首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Estrogen rapidly induces expression of the proto-oncogene c-myc. c-Myc is required for estrogen-stimulated proliferation of breast cancer cells, and deregulated c-Myc expression has been implicated in antiestrogen resistance. In this report, we investigate the mechanism(s) by which c-Myc mediates estrogen-stimulated proliferation and contributes to cell cycle progression in the presence of antiestrogen. The MCF-7 cell line is a model of estrogen-dependent, antiestrogen-sensitive human breast cancer. Using stable MCF-7 derivatives with inducible c-Myc expression, we demonstrated that in antiestrogen-treated cells, the elevated mRNA and protein levels of p21(WAF1/CIP1), a cell cycle inhibitor, decreased upon either c-Myc induction or estrogen treatment. Expression of p21 blocked c-Myc-mediated cell cycle progression in the presence of antiestrogen, suggesting that the decrease in p21 is necessary for this process. Using RNA interference to suppress c-Myc expression, we further established that c-Myc is required for estrogen-mediated decreases in p21(WAF1/CIP1). Finally, we observed that neither c-Myc nor p21(WAF1/CIP1) is regulated by estrogen or antiestrogen in an antiestrogen-resistant MCF-7 derivative. The p21 levels in the antiestrogen-resistant cells increased when c-Myc expression was suppressed, suggesting that loss of p21 regulation was a consequence of constitutive c-Myc expression. Together, these studies implicate p21(WAF1/CIP1) as an important target of c-Myc in breast cancer cells and provide a link between estrogen, c-Myc, and the cell cycle machinery. They further suggest that aberrant c-Myc expression, which is frequently observed in human breast cancers, can contribute to antiestrogen resistance by altering p21(WAF1/CIP1) regulation.  相似文献   

2.
3.
4.
Ichikawa A  Ando J  Suda K 《Human cell》2008,21(2):28-37
Treatment of exponentially growing MCF-7 human breast carcinoma cells with tamoxifen (TAM) inhibits cell growth in a dose-dependent manner. However, the molecular basis for the drug's activity and its relationship to the cell cycle have not yet been clearly established. In this study, we analyzed cell cycle-related proteins used for immunoblotting and flow cytometry in TAM-treated MCF-7 cells. In addition, the ratio of apoptosis in the cell was analyzed using labeling of DNA strand breaks (TdT assay). In flow-cytometric DNA distribution analysis, the S-phase fraction showed a marked decrease and a concomitant increase in G1- and G2-phase cells accompanying the inhibitory effect of TAM; these changes were time- and dose-dependent. Immunoblotting revealed that the levels of p53 and p21(WAF1/CIP1) in TAM-treated cells increased in a time- and dose-dependent manner, whereas those of p27(KIP1) and p16 slightly increased or remained unchanged. Furthermore, cyclin D3 and B showed sharp decreases, in contrast with p53 and p21(WAF1/CIP1) DNA-apoptosis dual analysis using flow cytometry revealed that the TAM-treated samples contained apoptotic cells, the majority of which were arrested in G1 or G2 and showed suppression of Bcl-2 protein. These results suggest that the tumorigenic effect of TAM on MCF-7 cells arises through antitumor effects that are due to the expression of cyclin-dependent kinase inhibitors, especially p21(WAF1/CIP1) and these are regulated by the decrease of wild-type p53. The proposed mechanism is similar to that underlying the cytotoxic effects of other agents and ionizing irradiation that cause DNA damage.  相似文献   

5.
Rat-1 cells are used in many studies on transformation, cell cycle, and apoptosis. Whereas UV treatment of Rat-1 cells results in apoptosis, X-ray treatment does not induce either apoptosis or a cell cycle block. X-ray treatment of Rat-1 cells results in both an increase of p53 protein and expression of the p53-inducible gene MDM2 but not the protein or mRNA of the p53-inducible p21(WAF1/CIP1) gene, which in other cells plays an important role in p53-mediated cell cycle block. The lack of p21(WAF1/CIP1) expression appears to be the result of hypermethylation of the p21(WAF1/CIP1) promoter region, as p21(WAF1/CIP1) protein expression could be induced by growth of Rat-1 cells in the presence of 5-aza-2-deoxycytidine. Furthermore, sequence analysis of bisulfite-treated DNA demonstrated extensive methylation of cytosine residues in CpG dinucleotides in a CpG-rich island in the promoter region of the p21(WAF1/CIP1) gene. Stable X-ray-induced p53-dependent p21(WAF1/CIP1) expression and cell cycle block were restored to a Rat-1 clone after transfection with a P1 artificial chromosome (PAC) DNA clone containing a rat genomic copy of the p21(WAF1/CIP1) gene. The absence of expression of the p21(WAF1/CIP1) gene may contribute to the suitability of Rat-1 cells for transformation, cell cycle, and apoptosis studies.  相似文献   

