首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The emergence and rapid spread of novel DS-1-like G1P[8] human rotaviruses in Japan were recently reported. More recently, such intergenogroup reassortant strains were identified in Thailand, implying the ongoing spread of unusual rotavirus strains in Asia. During rotavirus surveillance in Thailand, three DS-1-like intergenogroup reassortant strains having G3P[8] (RVA/Human-wt/THA/SKT-281/2013/G3P[8] and RVA/Human-wt/THA/SKT-289/2013/G3P[8]) and G2P[8] (RVA/Human-wt/THA/LS-04/2013/G2P[8]) genotypes were identified in fecal samples from hospitalized children with acute gastroenteritis. In this study, we sequenced and characterized the complete genomes of strains SKT-281, SKT-289, and LS-04. On whole genomic analysis, all three strains exhibited unique genotype constellations including both genogroup 1 and 2 genes: G3-P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2 for strains SKT-281 and SKT-289, and G2-P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2 for strain LS-04. Except for the G genotype, the unique genotype constellation of the three strains (P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2) is commonly shared with DS-1-like G1P[8] strains. On phylogenetic analysis, nine of the 11 genes of strains SKT-281 and SKT-289 (VP4, VP6, VP1-3, NSP1-3, and NSP5) appeared to have originated from DS-1-like G1P[8] strains, while the remaining VP7 and NSP4 genes appeared to be of equine and bovine origin, respectively. Thus, strains SKT-281 and SKT-289 appeared to be reassortant strains as to DS-1-like G1P[8], animal-derived human, and/or animal rotaviruses. On the other hand, seven of the 11 genes of strain LS-04 (VP7, VP6, VP1, VP3, and NSP3-5) appeared to have originated from locally circulating DS-1-like G2P[4] human rotaviruses, while three genes (VP4, VP2, and NSP1) were assumed to be derived from DS-1-like G1P[8] strains. Notably, the remaining NSP2 gene of strain LS-04 appeared to be of bovine origin. Thus, strain LS-04 was assumed to be a multiple reassortment strain as to DS-1-like G1P[8], locally circulating DS-1-like G2P[4], bovine-like human, and/or bovine rotaviruses. Overall, the great genomic diversity among the DS-1-like G1P[8] strains seemed to have been generated through reassortment involving human and animal strains. To our knowledge, this is the first report on whole genome-based characterization of DS-1-like intergenogroup reassortant strains having G3P[8] and G2P[8] genotypes that have emerged in Thailand. Our observations will provide important insights into the evolutionary dynamics of emerging DS-1-like G1P[8] strains and related reassortant ones.  相似文献   

2.
The emergence and rapid spread of unusual DS-1-like intergenogroup reassortant rotavirus strains have been recently reported in Asia, Australia, and Europe. During rotavirus surveillance in Thailand in 2013–2014, novel DS-1-like intergenogroup reassortant strains having G8P[8] genotypes (i.e., strains KKL-17, PCB-79, PCB-84, PCB-85, PCB-103, SKT-107, SWL-12, NP-130, PCB-656, SKT-457, SSKT-269, and SSL-55) were identified in stool samples from hospitalized children with severe diarrhea. In this study, we determined and characterized the complete genomes of these 12 strains (seven strains, KKL-17, PCB-79, PCB-84, PCB-85, PCB-103, SKT-107, and SWL-12, found in 2013 (2013 strains), and five, NP-130, PCB-656, SKT-457, SSKT-269, and SSL-55, in 2014 (2014 strains)). On full genomic analysis, all 12 strains showed a unique genotype constellation comprising a mixture of genogroup 1 and 2 genes: G8-P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2. With the exception of the G genotype, the unique genotype constellation of the 12 strains (P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2) was found to be shared with DS-1-like intergenogroup reassortant strains. On phylogenetic analysis, six of the 11 genes of the 2013 strains (VP4, VP2, VP3, NSP1, NSP3, and NSP5) appeared to have originated from DS-1-like intergenogroup reassortant strains, while the remaining four (VP7, VP6, VP1, and NSP2) and one (NSP4) gene appeared to be of bovine and human origin, respectively. Thus, the 2013 strains appeared to be reassortant strains as to DS-1-like intergenogroup reassortant, bovine, bovine-like human, and/or human rotaviruses. On the other hand, five of the 11 genes of the 2014 strains (VP4, VP2, VP3, NSP1, and NSP3) appeared to have originated from DS-1-like intergenogroup reassortant strains, while three (VP7, VP1, and NSP2) and one (NSP4) were assumed to be of bovine and human origin, respectively. Notably, the remaining two genes, VP6 and NSP5, of the 2014 strains appeared to have originated from locally circulating DS-1-like G2P[4] human rotaviruses. Thus, the 2014 strains were assumed to be multiple reassortment strains as to DS-1-like intergenogroup reassortant, bovine, bovine-like human, human, and/or locally circulating DS-1-like G2P[4] human rotaviruses. Overall, the great genomic diversity among the DS-1-like intergenogroup reassortant strains seemed to have been generated through additional reassortment events involving animal and human strains. Moreover, all the 11 genes of three of the 2014 strains, NP-130, PCB-656, and SSL-55, were very closely related to those of Vietnamese DS-1-like G8P[8] strains that emerged in 2014–2015, indicating the derivation of these DS-1-like G8P[8] strains from a common ancestor. To our knowledge, this is the first report on full genome-based characterization of DS-1-like G8P[8] strains that have emerged in Thailand. Our observations will add to our growing understanding of the evolutionary patterns of emerging DS-1-like intergenogroup reassortant strains.  相似文献   

