by the diet. Replacing AH with CS in the starter diet had no effect on feed intake, growth performance and general health of the calves. These results indicate that AH and CS can be used interchangeably in dairy calf starter diets until 70 days of age, allowing dairy producers more choices in selecting the feed ingredients.  相似文献   

10.
The effect of supplementing diet with yeast culture (Yea-sacc1026) on dairy cattle was studied by rumen in vitro studies and a feeding trial. Using rumen inoculum from a cow, yeast adapted (YA) and yeast unadapted (YU), incubations were carried out with finger millet (Eleusine coracana) straw (FMS) and a commercial cattle feed (CCF). The 24 h cumulative gas production and digestibility of neutral detergent fibre and acid detergent fibre were not different with YU and YA rumen inoculum for both FMS and CCF. Microbial nitrogen synthesis (mg N ml−1 gas produced) with rumen inoculum from YA feeding regime was higher (P < 0.01) than YU with starch (0.1068 vs. 0.1008) and cellulose (0.0900 vs. 0.0859).A feeding trial was conducted using twelve multiparous cows in midlactation in a switch over design. The cows were divided into two groups of six cows in each group. The duration of the trial was fourteen weeks, each period lasting for 7 weeks. There were no differences in dry matter intake, body weight gain and milk yield. Milk composition for the two groups were also similar.  相似文献   

11.
Ruminants can tolerate moderate concentrations of dietary tannin, making it feasible to replace corn with sorghum in ruminant diets; however, conditioning temperature of pelleted total mixed ration (PTMR) greatly affects nutrient digestibility. The objective was to determine effects of grain type and conditioning temperature during pelleting on growth performance, ruminal fermentation, meat quality and blood metabolites of fattening lambs. This was a 2 × 3 factorial study, with corn and sorghum and three conditioning temperatures (65, 75 and 85 °C) in a randomized complete design, with 36 lambs (120 ± 10.2 d and 24.9 ± 3.3 kg) grouped by weight and randomly allocated. The resulting six PTMRs were referred to as 65-S, 75-S and 85-S for sorghum-based diets, and 65-C, 75-C and 85-C for corn-based diets, for low, medium and high pelleting temperatures, respectively. There was no grain type × conditioning temperature (Grain × Temp) interaction on growth performance and apparent nutrient digestibility. Furthermore, grain type did not affect DM intake (DMI), average daily gain (ADG) or feed conversion ratio (FCR) of fattening lambs. Pelleting at 75 °C improved ADG (P < 0.03) and FCR (P < 0.02) of fattening lambs compared to other temperatures. There was a Grain × Temp interaction (P < 0.01) on ruminal pH (lowest in lambs fed 75-S). There tended (P = 0.07) to be a Grain × Temp interaction for total volatile fatty acid (VFA), and there were Grain × Temp interactions for molar proportions of acetate (P < 0.04), butyrate (P < 0.03) and branch-chained VFA (P < 0.01). Lambs fed sorghum-based PTMR had greater molar proportion of propionate (P < 0.03) and lower acetate to propionate ratio (A:P, P < 0.04). Lambs fed sorghum-based PTMR had higher plasma concentrations of urea nitrogen (N) (P < 0.03), glucose (P < 0.01) and alkaline phosphatase (P < 0.05), whereas other blood metabolites were not affected by treatments. There were Grain × Temp (P < 0.03) interactions for color coordinates of longissimus and mid-gluteal muscle. Lambs fed sorghum-based PTMR had lower (P < 0.01) dressing percentage and meat quality than those fed corn-based PTMR. We concluded that sorghum can replace corn in lamb diets without compromising growth performance and feed efficiency; furthermore, feeding sorghum vs corn improved rumen fermentation, with reduced A:P ratio and enhanced N and glucose utilization. Finally, pelleting at 75 °C increased feeding value of either sorghum- or corn-based PTMR for fattening lambs.  相似文献   