6.
Basic fibroblast growth factor (bFGF, FGF-2) is progressively lost from mammary epithelial cells as they become malignant. To investigate the effects of restoring the expression of bFGF in breast cancer cells, we constructed MCF-7 cells that permanently overexpress 18-kD cytoplasm-localizing bFGF (MCF-7/ΔAFGF(18) cells) and cells that express both the 18-kD along with the 22- and 24-kD nucleus-localizing bFGF peptides (MCF-7/NCFFGF(18,22,24) cells), using retroviral transduction. These stable cell constructs grew more slowly and had a larger fraction of their populations in the G0/G1 phase of the cell cycle than control cells. All forms of bFGF were eluted from MCF-7/NCFFGF(18,22,24) cell monolayers with 2 M NaCl, in contrast to fibroblasts that were demonstrated to secrete only the 18-kD bFGF isoform. High-affinity binding of 18-kD 125I-bFGF to these cells was significantly decreased, probably because of competitive binding by the autocrine-secreted bFGF. Recombinant 18-kD bFGF that was previously demonstrated in our laboratory to inhibit proliferation, activate MAP kinase, and induce the cyclin-dependent kinase inhibitor p21WAF1/CIP1 in MCF-7 cells, further inhibited MCF-7/ΔAFGF(18) cells but had no effect on MCF-7/NCFFGF(18,22,24) cells. The total cellular content of the high-affinity FGF receptors 1–3 was unchanged, but FGF receptor 4 was decreased in MCF-7/NCFFGF(18,22,24) cells. Both cell types overexpressing bFGF isoforms had elevated levels of the cyclin-dependent kinase inhibitor p27Kip1 but not that of p21WAF1/CIP1. In MCF-7/ΔAFGF(18) cells, FGFR1 and MAP kinase were constitutively phosphorylated. Exogenous recombinant 18-kD bFGF did not accentuate these effects but did induce an increase in the levels of p21WAF1/CIP1 corresponding to the further inhibition induced by exogenous bFGF in these cells. In MCF-7/NCFFGF(18,22,24) cells, FGFR1 and MAP kinase were not phosphorylated at baseline nor upon stimulation with recombinant bFGF, and exogenous bFGF only had a minimal effect on low steady-state p21WAF1/CIP1 levels. However, stimulation of these cells with phorbol ester or insulin did result in MAP kinase phosphorylation. While growth-inhibited in the G1 phase of the cell cycle, MCF-7/NCFFGF(18,22,24) cells retained active isoforms of cdk2 and the hyperphosphorylated form of Rb. These data suggest that high molecular weight forms of bFGF overexpressed in MCF-7 cells do not activate the receptor-mediated MAP kinase pathway, and do not induce p21WAF1/CIP1 in an autocrine manner, but inhibit proliferation through other, possibly direct nuclear signalling mechanisms. J. Cell. Physiol. 177:411–425, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

7.
8.
The aim of the present work was to study whether melatonin, at physiological concentrations, exerts its antiproliferative effects on MCF-7 human breast cancer cells by inducing the expression of some of the proteins involved in the control of the cell cycle. MCF-7 cells were cultured for 48 h in DMEM media containing either melatonin (1 nM) or the diluent (0.001% ethanol). At this concentration, after 48 hours of incubation, melatonin reduced the number of viable cells in relation to controls. The decreased cell proliferation was coincident with a significant increase in the expression of p53 as well as p21WAF1 proteins. These results demonstrate that melatonin inhibits MCF-7 cell proliferation by inducing an arrest of cell cycle dependent on an increased expression of p21WAF1 protein, which is mediated by the p53 pathway.  相似文献   