3.
A rare human rotavirus, G3P[9] strain RVA/Human-tc/KOR/CAU12-2-51/2013/G3P[9], was isolated from the stool of a 9-year-old female hospitalized with acute watery diarrhea in August 2012 in South Korea using a cell culture system, and its genome was analyzed. The complete genomic constellation of the CAU12-2-51 strain revealed a novel genotype constellation for human rotavirus, G3-P[9]-I2-R2-C2-M2-A3-N2-T3-E3-H3. Phylogenetic analysis revealed that the CAU12-2-51 strain originated from feline- and bovine-like reassortment strains. The genes encoding VP4, VP7, NSP1, NSP3, NSP4, and NSP5 were related to human/feline-like and feline rotavirus strains, whereas the remaining five genes encoding VP1, VP2, VP3, VP6, and NSP2 were related to the human/bovine-like and bovine rotavirus strains. This novel strain was identified for the first time, providing evidence of feline/bovine-to-human transmission of rotavirus. The data presented herein provide information regarding rotavirus diversity and evolution.  相似文献   

4.
The Belgian rotavirus strain B4106, isolated from a child with gastroenteritis, was previously found to have VP7 (G3), VP4 (P[14]), and NSP4 (A genotype) genes closely related to those of lapine rotaviruses, suggesting a possible lapine origin or natural reassortment of strain B4106. To investigate the origin of this unusual strain, the gene sequences encoding VP1, VP2, VP3, VP6, NSP1, NSP2, NSP3, and NSP5/6 were also determined. To allow comparison to a lapine strain, the 11 double-stranded RNA segments of a European G3P[14] rabbit rotavirus strain 30/96 were also determined. The complete genome similarity between strains B4106 and 30/96 was 93.4% at the nucleotide level and 96.9% at the amino acid level. All 11 genome segments of strain B4106 were closely related to those of lapine rotaviruses and clustered with the lapine strains in phylogenetic analyses. In addition, sequence analyses of the NSP5 gene of strain B4106 revealed that the altered electrophoretic mobility of NSP5, resulting in a super-short pattern, was due to a gene rearrangement (head-to-tail partial duplication, combined with two short insertions and a deletion). Altogether, these findings confirm that a rotavirus strain with an entirely lapine genome complement was able to infect and cause severe disease in a human child.  相似文献   

