首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
  1. The invasive sawfly Aproceros leucopoda causes severe defoliation of various elm species and thus can be a major pest in forest stands and urban environments.
  2. The overwintering biology of A. leucopoda has not been investigated so far; therefore, the aim of this study was to determine the cold tolerance strategy and cold hardiness of hibernating A. leucopoda eonymphs.
  3. The supercooling points (SCPs) of overwintering individuals varied geographically, monthly and interannually and ranged between ?12.14 °C and ?24.22 °C.
  4. As none of the eonymphs survived once the SCP had been reached, A. leucopoda is classified as a freeze‐avoidant species.
  5. Survival rates of overwintering eonymphs exposed to different sub‐zero temperatures above the SCP (?1.6 °C and ?4.0 °C for 10, 20 and 30 days and ?10.5 °C for 9 days) ranged between 89.2% and 100%, suggesting that A. leucopoda is not a chill‐susceptible species.
  6. Our results suggest that low winter temperatures may not be expected to be an important limiting factor for the overwintering success of A. leucopoda.
  相似文献   

2.
Abstract The effect of seven constant temperatures of 15, 20, 25, 27, 30, 35 and 37°C on developmental time of Neoseiulus barkeri Hughes were determined in laboratory conditions under 65%± 5% RH and a photoperiod of 12 : 12 (L : D) h on nymphal stages of Tetranychus urticae Koch. Total developmental time of females (from egg to adult emergence) at the above‐mentioned temperatures was 26.59, 14.43, 6.32, 5.64, 4.59, 3.98 and 4.67 days, respectively. Developmental rate of the N. barkeri increased as temperature increased from 15 to 35°C, but declined at 37°C. A linear and two nonlinear models were fitted to developmental rate of immature stages of N. barkeri to predict the developmental rate as a function of temperature, as well as to estimate the thermal constant (K) and critical temperatures (i.e., Tmin, Topt and Tmax). The estimated values of the Tmin and K for total developmental time using the linear model were 12.07°C and 86.20 degree‐days (DD), respectively. The Tmin and Tmax estimated by the Sharpe‐Schoolfield‐Ikemoto (SSI) model were 11.90°C and 37.41°C, respectively. The estimated Topt for overall immature stage development of N. barkeri by the Lactin and SSI models were 33.89°C and 24.51°C, respectively. Based on the biological criteria of model evaluation, the linear and SSI models were found to be the best models for describing the developmental rate of overall immature stages of N. barkeri and estimating the temperature thresholds.  相似文献   

3.
4.
Daily minimum temperature (Tmin) has increased faster than daily maximum temperature (Tmax) in many parts of the world, leading to decreases in diurnal temperature range (DTR). Projections suggest that these trends are likely to continue in many regions, particularly in northern latitudes and in arid regions. Despite wide speculation that asymmetric warming has different impacts on plant and ecosystem production than equal‐night‐and‐day warming, there has been little direct comparison of these scenarios. Reduced DTR has also been widely misinterpreted as a result of night‐only warming, when in fact Tmin occurs near dawn, indicating higher morning as well as night temperatures. We report on the first experiment to examine ecosystem‐scale impacts of faster increases in Tmin than in Tmax, using precise temperature controls to create realistic diurnal temperature profiles with gradual day–night temperature transitions and elevated early morning as well as night temperatures. Studying a constructed grassland ecosystem containing species native to Oregon, USA, we found that the ecosystem lost more carbon at elevated than ambient temperatures, but remained unaffected by the 3 °C difference in DTR between symmetric warming (constantly ambient + 3.5 °C) and asymmetric warming (dawn Tmin = ambient + 5 °C, afternoon Tmax = ambient + 2 °C). Reducing DTR had no apparent effect on photosynthesis, probably because temperatures were most different in the morning and late afternoon when light was low. Respiration was also similar in both warming treatments, because respiration temperature sensitivity was not sufficient to respond to the limited temperature differences between asymmetric and symmetric warming. We concluded that changes in daily mean temperatures, rather than changes in Tmin/Tmax, were sufficient for predicting ecosystem carbon fluxes in this reconstructed Mediterranean grassland system.  相似文献   

