首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The carbon (C) storage capacity of northern latitude ecosystems may diminish as warming air temperatures increase permafrost thaw and stimulate decomposition of previously frozen soil organic C. However, warming may also enhance plant growth so that photosynthetic carbon dioxide (CO2) uptake may, in part, offset respiratory losses. To determine the effects of air and soil warming on CO2 exchange in tundra, we established an ecosystem warming experiment – the Carbon in Permafrost Experimental Heating Research (CiPEHR) project – in the northern foothills of the Alaska Range in Interior Alaska. We used snow fences coupled with spring snow removal to increase deep soil temperatures and thaw depth (winter warming) and open‐top chambers to increase growing season air temperatures (summer warming). Winter warming increased soil temperature (integrated 5–40 cm depth) by 1.5 °C, which resulted in a 10% increase in growing season thaw depth. Surprisingly, the additional 2 kg of thawed soil C m?2 in the winter warming plots did not result in significant changes in cumulative growing season respiration, which may have been inhibited by soil saturation at the base of the active layer. In contrast to the limited effects on growing‐season C dynamics, winter warming caused drastic changes in winter respiration and altered the annual C balance of this ecosystem by doubling the net loss of CO2 to the atmosphere. While most changes to the abiotic environment at CiPEHR were driven by winter warming, summer warming effects on plant and soil processes resulted in 20% increases in both gross primary productivity and growing season ecosystem respiration and significantly altered the age and sources of CO2 respired from this ecosystem. These results demonstrate the vulnerability of organic C stored in near surface permafrost to increasing temperatures and the strong potential for warming tundra to serve as a positive feedback to global climate change.  相似文献   

2.
It has only recently become apparent that biological activity during winter in seasonally snow-covered ecosystems may exert a significant influence on biogeochemical cycling and ecosystem function. One-seventh of the global soil carbon pool is stored in the bulk soil component of arctic ecosystems. Consistent climate change predictions of substantial increases in winter air temperatures and snow depths for the Arctic indicate that this region may become a significant net annual source of CO2 to the atmosphere if its bulk soil carbon is decomposed. We used snow fences to investigate the influence of a moderate increase in snow depth from approximately 0.3 m (ambient) to approximately 1 m on winter carbon dioxide fluxes from mesic birch hummock tundra in northern Canada. We differentiated fluxes derived from the bulk soil and plant-associated carbon pools using an experimental ‘weeding’ manipulation. Increased snow depth enhanced the wintertime carbon flux from both pools, strongly suggesting that respiration from each was sensitive to warmer soil temperatures. Furthermore, deepened snow resulted in cooler and relatively stable soil temperatures during the spring-thaw period, as well as delayed and fewer freeze–thaw cycles. The snow fence treatment increased mean total winter efflux from 27 to 43 g CO2-C m−2. Because total 2004 growing season net ecosystem exchange for this site is estimated at 29–37 g CO2-C m−2, our results strongly suggest that a moderate increase in snow depth can enhance winter respiration sufficiently to switch the ecosystem annual net carbon exchange from a sink to source, resulting in net CO2 release to the atmosphere.  相似文献   

3.
The Arctic treeline is advancing in many areas and changes in carbon (C) cycling are anticipated. Differences in CO2 exchange between adjacent forest and tundra are not well known and contrasting conclusions have been drawn about the effects of forest advance on ecosystem C stocks. Measurements of CO2 exchange in tundra and adjacent forest showed the forest was a greater C sink during the growing season in northern Canada. There is, however, reason to expect that forests lose more C than tundra during the wintertime, as forests may accumulate and retain more snow. Deeper snow insulates the soil and warmer soils should lead to greater rates of belowground respiration and CO2 efflux. In this study, I tested the hypotheses that forests maintain a deeper snowpack, have warmer soils and lose more C during winter than adjacent tundra near the Arctic treeline in northwest Alaska. Measurements of snow depth, soil temperature and CO2 efflux were made at five forest and two treeline sites in late winter of three consecutive years. Snow depth and soil temperature were greater in forest than treeline sites, particularly in years with higher snowfall. There was a close exponential correlation between soil temperature and CO2 efflux across sites and years. The temperature-efflux model was driven using hourly soil temperatures from all the sites to provide a first approximation of the difference in winter C loss between treeline and forest sites. Results showed that greater wintertime C loss from forests could offset greater summertime C gain.  相似文献   