9.
Opioid growth factor (OGF) is an endogenous opioid peptide ([Met5]enkephalin) that interacts with the OGF receptor (OGFr) and serves as a tonically active negative growth factor in cell proliferation of normal cells. To clarify the mechanism by which OGF inhibits cell replication in normal cells, we investigated the effect of the OGF–OGFr axis on cell cycle activity in human umbilical vein endothelial cells (HUVECs) and human epidermal keratinocytes (NHEKs). OGF markedly depressed cell proliferation of both cell lines by up to 40% of sterile water controls. Peptide treatment induced cyclin-dependent kinase inhibitor (CKI) p16INK4a protein expression and p21WAF1/CIP1 protein expression in HUVECs and NHEKs, but had no effect on p15, p18, p19, or p27 protein expression in either cell type. Inhibition of either p16INK4a or p21WAF1/CIP1 activation by specific siRNAs blocked OGF inhibitory action. Human dermal fibroblasts and mesenchymal stem cells also showed a similar dependence of OGF action on p16INK4a and p21WAF1/CIP1. Collectively, these results indicate that both p16INK4a and p21WAF1/CIP1 are required for the OGF–OGFr axis to inhibit cell proliferation in normal cells.  相似文献   

10.
11.
张金玉  葛银林  张晓  侯琳  薛美兰 《生物磁学》2009,(15):2834-2837
目的:研究针对VEGF基因的siRNA(small interferenceRNA)对乳腺癌MCF-7细胞细胞周期的影响。方法:依据Promega公司在网上提供的设计软件,设计针对VEGF基因的siRNA,合成DNA模板,体外转录合成siRNA。脂质体转染法将合成的siRNA转染入MCF-7细胞,以未转染细胞以及错义序列siRNAscr转染细胞为对照。用细胞计数法检测siRNA对MCF-7细胞增殖的影响:流式细胞法检测细胞周期变化,RT—PCR法比较转染前后p21、CyclinDl表达水平的变化,Westemblot检测转染前后磷酸化ERK的表达。结果:细胞计数法结果显示,转染24h后siRNA明显抑制MCF-7细胞增殖,转染48h后,抑制效率稳定。siRNA转染后能有效地抑制MCF-7细胞的增殖,阻滞细胞周期于G0/G1期,S期细胞明显减少,G0/G1期细胞比例逐渐增多;p21mRNA表达显著上调,抑制CyclinD1mRNA及磷酸化ERK蛋白的表达。结论:体外转录合成的siRNA可能通过上调细胞周期蚤白激酶抑制剂p21的表达,下调CyclinDl及磷酸化ERK的表达,将细胞周期阻滞于G0/G1期,从而显著抑制MCF-7细胞的增殖。  相似文献   

12.
目的:构建p21WAF1/CIP1基因小干扰RNA(siRNA)的真核表达载体,观察其对p21WAF1/CIP1表达的影响和细胞周期的变化。方法:合成了针对p21WAF1/CIP1基因的siRNA,将其克隆到siRNA表达载体pSliencer2.1-U6neo上,将重组质粒和带FLAG标签的p21WAF1/CIP1共转染293T人胚肾细胞,通过Westernblot检验RNA干扰(RNAi)敲低外源p21WAF1/CIP1的效果;将重组质粒单独转染293T人胚肾细胞,利用p21WAF1/CIP1抗体检测RNAi敲低内源p21WAF1/CIP1的效果;利用流式细胞仪检测敲低后细胞周期的变化。结果:测序证明构建了p21WAF1/CIP1siRNA真核表达载体;Westernblot和流式细胞分析证明,构建的siRNA能有效降低p21WAF1/CIP1基因的表达,并且使G1期细胞数减少14.03%,S期细胞增多13.45%。结论:构建了p21WAF1/CIP1siRNA的真核表达载体,该siRNA能有效抑制p21WAF1/CIP1基因的表达并部分解除了G1期阻滞。  相似文献   