5.
The effects of temperature on the development and survival of Lycaeides argyrognomon were examined in the laboratory. The eggs, larvae and pupae were reared at temperatures of 15, 17.5, 20, 25, 30 and 33°C under a long‐day photoperiod of 16‐h light and 8‐h darkness. The survival rates of the first–third instars ranged from 40.0 to 82.4%. The mortalities of the fourth instar were lower than those of the first–third instars. The development time of the overall immature stage decreased from 78.33 days at 15°C to 21.07 days at 30°C, and then increased to 24.33 days at 33°C. The common linear model and the Ikemoto–Takai model were used to estimate the thermal constant (K) and the developmental zero (T0). The values of T0 and K for the overall immature stages were 10.50°C and 418.83 degree‐days, and 9.71°C and 451.68 degree‐days by the common model and the Ikemoto–Takai model, respectively. The upper temperature thresholds (Tmax) and the optimal temperatures (Topt) of the egg, the first–third instars and the overall immature stages were estimated by the three nonlinear models. The ranges of Topt estimated were from 30.33°C to 32.46°C in the overall immature stages and the estimates of Tmax of the overall immature stages by the Briere‐1 and the Briere‐2 models were 37.18°C and 33.00°C, respectively. The method to predict the developmental period of L. argyrognomon using the nonlinear models was discussed based on the data of the average temperature per hour.  相似文献   

6.
Terrestrial biogeochemical feedbacks to the climate are strongly modulated by the temperature response of soil microorganisms. Tropical forests, in particular, exert a major influence on global climate because they are the most productive terrestrial ecosystem. We used an elevation gradient across tropical forest in the Andes (a gradient of 20°C mean annual temperature, MAT), to test whether soil bacterial and fungal community growth responses are adapted to long‐term temperature differences. We evaluated the temperature dependency of soil bacterial and fungal growth using the leucine‐ and acetate‐incorporation methods, respectively, and determined indices for the temperature response of growth: Q10 (temperature sensitivity over a given 10oC range) and Tmin (the minimum temperature for growth). For both bacterial and fungal communities, increased MAT (decreased elevation) resulted in increases in Q10 and Tmin of growth. Across a MAT range from 6°C to 26°C, the Q10 and Tmin varied for bacterial growth (Q10–20 = 2.4 to 3.5; Tmin = ?8°C to ?1.5°C) and fungal growth (Q10–20 = 2.6 to 3.6; Tmin = ?6°C to ?1°C). Thus, bacteria and fungi did not differ significantly in their growth temperature responses with changes in MAT. Our findings indicate that across natural temperature gradients, each increase in MAT by 1°C results in increases in Tmin of microbial growth by approximately 0.3°C and Q10–20 by 0.05, consistent with long‐term temperature adaptation of soil microbial communities. A 2°C warming would increase microbial activity across a MAT gradient of 6°C to 26°C by 28% to 15%, respectively, and temperature adaptation of microbial communities would further increase activity by 1.2% to 0.3%. The impact of warming on microbial activity, and the related impact on soil carbon cycling, is thus greater in regions with lower MAT. These results can be used to predict future changes in the temperature response of microbial activity over different levels of warming and over large temperature ranges, extending to tropical regions.  相似文献   