5.
6.
G12 rotaviruses are emerging rotavirus strains causing severe diarrhea in infants and young children worldwide. However, the whole genomes of only a few G12 strains have been fully sequenced and analyzed. In this study, we sequenced and characterized the complete genomes of six G12 strains (RVA/Human-tc/MMR/A14/2011/G12P[8], RVA/Human-tc/MMR/A23/2011/G12P[6], RVA/Human-tc/MMR/A25/2011/G12P[8], RVA/Human-tc/MMR/P02/2011/G12P[8], RVA/Human-tc/MMR/P39/2011/G12P[8], and RVA/Human-tc/MMR/P43/2011/G12P[8]) detected in six stool samples from children with acute gastroenteritis in Myanmar. On whole genomic analysis, all six Myanmarese G12 strains were found to have a Wa-like genetic backbone: G12-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1 for strains A14, A25, P02, P39, and P43, and G12-P[6]-I1-R1-C1-M1-A1-N1-T1-E1-H1 for strain A23. Phylogenetic analysis showed that most genes of the six strains examined in this study were genetically related to globally circulating human G1, G3, G9, and G12 strains. Of note is that the NSP4 gene of strain A23 exhibited the closest relationship with the cognate genes of human-like bovine strains as well as human strains, suggesting the occurrence of reassortment between human and bovine strains. Furthermore, strains A14, A25, P02, P39, and P43 were very closely related to one another in all the 11 gene segments, indicating derivation of the five strains from a common origin. On the other hand, strain A23 consistently formed distinct clusters as to all the 11 gene segments, indicating a distinct origin of strain A23 from that of strains A14, A25, P02, P39, and P43. To our knowledge, this is the first report on whole genome-based characterization of G12 strains that have emerged in Myanmar. Our observations will provide important insights into the evolutionary dynamics of spreading G12 rotaviruses in Asia.  相似文献   

7.
最近在亚洲首次发现并报道了感染人的G5型人A组轮状病毒LL36755株,为进一步探讨其进化来源,克隆了G5型人A组轮状病毒LL36755株的VP4、VP6、NSP4编码基因,并分析其基因序列的分子特征。结果发现卢龙株LL36755为罕见的G5P[6]型,其VP6的亚群为SGⅡ型,NSP4的基因型为B型。系统进化树分析表明,卢龙株LL36755的VP7、VP4编码基因与猪来源的毒株关系密切,而VP6、NSP4编码基因与人来源的毒株紧密相联系。可以推断新的人腹泻A组轮状病毒LL36755株是猪的VP7,VP4编码基因与人的VP6,NSP4编码基因的自然重组;而且该毒株不是G5的原型,很可能是人类轮状病毒与猪轮状病毒毒株的自然重组后逐步进化而来。  相似文献   

8.
A rare human G10P[8] rotavirus with a reassortment between bovine and human viruses was detected from a patient with acute gastroenteritis in Vietnam. Genetic analysis using complete coding sequences of all segments showed a genomic constellation of this virus of G10-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1. Its VP7 region was genetically related to that of a bovine rotavirus derived from Australia (strain VICG10.01), whereas all other genes were identical to those of a human rotavirus derived from Australia (strain Victoria/CK00047). These results indicate a possibility that the reassortment of the rotavirus was caused by immune escape in Australia and the rotavirus was carried to Vietnam. Additionally, this finding will help further understanding the evolution of rotaviruses circulating in Vietnam.  相似文献   

9.
The emergence and rapid spread of unusual DS-1-like G1P[8] rotaviruses in Japan have been recently reported. During rotavirus surveillance in Thailand, three DS-1-like G1P[8] strains (RVA/Human-wt/THA/PCB-180/2013/G1P[8], RVA/Human-wt/THA/SKT-109/2013/G1P[8], and RVA/Human-wt/THA/SSKT-41/2013/G1P[8]) were identified in stool specimens from hospitalized children with severe diarrhea. In this study, we sequenced and characterized the complete genomes of strains PCB-180, SKT-109, and SSKT-41. On whole genomic analysis, all three strains exhibited a unique genotype constellation including both genogroup 1 and 2 genes: G1-P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2. This novel genotype constellation is shared with Japanese DS-1-like G1P[8] strains. Phylogenetic analysis revealed that the G/P genes of strains PCB-180, SKT-109, and SSKT-41 appeared to have originated from human Wa-like G1P[8] strains. On the other hand, the non-G/P genes of the three strains were assumed to have originated from human DS-1-like strains. Thus, strains PCB-180, SKT-109, and SSKT-41 appeared to be derived through reassortment event(s) between Wa-like G1P[8] and DS-1-like human rotaviruses. Furthermore, strains PCB-180, SKT-109, and SSKT-41 were found to have the 11-segment genome almost indistinguishable from one another in their nucleotide sequences and phylogenetic lineages, indicating the derivation of the three strains from a common origin. Moreover, all the 11 genes of the three strains were closely related to those of Japanese DS-1-like G1P[8] strains. Therefore, DS-1-like G1P[8] strains that have emerged in Thailand and Japan were assumed to have originated from a recent common ancestor. To our knowledge, this is the first report on whole genome-based characterization of DS-1-like G1P[8] strains that have emerged in an area other than Japan. Our observations will provide important insights into the evolutionary dynamics of emerging DS-1-like G1P[8] rotaviruses.  相似文献   