13.
We present evidence that pyrrolidine dithiocarbamate (PDTC) inhibits growth of p53-negative pancreatic adenocarcinoma cell lines via cell cycle arrest in the S-phase, while it has no effect on primary fibroblast proliferation. Growth inhibition of cancer cells is dependent on ROS and ERK1/2 induction as indicated by a significantly reduced PDTC-associated growth inhibition by the free radical scavenger N-acetyl-L-cysteine (NAC) or the MEK/ERK1/2 inhibitor (PD98059). Moreover, ERK1/2 induction is dependent on ROS production as demonstrated by a complete removal of PDTC-mediated ERK1/2 phosphorylation by NAC. p21(WAF1/CIP1) activation has a central role in growth inhibition by PDTC, as revealed by P21(WAF1/CIP1) silencing experiments with antisense oligonucleotide, and occurs via increased mRNA stability largely mediated by ROS/ERK induction. Conversely, PDTC does not affect P21(WAF1/CIP1) gene expression in primary fibroblasts, although it is able to activate p53 and the p53-regulated antioxidant SESN2. These results suggest that the resistance of fibroblasts to the cytotoxic action of PDTC may be related to the up-regulation of p53-dependent antioxidant genes. Finally, in vivo studies on PaCa44 cells subcutaneously xenografted in nude mice show that treatment with 100 or 200 mg/kg PDTC reduces of 30% or 60% the tumour volume, respectively, and does not cause any apparent form of toxicity.  相似文献   

14.
We have studied the ability of F9 teratocarcinoma cells to arrest in G1/S and G2/M checkpoints following gamma-irradiation. Wild-type p53 protein is rapidly accumulated in F9 cells after gamma-irradiation, however this is not followed by G1/S arrest; there is just a reversible delay of the cell cycle in G2/M. In order to elucidate the reasons of the lack of G1/S arrest in F9 cells we investigated the levels of regulatory cell cycle proteins: G1-cyclins, cyclin dependent kinases and kinase inhibitor p21WAF1/CIP1. We have shown that in spite of p53-dependent activation of p21WAF1/CIP1 promoter, p21WAF1/CIP1 protein is not revealed by different polyclonal and monoclonal antibodies, either by immunoblotting or by immunofluorescent staining. However, when cells are treated with specific proteasome inhibitor lactacystin, p21WAF1/CIP1 protein is revealed. We therefore suggest that p21WAF1/CIP1 protein is subjected to proteasome degradation in F9 cells and probably the lack of G1/S arrest after gamma-irradiation is due to this degradation. Thus, it is the combination of functionally active p53 with low level expression of p21WAF1/CIP1 that causes a short delay of the cell cycle progression in G2/M, rather than the G1-arrest after gamma-irradiation of F9 cells.  相似文献   

15.
We investigated the role of 14-3-3sigma protein in insulin-like growth factor-I (IGF-I) receptor signaling. It has been previously shown that 14-3-3sigma negatively regulates cell cycle especially in response to p53-sensitive DNA damage. In this study we demonstrated that 14-3-3sigma is a positive mediator of IGF-I receptor-induced cell proliferation. Treatment with IGF-I increased 14-3-3sigma mRNA and protein levels about 4-fold, in a time-dependent manner in MCF-7 breast cancer cells. Preincubation with the phosphoinositide 3'-kinase inhibitor LY294002 significantly reduced the effects of IGF-I on 14-3-3sigma gene expression in these cells, suggesting that this effect of IGF-I occurs via the phosphoinositide 3'-kinase pathway. 14-3-3sigma is induced by IGF-I in MCF-7 cells, which express wild-type p53, as well as in MCF-7 cells transfected with a small interference RNA targeting duplex that reduced p53 expression levels. These results suggest that IGF-I induces 14-3-3sigma expression in a manner that is independent of p53. Using the small interference RNA strategy, we demonstrated that a 70-75% reduction of 14-3-3sigma mRNA levels resulted in a similar decrease in the effects of IGF-I on cell cycle progression and proliferation in MCF-7 cells. This effect was also associated with a reduction in IGF-I-induced cyclin D1 expression. Taken together, these results suggest that 14-3-3sigma positively mediates IGF-I-induced cell cycle progression.  相似文献   