7.
Insect thermal tolerance shows a range of responses to thermal history depending on the duration and severity of exposure. However, few studies have investigated these effects under relatively modest temperature variation or the interactions between short‐ and longer‐term exposures. In the present study, using a full‐factorial design, 1 week‐long acclimation responses of critical thermal minimum (CTmin) and critical thermal maximum (CTmax) to temperatures of 20, 25 and 30 °C are investigated, as well as their interactions with short‐term (2 h) sub‐lethal temperature exposures to these same conditions (20, 25 and 30 °C), in two fruit fly species Ceratitis capitata (Wiedemann) and Ceratitis rosa Karsch from South Africa. Flies generally improve heat tolerance with high temperature acclimation and resist low temperatures better after acclimation to cooler conditions. However, in several cases, significant interaction effects are evident for CTmax and CTmin between short‐ and long‐term temperature treatments. Furthermore, to better comprehend the flies' responses to natural microclimate conditions, the effects of variation in heating and cooling rates on CTmax and CTmin are explored. Slower heating rates result in higher CTmax, whereas slower cooling rates elicit lower CTmin, although more variation is detected in CTmin than in CTmax (approximately 1.2 versus 0.5 °C). Critical thermal limits estimated under conditions that most closely approximate natural diurnal temperature fluctuations (rate: 0.06 °C min?1) indicate a CTmax of approximately 42 °C and a CTmin of approximately 6 °C for these species in the wild, although some variation between these species has been found previously in CTmax. In conclusion, the results suggest critical thermal limits of adult fruit flies are moderated by temperature variation at both short and long time scales and may comprise both reversible and irreversible components.  相似文献   

8.
The relationship between body temperature and the hunting response (intermittent supply of warm blood to cold exposed extremities) was quantified for nine subjects by immersing one hand in 8°C water while their body was either warm, cool or comfortable. Core and skin temperatures were manipulated by exposing the subjects to different ambient temperatures (30, 22, or 15°C), by adjusting their clothing insulation (moderate, light, or none), and by drinking beverages at different temperatures (43, 37 and 0°C). The middle finger temperature (T fi) response was recorded, together with ear canal (T ear), rectal (T re), and mean skin temperature ( sk). The induced mean T ear changes were −0.34 (0.08) and +0.29 (0.03)°C following consumption of the cold and hot beverage, respectively. sk ranged from 26.7 to 34.5°C during the tests. In the warm environment after a hot drink, the initial finger temperature (T fi,base) was 35.3 (0.4)°C, the minimum finger temperature during immersion (T fi,min) was 11.3 (0.5)°C, and 2.6 (0.4) hunting waves occurred in the 30-min immersion period. In the neutral condition (thermoneutral room and beverage) T fi,base was 32.1 (1.0)°C, T fi,min was 9.6 (0.3)°C, and 1.6 (0.2) waves occurred. In the cold environment after a cold drink, these values were 19.3 (0.9)°C, 8.7 (0.2)°C, and 0.8 (0.2) waves, respectively. A colder body induced a decrease in the magnitude and frequency of the hunting response. The total heat transferred from the hand to the water, as estimated by the area under the middle finger temperature curve, was also dependent upon the induced increase or decrease in T ear and sk. We conclude that the characteristics of the hunting temperature response curve of the finger are in part determined by core temperature and sk. Both T fi,min and the maximal finger temperature during immersion were higher when the core temperature was elevated; sk seemed to be an important determinant of the onset time of the cold-induced vasodilation response. Accepted: 29 April 1997  相似文献   

9.

Ambient temperatures are major factors regulating the growth rates, yields, and geographical distribution of crop species. The cultivation of sesame (Sesamum indicum L.) is expanding with the rising demand in regions where it is not traditionally grown, and sub-optimal yields due to extremely low or high temperatures could occur. Currently literature lacks information on the temperature responses of sesame growth. An experiment was conducted to quantify the effects of different temperatures on vegetative growth and reproductive development of sesame, and to estimate its cardinal temperature limits (Topt; Tmin; Tmax). Plants were subjected to six different day/night temperature treatments of 40/32, 36/28, 32/24, 28/20, and 20/12 °C using walk-in growth chambers. Vegetative growth of sesame was sensitive to low temperatures (<?15 °C), but tolerant of high temperatures. The cardinal temperature limits of 15.7 °C (Tmin), 27.3 °C (Topt), and 44.6 °C (Tmax) were observed for rate of biomass accumulation. Sesame reached the flowering stage under moderate to high temperature conditions; however, reproductive yields progressively declined above 25 °C, and no seed yields were obtained beyond 33 °C. The estimated temperature limits could be employed to develop crop models for simulating management and adaptation strategies of sesame under current and future climate scenarios, and adaptation to regions where the crop is not currently grown. Future research should focus on understanding factors controlling the temperature tolerance of reproductive development in sesame, to provide a broader geographical adaptation.