10.
Group A rotavirus classification is currently based on the molecular properties of the two outer layer proteins, VP7 and VP4, and the middle layer protein, VP6. As reassortment of all the 11 rotavirus gene segments plays a key role in generating rotavirus diversity in nature, a classification system that is based on all the rotavirus gene segments is desirable for determining which genes influence rotavirus host range restriction, replication, and virulence, as well as for studying rotavirus epidemiology and evolution. Toward establishing such a classification system, gene sequences encoding VP1 to VP3, VP6, and NSP1 to NSP5 were determined for human and animal rotavirus strains belonging to different G and P genotypes in addition to those available in databases, and they were used to define phylogenetic relationships among all rotavirus genes. Based on these phylogenetic analyses, appropriate identity cutoff values were determined for each gene. For the VP4 gene, a nucleotide identity cutoff value of 80% completely correlated with the 27 established P genotypes. For the VP7 gene, a nucleotide identity cutoff value of 80% largely coincided with the established G genotypes but identified four additional distinct genotypes comprised of murine or avian rotavirus strains. Phylogenetic analyses of the VP1 to VP3, VP6, and NSP1 to NSP5 genes showed the existence of 4, 5, 6, 11, 14, 5, 7, 11, and 6 genotypes, respectively, based on nucleotide identity cutoff values of 83%, 84%, 81%, 85%, 79%, 85%, 85%, 85%, and 91%, respectively. In accordance with these data, a revised nomenclature of rotavirus strains is proposed. The novel classification system allows the identification of (i) distinct genotypes, which probably followed separate evolutionary paths; (ii) interspecies transmissions and a plethora of reassortment events; and (iii) certain gene constellations that revealed (a) a common origin between human Wa-like rotavirus strains and porcine rotavirus strains and (b) a common origin between human DS-1-like rotavirus strains and bovine rotaviruses. These close evolutionary links between human and animal rotaviruses emphasize the need for close simultaneous monitoring of rotaviruses in animals and humans.  相似文献   

11.
12.
13.
Group A rotavirus (RVA) rarely causes severe complications such as encephalitis/encephalopathy. However, the pathophysiology of this specific complication remains unclear. Next-generation sequence analysis was used to compare the entire genome sequences of RVAs detected in patients with encephalitis/encephalopathy and gastroenteritis. This study enrolled eight patients with RVA encephalitis/encephalopathy and 10 with RVA gastroenteritis who were treated between February 2013 and July 2014. Viral RNAs were extracted from patients' stool, and whole-genome sequencing analysis was carried out to identify the specific gene mutations in RVA obtained from patients with severe neurological complications. Among the eight encephalitis/encephalopathy cases, six strains were DS-1-like G1P[8] and the remaining two were Wa-like G1P[8] (G1-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1). Meanwhile, eight of the 10 viruses detected in rotavirus gastroenteritis patients were DS-1-like G1P[8], and the remaining two were Wa-like G1P[8]. These strains were further characterized by conducting phylogenetic analysis. No specific clustering was demonstrated in RVAs detected from encephalitis/encephalopathy patients. Although the DS-1-like G1P[8] strain was predominant in both groups, no specific molecular characteristics were detected in RVAs from patients with severe central nervous system complications.  相似文献   

14.
Sequence analyses of the VP4 and NSP4 genes were performed on twenty human isolates of serotype G3 rotavirus obtained from China and Japan. One isolate from China, CHW17, possessed P[4] genotype VP4 and KUN group NSP4 genes which are associated with G2. One isolate (02/92) from Japan, which was shown to have a wider spacing between RNA segments 10 and 11 by RNA polyacrylamide gel electrophoretic analysis like AU-1, possessed P[9] genotype VP4 and AU-1 group NSP4 genes. The other isolates had P[8] genotype VP4 and Wa group NSP4 genes. While the nucleotide sequence conservation among the G3 VP7 genes was more than 79% (Wen et al, Arch. Virol., 1997, 142: 1481-1489), the conservation of VP4 and NSP4 genes in the same genotypes or groups was more than 85%.  相似文献   