12.
The aim of the present experiment was to test the hypothesis that oral manipulation of feed is a behavioural need in cattle, irrespective of actual rumen load. Twelve rumen fistulated cows were used and subjected to four different treatments: low rumen content+long duration of eating (A), high rumen content+short duration of eating (B), high rumen content+long duration of eating (=positive control) (C) and low rumen content+short duration of eating (=negative control) (D). To obtain treatment A and B, rumen content was transferred by hand from cow A to B through the rumen fistulaes. Each treatment lasted for 3 days with 2 weeks of recovery between each new treatment. The experiment was repeated twice during two consecutive years. All cows were fed the same mixture of silage, concentrate and hay. The cows were videotaped under normal conditions (24h), and on the third day of the experiment. From these videotapes, the behaviours (frequency and duration per 24h) have been analysed.Time spent eating differed between the four treatments (P<0.001), with shortest eating-times in B and D. The cows with low rumen content (A and D) spent shorter time ruminating (P<0.001) than the cows with filled rumen (B and C). The B and D cows (short duration of eating) spent longer time (P<0.001) with behaviours related to feed-searching than the cows with long duration of eating (A and C). The C cows had fewer (P<0.001) bouts of behaviours related to feed-searching than the A, B and D cows. Time spent with stereotypies (tongue-rolling) was longer (P<0.01) in D than in the other treatments. There was a difference (P<0.001) between treatments in eating bouts. The A cows had more (P<0.05) eating bouts than the cows in B, C and D. The cows with low rumen content (A and D) had fewer ruminating bouts (P<0.001) than the cows with filled rumens (B and C). The number of bouts with stereotypies differed (P<0.01), the cows in D having the highest figures compared with all the other treatments.In conclusion, our results support the hypothesis that oral manipulation of feed is a behavioural need in cattle irrespective of rumen load. A low duration of feeding behaviours combined with a low rumen load, which is a common practice in certain categories of growing cattle or dry dairy cows, seriously impairs the welfare in cattle.  相似文献   

13.
The study evaluated the long-term influence of feeding ground barley treated with lactic acid (LA) alone or with LA and heat on performance, energy and protein balance in dairy cows. Thirty cows were fed three diets differing in the treatment of barley grain, either unprocessed ground barley (Control), ground barley steeped in 1% LA at room temperature (LA-treated barley) or ground barley steeped in 1% LA with an additional heating at 55°C (LAH-treated barley). Cows were studied from week 3 to 17 post-partum. Dry matter intake (DMI), milk yield and composition and body weight (BW) were measured daily. Estimated energy and protein balances were calculated and blood samples were collected three times during the experiment and analysed for common metabolites of energy and lipid metabolism. Digestibility of different treated barley and other dietary ingredients was investigated in vivo using four wethers. The treatment of barley with LA and LAH increased the digestibility of organic matter (OM) by approximately 5% and the content of metabolisable energy by 0.5–0.6 MJ/kg DM. Data showed no effect of feeding diets containing LA- or LAH-treated barley at 39% of DM on overall DMI, BW, BW change, milk production and composition and on the blood variables studied. Diet influenced the estimated balances of net energy of lactation (p < 0.01) and the content of utilisable protein at the duodenum (p = 0.07) with cows fed the diet with LA-treated barley showing improved balances. In conclusion, feeding diets containing LA- or LAH-treated barley had no influence on performance, milk composition and blood metabolites, but LA treatment without heat seems to improve the energy balance of cows.  相似文献   