  相似文献   

10.
Endotherms allocate large amounts of energy and water to the regulation of a precise body temperature (Tb), but can potentially reduce thermoregulatory costs by allowing Tb to deviate from normothermic levels. Many data on heterothermy at low air temperatures (Ta) exist for caprimulgids, whereas data on thermoregulation at high Ta are largely absent, despite members of this taxon frequently roosting and nesting in sites exposed to high operative temperatures. We investigated thermoregulation in free‐ranging rufous‐cheeked nightjars Caprimulgus rufigena and freckled nightjars Caprimulgus tristigma in the southern African arid zone. Individuals of both species showed labile Tb fluctuating around a single modal Tb (Tb‐mod). Average Tb‐mod was 39.7°C for rufous‐cheeked nightjars and 39.0°C for freckled nightjars. In both species, diurnal Tb increased with increasing Ta. At Ta ≥ 38°C, rufous‐cheeked nightjar mean Tb increased to 42°C, equivalent to 2.3°C above Tb‐mod. Under similar conditions, freckled nightjar Tb was on average only 1.1°C above Tb‐mod, with a mean Tb of 40.0°C. Freckled nightjars are one of the most heterothermic caprimulgids investigated to date, but our data suggest that during hot conditions this species maintains Tb within a narrow range above Tb‐mod, possibly reflecting an evolutionary tradeoff between decreased thermal sensitivity to lower Tb but increased sensitivity to high Tb. These findings reveal how general thermoregulatory patterns at similar Ta can vary even among closely related species.  相似文献   

11.
Genotypic variation in cold tolerance influences the yield of Miscanthus   总被引:4,自引:0,他引:4  
When grown in Europe, Miscanthus genotypes often produce yields lower than their potential due to late emergence of shoots in the spring or to damage from late frosts when shoots emerge too early. Here, we investigate genotypic variation in the base temperature (Tb) for shoot emergence and in the lethal temperature for shoots (LT50) in four Miscanthus genotypes. In all genotypes, lowering temperature increased the time to shoot emergence, with Tb ranging from 8.6°C in Sac‐5 to 6°C in Sin‐H9. Frost treatments below ?8°C resulted in a marked reduction in growth in all four genotypes. Sin‐H9 was the most frost tolerant with an LT50 of ?9.3°C. There was little variation found in leaf osmotic potential, but leaf moisture content was significantly lower in Sin‐H9 than in the other genotypes. The lower thermal requirement for emergence and lower LT50 seen in Sin‐H9 was incorporated into a model of Miscanthus production. The model showed an extended growing season that was predicted to increase yields by up to 25%.  相似文献   

12.
The effect of temperature on the distributions of ectothermic vertebrates is well documented. Despite the increase of 6°C expected in the next 60 years in South America, numerous vertebrates are still considered as ‘Least Concern’ species by the IUCN due to their large distribution, insufficient widespread threats and insignificant population decline. One example is the lizard Tropidurus torquatus (Squamata: Tropiduridae), commonly found thermoregulating in anthropic environments throughout the Brazilian Cerrado, but restricted to gallery forests in the equator‐ward localities. The urban areas in this warmer region have been colonised by other closely related congeners (e.g. Tropidurus oreadicus). This study aimed to understand this divergence of habitat selection by these tropirudids that may explain some of the species responses to past and future climate warming. We collected body temperatures (Tb), micro‐environmental temperatures (Ta) and operative (Te) temperatures in four sites along a latitudinal gradient: a pole‐ward and two central sites where T. torquatus inhabit urban areas and one equator‐ward site where T. torquatus and T. oreadicus occur in the gallery forest and in urban microhabitats, respectively. All three populations of T. torquatus present similar Tb (35.5–36°C) and shared microhabitats with a similar Ta (34–37.3°C). The Te in the equator‐ward urban site was considerably higher than in the gallery forest. Tropidurus oreadicus Tb was 38.2 °C (30.1–41.3°C) and was active at a Ta of 30.5–42.3°C. The overlap between the genus Tb, Ta and Te highlights a decrease in the hours of activity that lizards would experience under climate warming. The reduction of hours of activity together with the devastation of natural habitats represents threats and an alarming scenario especially for the equator‐ward populations.  相似文献   

