首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The chicken natural resistance-associated macrophage protein 1 (NRAMP1) gene has been mapped by linkage analysis by use of a reference panel to develop the chicken molecular genetic linkage map and by fluorescence in situ hybridization. The chicken homolog of the murine Nramp1 gene was mapped to a linkage group located on Chromosome (Chr) 7q13, which includes three genes (CD28, NDUSF1, and EF1B) that have previously been mapped either to mouse Chr 1 or to human Chr 2q. Physical mapping by pulsed-field gel electrophoresis revealed that NRAMP1 is tightly linked to the villin gene and that the genomic organization (gene order and presence of CpG islands) of the chromosomal region carrying NRAMP1 is well conserved between the chicken and mammalian genomes. The regions on mouse Chr 1, human Chr 2q, and chicken Chr 7q that encompass NRAMP1 represent large conserved chromosomal segments between the mammalian and avian genomes. The chromosome mapping of the chicken NRAMP1 gene is a first step in determining its possible role in differential susceptibility to salmonellosis in this species.  相似文献   

2.
The three members of the mammalian fringe gene family, Manic fringe (Mfng), Radical fringe (Rfng), and Lunatic fringe (Lfng), were identified on the basis of their similarity to Drosophila fringe (fng) and their participation in the evolutionarily conserved Notch receptor signaling pathway. Fringe genes encode pioneer secretory proteins with weak similarity to glycosyltransferases. Both expression patterns and functional studies support an important role for Fringe genes in patterning during embryonic development and an association with cellular transformation. We have now further characterized the expression and determined the chromosomal localization and genomic structure of the mouse Mfng, Rfng, and Lfng genes; the genomic structure and conceptual open reading frame of the human RFNG gene; and the refined chromosomal localization of the three human fringe genes. The mouse Fringe genes are expressed in the embryo and in adult tissues. The mouse and human Fringe family members map to three different chromosomes in regions of conserved synteny: Mfng maps to mouse Chr 15, and MFNG maps to human Chr 22q13.1 in the region of two cancer-associated loci; Lfng maps to mouse Chr 5, and LFNG maps to human Chr 7p22; Rfng maps to mouse Chr 11, and RFNG maps to human Chr 17q25 in the minimal region for a familial psoriasis susceptibility locus. Characterization of the genomic loci of the Fringe gene family members reveals a conserved genomic organization of 8 exons. Comparative analysis of mammalian Fringe genomic organization suggests that the first exon is evolutionarily labile and that the Fringe genes have a genomic structure distinct from those of previously characterized glycosyltransferases. Received: 19 February 1999 / Accepted: 22 February 1999  相似文献   

3.
One of the larger contiguous blocks of mouse–human genomic homology includes the proximal portion of mouse chromosome 7 and the long arm of human chromosome 19. Previous studies have demonstrated the close relationship between the two regions, but have also indicated significant rearrangements in the relative orders of homologous mouse and human genes. Here we present the genetic locations of the homologs of 42 human chromosome 19q markers in the mouse, with an emphasis on genes also included in the human chromosome 19 physical map. Our results demonstrate that despite an overall inversion of sequences relative to the centromere, apparent “transpositions” of three gene-rich segments, and a local inversion of markers mapping near the 19q telomere, gene content, order, and spacing are remarkably well conserved throughout the lengths of these related mouse and human regions. Although most human 19q markers have remained genetically linked in mouse, one small human segment forms a separate region of homology between human chromosome 19q and mouse chromosome 17. Three of the four rearrangements of mouse versus human 19q sequences involve segments that are located directly adjacent to each other in 19q13.3–q13.4, suggesting either the coincident occurrence of these events or their common association with unstable DNA sequences. These data permit an unusually in-depth examination of this large region of mouse–human genomic homology and provide an important new tool to aid in the mapping of genes and associated phenotypes in both species.  相似文献   

4.
As a first step in determining whether there are polymorphisms in the nicotinic acetylcholine receptor (nAChR) genes that are associated with nicotine addiction, we isolated genomic clones of the β2-nAChR genes from human and mouse BAC libraries. Although cDNA sequences were available for the human gene, only the promoter sequence had been reported for the mouse gene. We determined the genomic structures by sequencing 12 kb of the human gene and over 7 kb of the mouse gene. While the sizes of exons in the mouse and human genes are the same, the introns differ in size. Both promoters have a high GC content (60–80%) proximal to the AUG and share a neural-restrictive silencer element (NRSE), but overall sequence identity is only 72%. Using a 6-Mb YAC contig of Chr 1, we mapped the human β2-nAChR gene, CHRNB2, to 1q21.3 with the order of markers cen, FLG, IVL, LOR, CHRNB2, tel. The mouse gene, Acrb2, had previously been mapped to Chr 3 in a region orthologous to human Chr 1. We refined mapping of the mouse gene and other markers on a radiation hybrid panel of Chr 3 and found the order cen, Acrb2, Lor, Iv1, Flg, tel. Our results indicate that this cluster of markers on human Chr 1 is inverted with respect to its orientation on the chromosome compared with markers in the orthologous region of mouse Chr 3. Received: 26 January 1999 / Accepted: 10 May 1999  相似文献   