4.
冬季土壤呼吸:不可忽视的地气CO2交换过程   总被引:5,自引:0,他引:5       下载免费PDF全文
 冬季土壤呼吸是生态系统释放CO2的极为重要的组成部分,并显著地影响着碳收支。然而,过去绝大多数工作集中在生长季节土壤呼吸的测定,对年土壤呼吸量的估算大多基于冬季土壤呼吸为零的假设。目前为数不多的研究集中在极地苔原和亚高山,其它植被类型的研究只有零星报道。极地苔原和森林冬季土壤呼吸速率分别为0.002~1.359和0.22~0.67 μmol C.m-2·s-1;土壤呼吸的CO2释放量分别为0.55~26.37和22.4~152.0 g C·m-2,是地气CO2交换过程中不可忽视的环节。雪是土壤呼吸过程的重要调节者,积雪厚度和覆盖时间的长短均会影响土壤呼吸的强弱;水分的可获取性是重要的限制因素;对于维持活跃的土壤呼吸有一个关键的土壤温度临界值(-7~-5 ℃),低于这个值会因自由水的缺乏而抑制异养微生物的呼吸。如果存在绝缘的积雪层,可溶性碳底物在自由水存在的情况下可控制异养微生物的活力。该文对冬季土壤呼吸的重要性、研究方法、土壤呼吸强度及其影响机制等进行了综述,并讨论了冬季土壤呼吸研究中存在的问题及未来研究方向。  相似文献   

5.
Across many dryland regions, historically grass‐dominated ecosystems have been encroached upon by woody‐plant species. In this paper, we compare ecosystem water and carbon dioxide (CO2) fluxes over a grassland, a grassland–shrubland mosaic, and a fully developed woodland to evaluate potential consequences of woody‐plant encroachment on important ecosystem processes. All three sites were located in the riparian corridor of a river in the southwest US. As such, plants in these ecosystems may have access to moisture at the capillary fringe of the near‐surface water table. Using fluxes measured by eddy covariance in 2003 we found that ecosystem evapotranspiration (ET) and net ecosystem exchange of carbon dioxide (NEE) increased with increasing woody‐plant dominance. Growing season ET totals were 407, 450, and 639 mm in the grassland, shrubland, and woodland, respectively, and in excess of precipitation by 227, 265, and 473 mm. This excess was derived from groundwater, especially during the extremely dry premonsoon period when this was the only source of moisture available to plants. Access to groundwater by the deep‐rooted woody plants apparently decouples ecosystem ET from gross ecosystem production (GEP) with respect to precipitation. Compared with grasses, the woody plants were better able to use the stable groundwater source and had an increased net CO2 gain during the dry periods. This enhanced plant activity resulted in substantial accumulation of leaf litter on the soil surface that, during rainy periods, may lead to high microbial respiration rates that offset these photosynthetic fluxes. March–December (primary growing season) totals of NEE were ?63, ?212, and ?233 g C m?2 in the grassland, shrubland, and woodland, respectively. Thus, there was a greater disparity between ecosystem water use and the strength of the CO2 sink as woody plants increased across the encroachment gradient. Despite a higher density of woody plants and a greater plant productivity in the woodland than in the shrubland, the woodland produced a larger respiration response to rainfall that largely offset its higher photosynthetic potential. These data suggest that the capacity for woody plants to exploit water resources in riparian areas results in enhanced carbon sequestration at the expense of increased groundwater use under current climate conditions, but the potential does not scale specifically as a function of woody‐plant abundance. These results highlight the important roles of water sources and ecosystem structure on the control of water and carbon balances in dryland areas.  相似文献   