14.
The Kempen system is a dairy feeding system in which diet is provided in the form of a compound feed (CF) and hay offered ad libitum. Ad libitum access to CF and hay allows cows in this system to achieve a high DM intake (DMI). Out of physiological concerns, the voluntary hay intake could be increased and the consumption pattern of CF could be manipulated to maintain proper rumen functioning and health. This study investigated the effects of an artificial hay aroma and CF formulation on feed intake pattern, rumen function and milk production in mid- to late-lactating dairy cows. Twenty Holstein–Friesian cows were assigned to four treatments in a 4 × 4 Latin square design. Diet consisted of CF and grass hay (GH), fed separately, and both offered ad libitum, although CF supply was restricted in maximum meal size and speed of supply by an electronic system. Treatments were the combination of two CF formulations – high in starch (CHS) and fibre (CHF); and two GH – untreated (UGH) and the same hay treated with an artificial aroma (TGH). Meal criteria were determined using three-population Gaussian–Gaussian–Weibull density functions. No GH × CF interaction effects on feed intake pattern characteristics were found. Total DMI and CF intake, but not GH intake, were greater (P < 0.01) in TGH treatment, and feed intake was not affected by type of CF. Total visits to feeders per day, visits to the GH feeder, visits to the CF feeder and CF eating time (all P < 0.01) were significantly greater in cows fed with TGH. Meal frequency, meal size and meal duration were unaffected by treatments. Cows fed CHF had a greater milk fat (P = 0.02), milk urea content (P < 0.01) and a greater milk fat yield (P < 0.01). Cows fed TGH had a greater milk lactose content and lactose yield (P < 0.05), and milk urea content (P < 0.01). Cows fed TGH had smaller molar proportions of acetic acid and greater molar proportions of propionic acid compared with UGH. In conclusion, treatment of GH with an artificial aroma increased CF intake and total DMI, but did not affect hay intake. Additionally, GH treatment increased the frequency of visits to both feeders, and affected rumen volatile fatty acid profile. Type of CF did not affect meal patterns, ruminal pH, nor fermentation profiles.  相似文献   

15.
The effects of varying the grain (G) to straw (S) ratio (G:S) of whole-crop wheat and barley silages on intake and digestibility and whole-crop barley silage on rumen fermentation characteristics were examined in two parallel studies. For the intake and digestibility study, eight Aberdeen Angus cross-bred steers (mean bodyweight 407 kg (S.D. 24.2)) were used in two (barley and wheat) 4 × 4 Latin Square designed experiments. The dietary treatments were four G:S ratios: 0:100, 30:70, 60:40 and 90:10. Intake of grain linearly increased (P<0.001) while that of straw decreased (P<0.001) as the ratio of G:S increased for both cereals. No effect (P>0.05) was observed in total dry matter (DM) intake (DMI) or in DMI per kg liveweight. There was a positive linear (P<0.001) effect on the digestibility of the DM and organic matter (OM) and a negative linear effect on neutral detergent fibre (aNDFom) digestibility (P<0.01) as the G:S ratio increased for both cereals. Both a positive linear (P<0.05) and quadratic (P<0.01) effect were observed for the G:S ratio on nitrogen (N) digestibility of barley and a corresponding positive linear increase (P<0.01) for wheat. A negative linear effect was found for digestibility of starch (P<0.01) and a positive linear effect for faecal grain content (P<0.01) with increasing G:S ratio. Four Holstein–Friesian steers (mean bodyweight 659 kg (S.D. 56.9)) fitted with rumen cannulae were used in the rumen study. A negative linear effect of G:S ratio was found on rumen pH (P<0.001) while a positive linear effect was found on rumen ammonia (P<0.001) and total volatile fatty acid (VFA) concentration (P<0.01) with increasing G:S ratio. A negative linear effect (P<0.01) was found on the molar proportion of acetic acid. However, this decrease was offset by linear increases in the molar proportions of iso- and n-butyric acid, iso- (P<0.01) and n- (P<0.05) valeric acid, and to a lesser extent in propionic acid (P<0.01). No effect of treatment was found on rumen pool sizes of DM or its constituents. A positive linear effect (P<0.01) was found on the effective degradability (ED) of the DM, OM, N and starch while it was found to be negative in aNDFom (P<0.05). No effect (P>0.05) was found on the fractional clearance rates of DM, OM, aNDFom or starch or on liquid passage rate. It is concluded that increasing the G:S ratio in whole-crop wheat or barley silage linearly increased the intake of digestible nutrients for both wheat and barley and increasing the G:S ratio for whole-crop barley increased the concentration of fermentation products (total VFA, ammonia and the molar proportions of the VFAs, except acetic acid) in the rumen.  相似文献   