5.
Proteins of the Caspr family are involved in cell contacts and communication in the nervous system. We identified and, by in silico reconstruction, compiled three orthologues of the human CASPR5 gene from the mouse genome, four from the rat genome, and one each from the chimpanzee, dog, opossum, and chicken genomes. Obviously, Caspr5 gene duplications have taken place during evolution of the rodent lineage. In the rat, the four paralogues are located in one chromosome arm, Chr 13p. In the mouse, however, the three Caspr5 genes are located in two chromosomes, Chr 1 and Chr 17. RT-PCR shows that all three mouse paralogues are being expressed. Common expression is found in brain tissue but different expression patterns are seen in other organs during fetal development and in the adult stage. Tissue specificity of expression has diverged during evolution of this young rodent gene family.  相似文献   

6.
The WAVE gene family, which contains three members, has been shown to play a major role in the actin polymerization and cytoskeleton organization processes. We have identified the WAVE3 gene from Chromosome (Chr) 13q12, as being involved in one of the breakpoints of a t(1:13)(q21:q12) reciprocal translocation, in a patient with ganglioneuroblastoma (Sossey-Alaoui et al. 2002; Oncogene 21: 5967–5974). We have also reported the cloning of the mouse Wave3. During our analysis of the human gene map, we also noted that WAVE2 maps to Chr region lp35-36, which frequently undergoes loss of heterozygosity and deletion in advanced stage neuroblastoma. These data clearly indicate a possible involvement of the WAVE genes in the pathogenesis of neuroblastoma. In this study, we report the complete genomic organization and expression profile of the three human WAVE genes and their mouse orthologs. We show that the WAVE genes have distinctive expression patterns in both adult and fetal human and mouse tissues. We also show a high level of conservation between these genes, in both the nucleotide and protein sequences. We finally show that the genomic structure is highly conserved among these genes and that the mouse Wave genes map to chromosome regions that have synteny in the human genome. The gene content in these syntenic regions is also conserved, suggesting that the WAVE genes are derived from a common ancient ancestor by genome duplication. The genomic characterization and expression analysis of the WAVE genes provide the basis towards understanding the function of these genes. It also provides the first steps towards the development of mouse models for the role of the WAVE genes in actin and cytoskeleton organization in general, and in the development of neuroblastoma in particular.  相似文献   

7.
Proximal mouse Chromosome (Chr) 16 shows conserved synteny with human Chrs 16, 8, 22, and 3. The mouse Chr 16/human Chr 22 conserved synteny region includes the DiGeorge/Velocardiofacial syndrome region of human Chr 22q11.2. A physical map of the entire mouse Chr 16/human Chr 22 region of conserved synteny has been constructed to provide a substrate for gene discovery, genomic sequencing, and animal model development. A YAC contig was constructed that extends ca. 5.4 Mb from a region of conserved synteny with human Chr 8 at Prkdc through the region conserved with human Chr 3 at DVL3. Sixty-one markers including 37 genes are mapped with average marker spacing of 90 kb. Physical distance was determined across the 2.6-Mb region from D16Mit74 to Hira with YAC fragmentation. The central region from D16Jhu28 to Igl-C1 was converted into BAC and PAC clones, further refining the physical map and providing sequence-ready template. The gene content and borders of three blocks of conserved linkage between human Chr 22q11.2 mouse Chr 16 are refined. Received: 4 November 1998 / Accepted: 21 December 1998  相似文献   

8.
Interspecies sequence comparison offers an effective approach to identify conserved elements that might have functional importance. We compared 1.32 Mb of C3CER1 (referred also as CER1) from human Chromosome (Chr) 3p21.3 to its orthologous regions on mouse Chr 9F. The corresponding mouse region was found divided into two blocks, but their gene content and gene positions were highly conserved between human and mouse. We observed that two orthologous mouse genes (Xtrp3s1 and Cmkbr1) were duplicated, and this resulted in two additional expressed mouse genes (Xtrp3 and Cmkbr111). We also recognized a large number of conserved elements that were neither exons, CpG islands, nor repeats. We further identified and characterized five novel orthologous mouse genes (Kiaa0028, Xtrp3s1, Fyco1, Tmem7, and Lrrc2).  相似文献   