6.
Peatlands store 30% of the world’s terrestrial soil carbon (C) and those located at northern latitudes are expected to experience rapid climate warming. We monitored growing season carbon dioxide (CO2) fluxes across a factorial design of in situ water table (control, drought, and flooded plots) and soil warming (control vs. warming via open top chambers) treatments for 2 years in a rich fen located just outside the Bonanza Creek Experimental Forest in interior Alaska. The drought (lowered water table position) treatment was a weak sink or small source of atmospheric CO2 compared to the moderate atmospheric CO2 sink at our control. This change in net ecosystem exchange was due to lower gross primary production and light-saturated photosynthesis rather than increased ecosystem respiration. The flooded (raised water table position) treatment was a greater CO2 sink in 2006 due largely to increased early season gross primary production and higher light-saturated photosynthesis. Although flooding did not have substantial effects on rates of ecosystem respiration, this water table treatment had lower maximum respiration rates and a higher temperature sensitivity of ecosystem respiration than the control plot. Surface soil warming increased both ecosystem respiration and gross primary production by approximately 16% compared to control (ambient temperature) plots, with no net effect on net ecosystem exchange. Results from this rich fen manipulation suggest that fast responses to drought will include reduced ecosystem C storage driven by plant stress, whereas inundation will increase ecosystem C storage by stimulating plant growth.  相似文献   

7.
In situ manipulations were conducted in a naturally drained lake on the arctic coastal plain near Prudhoe Bay, Alaska (70 °21.98′ N, 148 °33.72′ W) to assess the potential short-term effects of decreased water table and elevated temperature on net ecosystem CO2 flux. The experiments were conducted over a 2-year period, and during that time, water table depth of drained plots was maintained on average 7 cm lower than the ambient water table, and surface temperatures of plots exposed to elevated temperature were increased on average 0.5 °C. Water table drainage, and to a lesser extent elevated temperature, resulted in significant increases in ecosystem respiration (ER) rates, and only small and variable changes in gross ecosystem productivity (GEP). As a result, drained plots were net sources of ≈ 40 gC m–2 season–1 over both years of manipulation, while control plots were net sinks of atmospheric CO2 of about 10 gC m–2 season–1 (growing season length was an estimated 125 days). Control plots exposed to elevated temperatures accumulated slightly more carbon than control plots exposed to ambient temperatures. The direct effects of elevated temperature on net CO2 flux, ER, and GEP were small, however, elevated temperature appeared to interact with drainage to exacerbate the amount of net carbon loss. These data suggest that many currently saturated or nearly saturated wet sedge ecosystems of the north slope of Alaska may become significant sources of CO2 to the atmosphere if climate change predictions of increased evapotranspiration and reduced soil water status are realized. There is ample evidence that this may be already occurring in arctic Alaska, as a change in net carbon balance has been observed for both tussock and wet-sedge tundra ecosystems over the last 2–3 decades, which coincides with a recent increase in surface temperature and an associated decrease in soil water content. In contrast, if precipitation increases relatively more than evapotranspiration, then increases in soil moisture content will likely result in greater carbon accumulation.  相似文献   

8.
In the next few decades, climate of the Amazon basin is expected to change, as a result of deforestation and rising temperatures, which may lead to feedback mechanisms in carbon (C) cycling that are presently unknown. Here, we report how a throughfall exclusion (TFE) experiment affected soil carbon dioxide (CO2) production in a deeply weathered sandy Oxisol of Caxiuanã (Eastern Amazon). Over the course of 2 years, we measured soil CO2 efflux and soil CO2 concentrations, soil temperature and moisture in pits down to 3 m depth. Over a period of 2 years, TFE reduced on average soil CO2 efflux from 4.3±0.1 μmol CO2 m−2 s−1 (control) to 3.2±0.1 μmol CO2 m−2 s−1 (TFE). The contribution of the subsoil (below 0.5 m depth) to the total soil CO2 production was higher in the TFE plot (28%) compared with the control plot (17%), and it did not differ between years. We distinguished three phases of drying after the TFE was started. The first phase was characterized by a translocation of water uptake (and accompanying root activity) to deeper layers and not enough water stress to affect microbial activity and/or total root respiration. During the second phase a reduction in total soil CO2 efflux in the TFE plot was related to a reduction of soil and litter decomposers activity. The third phase of drying, characterized by a continuing decrease in soil CO2 production was dominated by a water stress‐induced decrease in total root respiration. Our results contrast to results of a drought experiment on clay Oxisols, which may be related to differences in soil water retention characteristics and depth of rooting zone. These results show that large differences exist in drought sensitivity among Amazonian forest ecosystems, which primarily seem to be affected by the combined effects of texture (affecting water holding capacity) and depth of rooting zone.  相似文献   