16.
Twelve multiparous Holstein cows at 72 ± 20 days in milk were used in a switch-back design with 14-d periods to determine the effect of replacing barley grain into a dairy total mixed ration with micronized or raw flaxseed on nutrient digestibility, milk yield, milk composition. Total mixed diets were (DM basis) 50% barley silage, 50% concentrate mix mainly rolled barley grain and canola meal. Diets were supplemented with 1 kg raw (RF) or micronized (MF) flaxseed to substitute 1 kg of rolled barley grain (C). Neutral detergent fibre, ADF and CP digestibility of the diets were not significantly affected by supplementation; however, calcium digestibility was reduced by 62% and 46% when raw and micronized flax were fed, respectively. Milk yield (38.3, 39.6, and 38.4 kg/d for diets C, RF and MF, respectively) was similar for all diets. Milk fat (3.50, 3.48, and 3.52%) and protein (3.31, 3.34, and 3.31%) for diets C, RF and MF, respectively, were not affected by treatment diets. Concentrations of c9, t11 conjugated linoleic acid (CLA; 0.51, 0.72 and 0.76 g/100 g fatty acids) in milk fat increased (P < 0.05) similarly among the two flaxseed supplemented diets. The RF and MF diets significantly increased the C18:1, C18:1 trans-11, C18:2 cis-9, cis-12 and C18:3 in milk fat however, C12:0, C14:0 and C16:0 were significantly reduced compared with control. Replacing barley grain with flaxseed in the diet of lactating cows increased the beneficial fatty acids in milk without depressing nutrient digestibility. Micronization of flaxseed did not reveal any advantage over raw flaxseed.  相似文献   

17.
In the dairy industry, excess dietary CP is consistently correlated with decreased conception rates. However, the source from which excess CP is derived and how it affects reproductive function in beef cattle is largely undefined. The objective of this experiment was to determine the effects of feeding excess metabolizable protein (MP) from feedstuffs differing in rumen degradability on ovulatory follicular dynamics, subsequent corpus luteum (CL) development, steroid hormone production and circulating amino acids (AA) in beef cows. Non-pregnant, non-lactating mature beef cows (n=18) were assigned to 1 of 2 isonitrogenous diets (150% of MP requirements) designed to maintain similar BW and body condition score (BCS) between treatments. Diets consisted of ad libitum corn stalks supplemented with corn gluten meal (moderate rumen undegradable protein (RUP); CGM) or soybean meal (low RUP; SBM). After a 20-day supplement adaptation period, cows were synchronized for ovulation. After 10 days of synchronization, gonadotropin releasing hormone (GnRH) was administered to reset ovarian follicular growth. Starting at GnRH administration and daily thereafter until spontaneous ovulation, transrectal ultrasonography was used to diagram ovarian follicular growth, and blood samples were collected for hormone, metabolite and AA analyses. After 7 days of visual detection of estrus, CL size was determined via ultrasound. Data were analyzed using the MIXED procedures of SAS. As designed, cow BW and BCS were not different (P⩾0.33). Ovulatory follicular wavelength, antral follicle count, ovulatory follicle size at dominance and duration of dominance were not different (P>0.13) between treatments. Cows supplemented with CGM had greater post-dominance ovulatory follicle growth, larger dominant follicles at spontaneous luteolysis, shorter proestrus, and larger ovulatory follicles (P⩽0.03) than SBM cows. No differences (P⩾0.44) in peak estradiol, ratio of estradiol to ovulatory follicle volume, or plasma urea nitrogen were observed. While CL volume and the ratio of progesterone to CL volume were not affected by treatment (P⩾0.24), CGM treated cows tended to have decreased (P=0.07) circulating progesterone 7 days post-estrus compared with SBM cows. Although total circulating plasma AA concentration did not differ (P=0.70) between treatments, CGM cows had greater phenylalanine (P=0.03) and tended to have greater leucine concentrations (P=0.07) than SBM cows. In summary, these data illustrate that excess MP when supplemented to cows consuming a low quality forage may differentially impact ovarian function depending on ruminal degradability of the protein source.  相似文献   