9.
By means of somatic cell hybrids segregating rat chromosomes, we determined the chromosome localization of three rat genes of the Jun family: Jumb (Chr 19), Jun (=c-Jun) (Chr 5) and Jund (Chr 16). The Jun gene was also localized to the 5q31–33 region by fluorescence in situ hybridization. These rat gene assignments reveal two new homologies with mouse and human chromosomes, and provide a new example of synteny conserved in the human and a rodent species (the mouse), but split between the two rodent species.  相似文献   

10.
The central region of mouse Chromosome (Chr) 8, containing the myodystrophy (myd) locus, is syntenic with human Chr 4q28-qter. The human neuromuscular disorder facioscapulohumeral muscular dystrophy (FSHD) maps to Chr 4q35, and myd has been proposed as a mouse homolog of FSHD. We have employed a comparative mapping approach to investigate this relationship further by extending the mouse genetic map of this region. We have ordered 12 genes in a single cross, 8 of which have human homologs on 4q28-qter. The results confirm a general relationship between the most distal genes on human 4q and the most proximal genes in the mouse 8 syntenic region. Despite chromosomal rearrangements of syntenic groups in this region, conservation of gene order is maintained between the group of genes in the human telomeric region of 4q35 and MMU8. Furthermore, this conserved telomeric HSA4q35 syntenic group maps proximal to the myd mutation and is flanked by genes with homologs on HSA8p22. At the proximal boundary of the MMU8 linkage group we have identified a single 300-kb YAC containing the genes Frgl and Pcml, which have human homologs on 4q35 and 8p22, respectively. Thus, this YAC spans an evolutionary chromosomal breakpoint. As well as providing clues about chromosomal evolution, this map of the FSHD syntenic mouse region should prove invaluable in the isolation of candidate genes for this disease. Received: 20 January 1998 / Accepted: 10 April 1998  相似文献   

11.
Kumar S  Gadagkar SR  Filipski A  Gu X 《Genetics》2001,157(3):1387-1395
Genomic divergence between species can be quantified in terms of the number of chromosomal rearrangements that have occurred in the respective genomes following their divergence from a common ancestor. These rearrangements disrupt the structural similarity between genomes, with each rearrangement producing additional, albeit shorter, conserved segments. Here we propose a simple statistical approach on the basis of the distribution of the number of markers in contiguous sets of autosomal markers (CSAMs) to estimate the number of conserved segments. CSAM identification requires information on the relative locations of orthologous markers in one genome and only the chromosome number on which each marker resides in the other genome. We propose a simple mathematical model that can account for the effect of the nonuniformity of the breakpoints and markers on the observed distribution of the number of markers in different conserved segments. Computer simulations show that the number of CSAMs increases linearly with the number of chromosomal rearrangements under a variety of conditions. Using the CSAM approach, the estimate of the number of conserved segments between human and mouse genomes is 529 +/- 84, with a mean conserved segment length of 2.8 cM. This length is <40% of that currently accepted for human and mouse genomes. This means that the mouse and human genomes have diverged at a rate of approximately 1.15 rearrangements per million years. By contrast, mouse and rat are diverging at a rate of only approximately 0.74 rearrangements per million years.  相似文献   

12.
A detailed physical map of the porcine MHC class III region on Chr 7 was constructed with a panel of probes in a series of hybridizations on genomic pulsed field gel electrophoresis (PFGE) Southern blots. A precise organization of the 700-kb segment of DNA between G18 and BAT1 can now be proposed, with more than 30 genes mapped to it. Comparison of this region with homologous regions in human and mouse showed only minor differences. The biggest difference was observed in the CYP21/C4 locus with only one CYP21 gene and one C4 gene found, whereas in human and mouse these genes are duplicated. These results show the class III region is very well conserved between pig, human, and mouse, in contrast with the class I and class II regions, which seem more prone to rearrangements. Received: 13 October 1995 / Accepted: 19 January 1996  相似文献   