13.
Experimental measurements were collected in the laboratory to evaluate the maximum thermal limit and thermal plasticity of Neotropical juvenile fish with different life habitats (demersal and pelagic) from surf zone in response to a “heat‐wave experiment”. Trials were conducted using two temperature acclimations (Ta), including the current average temperature of Southeastern Brazil (Ta: 14 days at 25°C) and the “heat‐wave experiment” (Ta: 14 days at 30°C), simulating a heat‐wave event that occurs when the daily maximum temperature of more than five consecutive days exceeds the average maximum temperature by 5°C. Typical species of the surf zone were used: the demersal White sea catfish (Genidens barbus) and Gulf kingcroaker (Menticirrhus littoralis), and the pelagic fishes Great pompano (Trachinotus goodei) and Long‐fin mullet (Mugil brevirostris). The thermal range and plasticity values for the both life‐habitats species were verified through current and heat‐wave acclimation. The thermal tolerance at high temperatures (CTmax) of these species differed between Ta, habitat and species. Fish showed a species‐specific response to temperature increase, regardless of their habitat even under similar abiotic conditions. However, at the heat‐wave simulation, the demersal fish presented a greater thermal plasticity in relation to the pelagic fish. Despite the higher thermal tolerance when exposed to heat‐wave simulation, all fish species displayed a lower thermal edge safety that is markedly close to their maximum thermal limits.  相似文献   

14.
15.
The collagen triple helix has a larger accessible surface area per molecular mass than globular proteins, and therefore potentially more water interaction sites. The effect of deuterium oxide on the stability of collagen model peptides and Type I collagen molecules was analyzed by circular dichroism and differential scanning calorimetry. The transition temperatures (Tm) of the protonated peptide (Pro‐Pro‐Gly)10 were 25.4 and 28.7°C in H2O and D2O, respectively. The increase of the Tm of (Pro‐Pro‐Gly)10 measured calorimetrically at 1.0°C min?1 in a low pH solution from the protonated to the deuterated solvent was 5.1°C. The increases of the Tm for (Gly‐Pro‐4(R)Hyp)9 and pepsin‐extracted Type I collagen were measured as 4.2 and 2.2°C, respectively. These results indicated that the increase in the Tm in the presence of D2O is comparable to that of globular proteins, and much less than reported previously for collagen model peptides [Gough and Bhatnagar, J Biomol Struct Dyn 1999, 17, 481–491]. These experimental results suggest that the interaction of water molecules with collagen is similar to the interaction of water with globular proteins, when the ratio of collagen to water is very small and collagen is monomerically dispersed in the solvent. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 93–101, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