9.
Long-term carbon exchange in a sparse, seasonally dry tussock grassland   总被引:6,自引:0,他引:6  
Rainfall and its seasonal distribution can alter carbon dioxide (CO2) exchange and the sustainability of grassland ecosystems. Using eddy covariance, CO2 exchange between the atmosphere and a sparse grassland was measured for 2 years at Twizel, New Zealand. The years had contrasting distributions of rain and falls (446 mm followed by 933 mm; long‐term mean=646 mm). The vegetation was sparse with total above‐ground biomass of only 1410 g m?2. During the dry year, leaf area index peaked in spring (November) at 0.7, but it was <0.2 by early summer. The maximum daily net CO2 uptake rate was only 1.5 g C m?2 day?1, and it occurred before mid‐summer in both years. On an annual basis, for the dry year, 9 g C m?2 was lost to the atmosphere. During the wet year, 41 g C m?2 was sequestered from the atmosphere. The net exchange rates were determined mostly by the timing and intensity of spring rainfall. The components of ecosystem respiration were measured using chambers. Combining scaled‐up measurements with the eddy CO2 effluxes, it was estimated that 85% of ecosystem respiration emanated from the soil surface. Under well‐watered conditions, 26% of the soil surface CO2 efflux came from soil microbial activity. Rates of soil microbial CO2 production and net mineral‐N production were low and indicative of substrate limitation. Soil respiration declined by a factor of four as the soil water content declined from field capacity (0.21 m3 m?3) to the driest value obtained (0.04 m3 m?3). Rainfall after periods of drought resulted in large, but short‐lived, respiration pulses that were curvilinearly related to the increase in root‐zone water content. Coupled with the low leaf area and high root : shoot ratio, this sparse grassland had a limited capacity to sequester and store carbon. Assuming a proportionality between carbon gain and rainfall during the summer, rainfall distribution statistics suggest that the ecosystem is sustainable in the long term.  相似文献   

10.
P. Grogan  F.S. Chapin III 《Oecologia》2000,125(4):512-520
The Arctic contains extensive soil carbon reserves that could provide a substantial positive feedback to atmospheric CO2 concentrations and global warming. Evaluation of this hypothesis requires a mechanistic understanding of the in situ responses of individual components of tundra net ecosystem CO2 exchange (NEE) to warming. In this study, we measured NEE, total ecosystem respiration and respiration from below ground in experimentally warmed plots within Alaskan acidic tussock tundra. Soil warming of 2-4°C during a single growing season caused strong increases in total ecosystem respiration and belowground respiration from moss-dominated inter-tussock areas, and similar trends from sedge-dominated tussocks. Consequently, the overall effect of the manipulation was to substantially enhance net ecosystem carbon loss during mid-summer. Components of vascular plant biomass were closely correlated with total ecosystem respiration and belowground respiration in control plots of both microsites, but not in warmed plots. By contrast, in the warmed inter-tussock areas, belowground respiration was most closely correlated with organic-layer depth. Warming in tussock areas was associated with increased leaf nutrient pools, indicating enhanced rates of soil nutrient mineralisation. Together, these results suggest that warming enhanced net ecosystem CO2 efflux primarily by stimulating decomposition of soil organic matter, rather than by increasing plant-associated respiration. Our short-term experiment provides field evidence to support previous growth chamber and modelling studies indicating that arctic soil C reserves are relatively sensitive to warming and could supply an initial positive feedback to rising atmospheric CO2 concentrations/changing climate.  相似文献   