13.
Olfactory receptors are G protein-coupled, seven-transmembrane-domain proteins that are responsible for binding odorants in the nasal epithelium. They are encoded by a large gene family, members of which are organized in several clusters scattered throughout the genomes of mammalian species. Here we describe the mapping of mouse sequences corresponding to four conserved olfactory receptor genes, each representing separate, recently identified canine gene subfamilies. Three of the four canine genes detected related gene clusters in regions of mouse Chromosomes (Chrs) 2, 9, and 10, near previously mapped mouse olfactory genes, while one detected a formerly unidentified gene cluster located on mouse Chr 6. In addition, we have localized two human gene clusters with homology to the canine gene, CfOLF4, within the established physical map of Chr 19p. Combined with recently published studies, these data link the four conserved olfactory gene subfamilies to homologous regions of the human, dog, and mouse genomes. Received: 10 September 1997 / Accepted: 29 December 1997  相似文献   

14.
Comparative mapping between the human and chicken genomes has revealed a striking conservation of synteny between the genomes of these two species, but the results have been based on low-resolution comparative maps. To address this conserved synteny in much more detail, a high-resolution human-chicken comparative map was constructed from human chromosome 15. Mapping, sequencing, and ordering of specific chicken bacterial artificial chromosomes has improved the comparative map of chromosome 15 (Hsa15) and the homologous regions in chicken with almost 100 new genes and/or expressed sequence tags. A comparison of Hsa15 with chicken identified seven conserved chromosomal segments between the two species. In chicken, these were on chromosome 1 (Gga1; two segments), Gga5 (two segments), and Gga10 (three segments). Although four conserved segments were also observed between Hsa15 and mouse, only one of the underlying rearrangement breakpoints was located at the same position as in chicken, indicating that the rearrangements generating the other three breakpoints occurred after the divergence of the rodent and the primate lineages. A high-resolution comparison of Gga10 with Hsa15 identified 19 conserved blocks, indicating the presence of at least 16 intrachromosomal rearrangement breakpoints in the bird lineage after the separation of birds and mammals. These results improve our knowledge of the evolution and dynamics of the vertebrate genomes and will aid in the clarification of the mechanisms that underlie the differentiation between the vertebrate species.  相似文献   

15.
CD5 is a member of the family of receptors which contain extracellular domains homologous to the type I macrophage scavenger receptor cysteine-rich (SRCR) domain. Here, we compare the exon/intron organization of the human CD5 gene with its mouse homologue, as well as with the human CD6 gene, the closest related member of the SRCR superfamily. The human CD5 gene spans about 24.5 kb and consists of at least 11 exons. These exons are conserved in size, number, and structure in the mouse CD5 homologue. No evidence for the biallelic polymorphism reported in the mouse could be found among a population of 100 individuals of different ethnic origins. The human CD5 gene maps to the Chromosome (Chr) 11q12.2 region, 82 kb downstream from the human CD6 gene, in a head-to-tail orientation, a situation which recalls that reported at mouse Chr 19. The exon/intron organization of the human CD5 and CD6 genes was very similar, differing in the size of intron 1 and the number of exons coding for their cytoplasmic regions. While several isoforms, resulting from alternative splicing of the cytoplasmic exons, have been reported for CD6, we only found evidence of a cytoplasmic tailless CD5 isoform. The conserved structure of the CD5 and CD6 loci, both in mouse and human genomes, supports the notion that the two genes may have evolved from duplication of a primordial gene. The existence of a gene complex for the SRCR superfamily on human Chr 11q (and mouse Chr 19) still remains to be disclosed.  相似文献   

16.
Fatty acid synthase and Acetyl-CoA carboxylase are both key enzymes of lipogenesis and may play a crucial role in the weight variability of abdominal adipose tissue in the growing chicken. They are encoded by the FASN and ACACA genes, located on human Chromosome (Chr) 17q25 and on Chr 17q12 or 17q21 respectively, a large region of conserved synteny among mammals. We have localized the homologous chicken genes FASN and ACACA coding for these enzymes, by single-strand conformation polymorphism analysis on different linkage groups of the Compton and East Lansing consensus genetic maps and by FISH on two different chicken microchromosomes. Although synteny is not conserved between these two genes, our results revealed linkage in chicken between FASN and NDPK (nucleoside diphosphate kinase), a homolog to the human NME1 and NME2 genes (non-metastatic cell proteins 1 and 2), both located on human Chr 17q21.3, and also between FASN and H3F3B (H3 histone family 3B), located on human Chr 17q25. The analysis of mapping data from the literature for other chicken and mammalian genes indicates rearrangements have occurred in this region in the mammalian lineage since the mammalian and avian radiation. Received: 8 August 1997 / Accepted: 24 November 1997  相似文献   