15.
16.
我国1998~1999年流行的婴幼儿腹泻轮状病毒的分型研究   总被引:40,自引:1,他引:39  
轮状病毒是世界范围内引起婴幼儿腹泻的主要病原。根据病毒外壳蛋白VP4和VP7抗原性的不同可区分为不同型:P(VP4,protease sensitive)型和G(VP7,glycoprotein)型。1998-1999年在中国8个城市(长春、秦皇岛、北京、杭州、福州、广州、成都、昆明)采集了急性腹泻患儿的1093份非细菌性腹泻粪便标本,先进行A组轮状病毒(HRV)的筛选,其中阳性标本433份(39.6%),电泳型长型占优势(96%)。对HRV标本,再利用血清型特异的MAbELISA和/或RT-PCR进行G分型。结果表明,在1998-1999年,在上述8城市非细菌性腹泻行季节,以HRV G1型为主要流行株,占阳性的83.4%,其次为G3(12.0%)、G4(3.5%)和G2(3.2%)。此外,有3份(0.7%)HRV标本未能分型,12(2.8%)份标本为混合感染,还结合1982-1996年全国12个地区1382份HRV标本的分型资料,分析了我国HVR G血清型的流行规律。实验中又抽样选取了124份GHRV标本,用RT-PCR进行P分型,其中P[8]型76份(61.3%),P[4]型14份(11.3%),P[6]型12份(9.7%),P[9]型8份(6.4%)。另外15份(12.1%)未能分出P型,有待进一步检定,实验中HRV分离株除了觉见的P[8]G1(51.4%)、P[4]G2(4.6%)毒株外,还检测到P[8]G3(11.0%)、P[8]G4(6.4%) 和其它较少见的病毒型。以上结果为我国轮状病毒疫苗的应用和开发提供了较系统、清晰的流行病学背景资料。  相似文献   

17.
Group A rotaviruses (RVs) are 11-segmented, double-stranded RNA viruses and are primary causes of gastroenteritis in young children. Despite their medical relevance, the genetic diversity of modern human RVs is poorly understood, and the impact of vaccine use on circulating strains remains unknown. In this study, we report the complete genome sequence analysis of 58 RVs isolated from children with severe diarrhea and/or vomiting at Vanderbilt University Medical Center (VUMC) in Nashville, TN, during the years spanning community vaccine implementation (2005 to 2009). The RVs analyzed include 36 G1P[8], 18 G3P[8], and 4 G12P[8] Wa-like genogroup 1 strains with VP6-VP1-VP2-VP3-NSP1-NSP2-NSP3-NSP4-NSP5/6 genotype constellations of I1-R1-C1-M1-A1-N1-T1-E1-H1. By constructing phylogenetic trees, we identified 2 to 5 subgenotype alleles for each gene. The results show evidence of intragenogroup gene reassortment among the cocirculating strains. However, several isolates from different seasons maintained identical allele constellations, consistent with the notion that certain RV clades persisted in the community. By comparing the genes of VUMC RVs to those of other archival and contemporary RV strains for which sequences are available, we defined phylogenetic lineages and verified that the diversity of the strains analyzed in this study reflects that seen in other regions of the world. Importantly, the VP4 and VP7 proteins encoded by VUMC RVs and other contemporary strains show amino acid changes in or near neutralization domains, which might reflect antigenic drift of the virus. Thus, this large-scale, comparative genomic study of modern human RVs provides significant insight into how this pathogen evolves during its spread in the community.  相似文献   

18.
Because imminent introduction into Vietnam of a vaccine against Rotavirus A is anticipated, baseline information on the whole genome of representative strains is needed to understand changes in circulating strains that may occur after vaccine introduction. In this study, the whole genomes of two G2P[4] strains detected in Nha Trang, Vietnam in 2008 were sequenced, this being the last period during which virtually no rotavirus vaccine was used in this country. The two strains were found to be > 99.9% identical in sequence and had a typical DS‐1 like G2‐P[4]‐I2‐R2‐C2‐M2‐A2‐N2‐T2‐E2‐H2 genotype constellation. Analysis of the Vietnamese strains with > 184 G2P[4] strains retrieved from GenBank/EMBL/DDBJ DNA databases placed the Vietnamese strains in one of the lineages commonly found among contemporary strains, with the exception of the NSP2 and NSP4 genes. The NSP2 genes were found to belong to a previously undescribed lineage that diverged from Chinese sheep and goat rotavirus strains, including a Chinese rotavirus vaccine strain LLR with 95% nucleotide identity; the time of their most recent common ancestor was 1975. The NSP4 genes were found to belong, together with Thai and USA strains, to an emergent lineage (VIII), adding further diversity to ever diversifying NSP4 lineages. Thus, there is a need to enhance surveillance of locally‐circulating strains from both children and animals at the whole genome level to address the effect of rotavirus vaccines on changing strain distribution.  相似文献   