16.
Soil microorganisms, the central drivers of terrestrial Antarctic ecosystems, are being confronted with increasing temperatures as parts of the continent experience considerable warming. Here we determined short‐term temperature dependencies of Antarctic soil bacterial community growth rates, using the leucine incorporation technique, in order to predict future changes in temperature sensitivity of resident soil bacterial communities. Soil samples were collected along a climate gradient consisting of locations on the Antarctic Peninsula (Anchorage Island, 67 °34′S, 68 °08′W), Signy Island (60 °43′S, 45 °38′W) and the Falkland Islands (51 °76′S 59 °03′W). At each location, experimental plots were subjected to warming by open top chambers (OTCs) and paired with control plots on vegetated and fell‐field habitats. The bacterial communities were adapted to the mean annual temperature of their environment, as shown by a significant correlation between the mean annual soil temperature and the minimum temperature for bacterial growth (Tmin). Every 1 °C rise in soil temperature was estimated to increase Tmin by 0.24–0.38 °C. The optimum temperature for bacterial growth varied less and did not have as clear a relationship with soil temperature. Temperature sensitivity, indicated by Q10 values, increased with mean annual soil temperature, suggesting that bacterial communities from colder regions were less temperature sensitive than those from the warmer regions. The OTC warming (generally <1 °C temperature increases) over 3 years had no effects on temperature relationship of the soil bacterial community. We estimate that the predicted temperature increase of 2.6 °C for the Antarctic Peninsula would increase Tmin by 0.6–1 °C and Q10 (0–10 °C) by 0.5 units.  相似文献   

17.
Understanding of the extent of acclimation of light‐saturated net photosynthesis (An) to temperature (T), and associated underlying mechanisms, remains limited. This is a key knowledge gap given the importance of thermal acclimation for plant functioning, both under current and future higher temperatures, limiting the accuracy and realism of Earth system model (ESM) predictions. Given this, we analysed and modelled T‐dependent changes in photosynthetic capacity in 10 wet‐forest tree species: six from temperate forests and four from tropical forests. Temperate and tropical species were each acclimated to three daytime growth temperatures (Tgrowth): temperate – 15, 20 and 25 °C; tropical – 25, 30 and 35 °C. CO2 response curves of An were used to model maximal rates of RuBP (ribulose‐1,5‐bisphosphate) carboxylation (Vcmax) and electron transport (Jmax) at each treatment's respective Tgrowth and at a common measurement T (25 °C). SDS‐PAGE gels were used to determine abundance of the CO2‐fixing enzyme, Rubisco. Leaf chlorophyll, nitrogen (N) and mass per unit leaf area (LMA) were also determined. For all species and Tgrowth, An at current atmospheric CO2 partial pressure was Rubisco‐limited. Across all species, LMA decreased with increasing Tgrowth. Similarly, area‐based rates of Vcmax at a measurement T of 25 °C (Vcmax25) linearly declined with increasing Tgrowth, linked to a concomitant decline in total leaf protein per unit leaf area and Rubisco as a percentage of leaf N. The decline in Rubisco constrained Vcmax and An for leaves developed at higher Tgrowth and resulted in poor predictions of photosynthesis by currently widely used models that do not account for Tgrowth‐mediated changes in Rubisco abundance that underpin the thermal acclimation response of photosynthesis in wet‐forest tree species. A new model is proposed that accounts for the effect of Tgrowth‐mediated declines in Vcmax25 on An, complementing current photosynthetic thermal acclimation models that do not account for T sensitivity of Vcmax25.  相似文献   

18.
Aphidophagous and coccidophagous ladybirds, similar to their prey, show marked differences in their pace of life (Dixon, 2000), in particular in their rate of development, with all stages of aphidophagous species developing much faster than those of coccidophagous species. Two hypotheses are proposed to account for the large difference in the pace of life of these two groups. These are that differences in the rate of development are a result of differences in lower temperature thresholds for development or the quality of their respective prey as food (Dixon et al., 2011). Analysis of published results on the rates of development of the eggs of ladybirds indicates that the inverse relationships between the number of day‐degrees required for development (K) and the lower temperature threshold for development (tdmin) of these two groups are significantly different. In particular, the respective tdmin overlap and K of the aphidophagous and coccidophagous species with a similar tdmin are, on average, 38 and 117 day‐degrees (Do). The relationship between the rate of development (R) and temperature (T) for aphids reared on poor‐ or high‐quality foods indicates that, although the value of tdmin of a species depends on food quality, K does not, showing that it is unlikely that K is governed by food quality. Thus, there is little support for differences in either the tdmin or food quality governing the difference in the pace of life of these two groups of ladybirds. The results indicate that the physiological mechanism that may govern the difference in the pace of life between these two groups is the number of day‐degrees (K) needed to complete their development. The possible evolutionary reason for this is discussed.  相似文献   