17.
We determined chromosome locations of four plexin A subfamily genes, Plxna1, Plxna2, Plxna3 and Plxna4, in four rodent species, mouse, rat, Syrian hamster and Chinese hamster, by fluorescence in situ hybridization. Plxna1, Plxna2, Plxna3 and Plxna4 were localized to Chr 6E2, 1H6, XB-C1 and 6B1 in mouse, Chr 4q34.1, 13q26-->q27, Xq37.1-->q37.2 and 4q21.3-->q22 in rat, Chr 8qb1.1-->qb1.3, 11qb8, Xpb8 and 5qb3.3 in Syrian hamster, and Chr 8q1.2, 5q3.7, Xp2.7 and 1q2.2-->q2.3 in Chinese hamster, respectively. All the mouse and rat plexin A genes were localized to chromosome regions where conserved homology has been identified among human, mouse and rat.  相似文献   

18.
Conservation of synteny of mammalian imprinted genes between chicken and human suggested that highly conserved gene clusters were selected long before these genes were recruited for genomic imprinting in mammals. Here we have applied in silico mapping of orthologous genes in pipid frog, zebrafish, spotted green and Japanese pufferfish to show considerable conservation of synteny in lower vertebrates. More than 400 million years ago in a common ancestor of teleost fish and tetrapods, 'preimprinted' chromosome regions homologous to human 6q25, 7q21, 7q32, 11p15, and 15q11-->q12 already contained most present-day mammalian imprinted genes. Interestingly, some imprinted gene orthologues which are isolated from imprinted clusters in mouse and human could be linked to preimprinted regions in lower vertebrates, indicating that separation occurred during mammalian evolution. On the contrary, newly arisen genes by segmental duplication in the mammalian lineage, i.e. SNRPN and FRAT3, were transposed or translocated to imprinted clusters and recruited for parent-specific activity. By analysis of currently available sequences of non-mammalian vertebrates, the imprinted gene clusters homologous to human chromosomes 14q32 and 19q12 are only poorly conserved in chicken, frog, and fish and, therefore, may not have evolved from ancestral preimprinted gene arrays. Evidently, evolution of imprinted gene clusters is an ongoing and dynamic process in mammals. In general, imprinted gene orthologues do not show a higher degree of synteny conservation in vertebrates than non-imprinted genes interspersed with or adjacent to an imprinted cluster.  相似文献   

19.
An examination of the synteny blocks between mouse and human chromosomes aids in understanding the evolution of chromosome divergence between these two species. We comparatively mapped the human (HSA) Chromosome (Chr) 14q11.2-q13 cytogenetic region with the intervals of orthologous genes on mouse (MMU) chromosomes. A lack of conserved gene order was identified between the human cytogenetic region and the interval of orthologs on MMU 12. The evolutionary breakpoint junction was defined within 2.5 Mb, where the conserved synteny of genes on HSA 14 changes from MMU 12 to MMU 14. At the evolutionary breakpoint junction, a human EST (GI: 1114654) with identity to the human and mouse BCL2 interacting gene, BNIP3, was mapped to mouse Chr 3. New gene homologs of LAMB1, MEOX2, NRCAM, and NZTF1 were identified on HSA 7 and on the proximal cytogenetic region of HSA 14 by mapping mouse genes recently reported to be genetically linked within the relevant MMU 12 interval. This study contributes to the identification of homology relationships between the genes of HSA 14q11.2-q13 and mouse Chr 3, 12, and 14. Received: 16 March 2000 / Accepted: 16 June 2000  相似文献   

20.
CpG islands (CGIs) are often considered as gene markers, but the number of CGIs varies among mammalian genomes that have similar numbers of genes. In this study, we investigated the distribution of CGIs in the promoter regions of 3,197 human-mouse orthologous gene pairs and found that the mouse genome has notably fewer CGIs in the promoter regions and less pronounced CGI characteristics than does the human genome. We further inferred CGI's ancestral state using the dog genome as a reference and examined the nucleotide substitution pattern and the mutational direction in the conserved regions of human and mouse CGIs. The results reveal many losses of CGIs in both genomes but the loss rate in the mouse lineage is two to four times the rate in the human lineage. We found an intriguing feature of CGI loss, namely that the loss of a CGI usually starts from erosion at the both edges and gradually moves towards the center. We found functional bias in the genes that have lost promoter-associated CGIs in the human or mouse lineage. Finally, our analysis indicates that the association of CGIs with housekeeping genes is not as strong as previously estimated. Our study provides a detailed view of the evolution of promoter-associated CGIs in the human and mouse genomes and our findings are helpful for understanding the evolution of mammalian genomes and the role of CGIs in gene function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号