19.
The presence of rotavirus strains in sewage samples from Cairo, Egypt (November 1998 to October 1999), and Barcelona, Spain (November 1998 to December 2002), was investigated by using a generic molecular detection method based on amplification of a VP6 gene fragment. Overall, 85.7 and 66.9% of the sewage samples from Cairo and Barcelona, respectively, were positive. Positive samples were characterized further, and VP7 and VP4 genotypes were determined. Although 30% of the positive samples from Cairo were G untypeable, the distribution of G types in the positive samples was 69.6% G1, 13% G3, 8.7% G4, and 8.7% G9. The percentage of untypeable samples was much higher for the Barcelona samples (56.5%), and the distribution in the positive samples was 56.4% G1, 31.5% G3, 6% G9, 4% G2, and 2% G5. When the P types were examined, 26.7% of the positive samples from Cairo were untypeable, and the distribution of types in the positive samples was 53.3% P[8], 30% P[6], and 16.6% P[4]. In Barcelona, 27.2% of the samples were P untypeable, and the frequencies of the types detected were 49.7% P[8], 37.2% P[4], 8.8% P[6], and 4.2% P[9]. The distribution for strains from Cairo was 38.5% P[8]G1, 27% P[6]G1, 11.5% P[4]G1, 11.5% P[8]G3, 7.7% P[6]G4, and 3.8% P[8]G9. Strikingly, equivalent frequencies of common and uncommon strains were observed for Barcelona samples, and the distribution was 38.8% P[8]G1, 30.6% P[4]G1, 11.6% P[8]G3, 6.6% P[4]G3, 5.8% P[6]G1, 1.6% P[6]G3, 1.6% P[9]G1, 0.8% P[4]G2, 0.8% P[6]G9, 0.8% P[8]G9, and 0.8% P[8]G5. Additionally, two P[-]G5 strains were isolated in Barcelona, and the porcine or human origin of these strains was unclear. Rotavirus variability exhibited not only a geographic pattern but also a temporal pattern.  相似文献   

20.
The presence of rotavirus strains in sewage samples from Cairo, Egypt (November 1998 to October 1999), and Barcelona, Spain (November 1998 to December 2002), was investigated by using a generic molecular detection method based on amplification of a VP6 gene fragment. Overall, 85.7 and 66.9% of the sewage samples from Cairo and Barcelona, respectively, were positive. Positive samples were characterized further, and VP7 and VP4 genotypes were determined. Although 30% of the positive samples from Cairo were G untypeable, the distribution of G types in the positive samples was 69.6% G1, 13% G3, 8.7% G4, and 8.7% G9. The percentage of untypeable samples was much higher for the Barcelona samples (56.5%), and the distribution in the positive samples was 56.4% G1, 31.5% G3, 6% G9, 4% G2, and 2% G5. When the P types were examined, 26.7% of the positive samples from Cairo were untypeable, and the distribution of types in the positive samples was 53.3% P[8], 30% P[6], and 16.6% P[4]. In Barcelona, 27.2% of the samples were P untypeable, and the frequencies of the types detected were 49.7% P[8], 37.2% P[4], 8.8% P[6], and 4.2% P[9]. The distribution for strains from Cairo was 38.5% P[8]G1, 27% P[6]G1, 11.5% P[4]G1, 11.5% P[8]G3, 7.7% P[6]G4, and 3.8% P[8]G9. Strikingly, equivalent frequencies of common and uncommon strains were observed for Barcelona samples, and the distribution was 38.8% P[8]G1, 30.6% P[4]G1, 11.6% P[8]G3, 6.6% P[4]G3, 5.8% P[6]G1, 1.6% P[6]G3, 1.6% P[9]G1, 0.8% P[4]G2, 0.8% P[6]G9, 0.8% P[8]G9, and 0.8% P[8]G5. Additionally, two P[−]G5 strains were isolated in Barcelona, and the porcine or human origin of these strains was unclear. Rotavirus variability exhibited not only a geographic pattern but also a temporal pattern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号