19.
High‐temperature tolerance in plants is important in a warming world, with extreme heat waves predicted to increase in frequency and duration, potentially leading to lethal heating of leaves. Global patterns of high‐temperature tolerance are documented in animals, but generally not in plants, limiting our ability to assess risks associated with climate warming. To assess whether there are global patterns in high‐temperature tolerance of leaf metabolism, we quantified Tcrit (high temperature where minimal chlorophyll a fluorescence rises rapidly and thus photosystem II is disrupted) and Tmax (temperature where leaf respiration in darkness is maximal, beyond which respiratory function rapidly declines) in upper canopy leaves of 218 plant species spanning seven biomes. Mean site‐based Tcrit values ranged from 41.5 °C in the Alaskan arctic to 50.8 °C in lowland tropical rainforests of Peruvian Amazon. For Tmax, the equivalent values were 51.0 and 60.6 °C in the Arctic and Amazon, respectively. Tcrit and Tmax followed similar biogeographic patterns, increasing linearly (?8 °C) from polar to equatorial regions. Such increases in high‐temperature tolerance are much less than expected based on the 20 °C span in high‐temperature extremes across the globe. Moreover, with only modest high‐temperature tolerance despite high summer temperature extremes, species in mid‐latitude (~20–50°) regions have the narrowest thermal safety margins in upper canopy leaves; these regions are at the greatest risk of damage due to extreme heat‐wave events, especially under conditions when leaf temperatures are further elevated by a lack of transpirational cooling. Using predicted heat‐wave events for 2050 and accounting for possible thermal acclimation of Tcrit and Tmax, we also found that these safety margins could shrink in a warmer world, as rising temperatures are likely to exceed thermal tolerance limits. Thus, increasing numbers of species in many biomes may be at risk as heat‐wave events become more severe with climate change.  相似文献   

20.
Air temperatures of greater than 35 °C are frequently encountered in groundnut‐growing regions, especially in the semi‐arid tropics. Such extreme temperatures are likely to increase in frequency under future predicted climates. High air temperatures result in failure of peg and pod set due to lower pollen viability. The response of pollen germination and pollen tube growth to temperature was quantified in order to identify differences in pollen tolerance to temperature among 21 groundnut genotypes. Plants were grown from sowing to harvest in a poly‐tunnel under an optimum temperature of 28/22 °C (day/night). Pollen was collected at anther dehiscence and was exposed to temperatures from 10° to 47·5 °C at 2·5 °C intervals. The results showed that a modified bilinear model most accurately described the response to temperature of percentage pollen germination and maximum pollen tube length. Genotypes were found to range from most tolerant to most susceptible based on both pollen characters and membrane thermostability. Mean cardinal temperatures (Tmin, Topt and Tmax) averaged over 21 genotypes were 14·1, 30·1 and 43·0 °C for percentage pollen germination and 14·6, 34·4 and 43·4 °C for maximum pollen tube length. The genotypes 55‐437, ICG 1236, TMV 2 and ICGS 11 can be grouped as tolerant to high temperature and genotypes Kadiri 3, ICGV 92116 and ICGV 92118 as susceptible genotypes, based on the cardinal temperatures. The principal component analysis identified maximum percentage pollen germination and pollen tube length of the genotypes, and Tmax for the two processes as the most important pollen parameters in describing a genotypic tolerance to high temperature. The Tmin and Topt for pollen germination and tube growth, rate of pollen tube growth were less predictive in discriminating genotypes for high temperature tolerance. Genotypic differences in heat tolerance‐based on pollen response were poorly related (R2 = 0·334, P = 0·006) to relative injury as determined by membrane thermostability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号