16.
Overcoming drug-resistance is a big challenge to improve the survival of patients with epithelial ovarian cancer (EOC). In this study, we investigated the effect of chloroquine (CQ) and its combination with cisplatin (CDDP) in drug-resistant EOC cells. We used the three EOC cell lines CDDP-resistant A2780-CP20, RMG-1 cells, and CDDP-sensitive A2780 cells. The CQ-CDDP combination significantly decreased cell proliferation and increased apoptosis in all cell lines. The combination induced expression of γH2AX, a DNA damage marker protein, and induced G2/M cell cycle arrest. Although the CQ-CDDP combination decreased protein expression of ATM and ATR, phosphorylation of ATM was increased and expression of p21WAF1/CIP1 was also increased in CQ-CDDP-treated cells. Knockdown of p21WAF1/CIP1 by shRNA reduced the expression of γH2AX and phosphorylated ATM and inhibited caspase-3 activity but induced ATM protein expression. Knockdown of p21WAF1/CIP1 partly inhibited CQ-CDDP-induced G2/M arrest, demonstrating that knockdown of p21WAF1/CIP1 overcame the cytotoxic effect of the CQ-CDDP combination. Ectopic expression of p21WAF1/CIP1 in CDDP-treated ATG5-shRNA/A2780-CP20 cells increased expression of γH2AX and caspase-3 activity, demonstrating increased DNA damage and cell death. The inhibition of autophagy by ATG5-shRNA demonstrated similar results upon CDDP treatment, except p21WAF1/CIP1 expression. In an in vivo efficacy study, the CQ-CDDP combination significantly decreased tumor weight and increased expression of γH2AX and p21WAF1/CIP1 in A2780-CP20 orthotopic xenografts and a drug-resistant patient-derived xenograft model of EOC compared with controls. These results demonstrated that CQ increases cytotoxicity in combination with CDDP by inducing lethal DNA damage by induction of p21WAF1/CIP1 expression and autophagy inhibition in CDDP-resistant EOC.Subject terms: Cancer therapeutic resistance, Ovarian cancer, Translational research  相似文献   

17.
18.
为了研究过氧化酶体增殖物激活受体γ(PPARγ)表达在β 胡萝卜素影响乳腺癌MCF 7细胞活力中所起的作用,采用MTT法测定细胞活力、Western 印迹检测细胞中PPARγ的蛋白质水平,用RT-PCR从mRNA水平检测细胞内PPARγ、P21WAF1/CIP1、COX-2和P27表达.研究发现,β 胡萝卜素显著抑制人乳腺癌细胞株MCF-7细胞的生长,β-胡萝卜素对细胞生长的抑制作用呈现出时间和计量依赖关系;β-胡萝卜素能够呈现时间效应地从mRNA和蛋白质水平显著上调PPARγ的表达,β-胡萝卜素能够通过PPARγ调节P21WAF1/CIP1和COX-2mRNA水平;PPARγ的抑制剂GW9662和抗氧化剂还原型谷胱甘肽(GSH)都能部分阻止由β-胡萝卜素引起的细胞活力下降.研究结果提示,激活PPARγ途径和调制细胞氧化状态是β 胡萝卜素对乳腺癌细胞MCF-7的生长抑制效应原因之一.  相似文献   

19.
Ribosomal biogenesis is correlated with cell cycle, cell proliferation, cell growth and tumorigenesis. Some oncogenes and tumor suppressors are involved in regulating the formation of mature ribosome and affecting the ribosomal biogenesis. In previous studies, the mitochondrial ribosomal protein L41 was reported to be involved in cell proliferation regulating through p21(WAF1/CIP1) and p53 pathway. In this report, we have identified a mitochondrial ribosomal protein S36 (mMRPS36), which is localized in the mitochondria, and demonstrated that overexpression of mMRPS36 in cells retards the cell proliferation and delays cell cycle progression. In addition, the mMRPS36 overexpression induces p21(WAF1/CIP1) expression, and regulates the expression and phosphorylation of p53. Our result also indicate that overexpression of mMRPS36 affects the mitochondrial function. These results suggest that mMRPS36 plays an important role in mitochondrial ribosomal biogenesis, which may cause nucleolar stress, thereby leading to cell cycle delay.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号