18.
Fine grinding of barley grain has traditionally been considered to be a potential risk to rumen function, feed intake and milk yield. These concerns are thought to be reduced by steam-rolling or coarse dry rolling. We hypothesized that finely ground barley grain is as effective in stimulating feed intake and milk production as are dry- and steam-rolled barley grain, and so the objective was to determine effects of feeding either (1) finely ground, (2) steam-rolled, (3) finely dry-rolled, or (4) coarsely dry-rolled barley grain on rumen fermentation, digestibility and milk yield and composition. Eight multiparous midlactation Holstein cows were used in a replicated 4×4 Latin square design experiment with four periods of 21 d. Diets contained 256 g barley grain/kg on a dry matter (DM) basis. Processing method did not affect milk yield and composition, DM intake, rumen pH and volatile fatty acids, fecal and urine pH, and apparent total tract nutrient digestibility. Results suggest that finely ground barley grain is no different than dry-rolled and steam-rolled barley grains in stimulating feed intake and productivity of midlactation cows, when 256 g of dietary DM/kg is barley grain.  相似文献   

19.
It was hypothesized that differences in starch degradability account for observed differences in rumen vaccenic acid (t11-18:1) and milk rumenic acid (RA) concentrations. To test this hypothesis, starch degradability was varied through grain source and by processing. Eight Holstein cows in mid-lactation were assigned to two 4 × 4 Latin squares with four 21-day periods and four diets: dry rolled barley, ground barley, dry rolled corn and ground corn. Diets contained similar starch content and were supplemented with whole sunflower seed to provide similar total polyunsaturated fatty acid (PUFA) (18:2n-6 + 18:3n-3) contents. Forage/concentrate ratios of all diets were 42 : 58. Rumen, plasma and milk samples were collected in the third week of each period. In situ degradation rates (%/h) for rolled corn, ground corn, rolled barley and ground barley were 5.4, 8.9, 17.0 and 19.4, respectively, for dry matter (DM) and 6.3, 10.8, 25.3 and 43.8, respectively, for starch. DM intakes were greater for corn-based diets (CBD) than for barley-based diets (BBD) with no difference between rolled and ground diets. Daily minimum rumen pH was less (5.2 v. 5.5) and pH duration <5.8 (h/d) was greater (7.4 v. 4.3) for BBD than for CBD. Milk fat content and yield were less for BBD than for CBD with greater values observed for rolling compared with grinding. Variability in milk fat yield was strongly related (R2 = 0.55; P < 0.01) to total starch intake (45%) and milk c9t11-CLA (10%) and none of the t-18:1 isomers or CLA isomers that are typically associated with milk fat depression entered the model. The concentrations (%) of t10-18:1 and t11-18:1 were greater for BBD than for CBD in rumen contents (t10-18:1, 3.5 v. 1.3; t11-18:1, 3.2 v. 1.9), plasma (t10-18:1, 1.2 v. 0.2; t11-18:1, 0.97 v. 0.58) and milk (t10-18:1, 3.8 v. 1.0; t11-18:1, 2.6 v. 1.7) despite greater total PUFA intakes for CBD. Milk RA concentration was greater for BBD than for CBD (1.46 v. 0.89) but was not influenced by the method of grain processing. This study clearly demonstrated that the milk content and profile of t-18:1 and CLA isomers were more strongly influenced by the source of grain starch (barley > corn) than by the method of grain processing indicating that factors inherent in the source of starch were responsible for the observed differences and these factors could not be modified by the processing methods used in this study.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号