11.
We present a decadal (1994–2004) record of carbon dioxide flux in a 160‐year‐old black spruce forest/veneer bog complex in central Manitoba, Canada. The ecosystem shifted from a source (+41 g C m−2, 1995) to a sink (−21 g C m−2, 2004) of CO2 over the decade, with an average net carbon balance near zero. Annual mean temperatures increased 1–2° during the period, consistent with the decadal trend across the North American boreal biome. We found that ecosystem carbon exchange responded strongly to air temperature, moisture status, potential evapotranspiration, and summertime solar radiation. The seasonal cycle of ecosystem respiration significantly lagged that of photosynthesis, limited by the rate of soil thaw and the slow drainage of the soil column. Factors acting over long time scales, especially water table depth, strongly influenced the carbon budget on annual time scales. Net uptake was enhanced and respiration inhibited by multiple years of rainfall in excess of evaporative demand. Contrary to expectations, we observed no correlation between longer growing seasons and net uptake, possibly because of offsetting increases in ecosystem respiration. The results indicate that the interactions between soil thaw and water table depth provide critical controls on carbon exchange in boreal forests underlain by peat, on seasonal to decadal time scales, and these factors must be simulated in terrestrial biosphere models to predict response of these regions to future climate.  相似文献   

12.
Carbon dioxide exchange, soil C and N, leaf mineral nutrition and leaf carbon isotope discrimination (LCID‐Δ) were measured in three High Arctic tundra ecosystems over 2 years under ambient and long‐term (9 years) warmed (~2°C) conditions. These ecosystems are located at Alexandra Fiord (79°N) on Ellesmere Island, Nunavut, and span a soil water gradient; dry, mesic, and wet tundra. Growing season CO2 fluxes (i.e., net ecosystem exchange (NEE), gross ecosystem photosynthesis (GEP), and ecosystem respiration (Re)) were measured using an infrared gas analyzer and winter C losses were estimated by chemical absorption. All three tundra ecosystems lost CO2 to the atmosphere during the winter, ranging from 7 to 12 g CO2‐C m?2 season?1 being highest in the wet tundra. The period during the growing season when mesic tundra switch from being a CO2 source to a CO2 sink was increased by 2 weeks because of warming and increases in GEP. Warming during the summer stimulated dry tundra GEP more than Re and thus, NEE was consistently greater under warmed as opposed to ambient temperatures. In mesic tundra, warming stimulated GEP with no effect on Re increasing NEE by ~10%, especially in the first half of the summer. During the ~70 days growing season (mid‐June–mid‐August), the dry and wet tundra ecosystems were net CO2‐C sinks (30 and 67 g C m?2 season?1, respectively) and the mesic ecosystem was a net C source (58 g C m?2 season?1) to the atmosphere under ambient temperature conditions, due in part to unusual glacier melt water flooding that occurred in the mesic tundra. Experimental warming during the growing season increased net C uptake by ~12% in dry tundra, but reduced net C uptake by ~20% in wet tundra primarily because of greater rates of Re as opposed to lower rates of GEP. Mesic tundra responded to long‐term warming with ~30% increase in GEP with almost no change in Re reducing this tundra type to a slight C source (17 g C m?2 season?1). Warming caused LCID of Dryas integrafolia plants to be higher in dry tundra and lower in Salix arctic plants in mesic and wet tundra. Our findings indicate that: (1) High Arctic ecosystems, which occur in similar mesoclimates, have different net CO2 exchange rates with the atmosphere; (2) long‐term warming can increase the net CO2 exchange of High Arctic tundra by stimulating GEP, but it can also reduce net CO2 exchange in some tundra types during the summer by stimulating Re to a greater degree than stimulating GEP; (3) after 9 years of experimental warming, increases in soil carbon and nitrogen are detectable, in part, because of increases in deciduous shrub cover, biomass, and leaf litter inputs; (4) dry tundra increases in GEP, in response to long‐term warming, is reflected in D. integrifolia LCID; and (5) the differential carbon exchange responses of dry, mesic, and wet tundra to similar warming magnitudes appear to depend, in part, on the hydrologic (soil water) conditions. Annual net ecosystem CO2‐C exchange rates ranged from losses of 64 g C m?2 yr?1 to gains of 55 g C m?2 yr?1. These magnitudes of positive NEE are close to the estimates of NPP for these tundra types in Alexandra Fiord and in other High Arctic locations based on destructive harvests.  相似文献   

13.
从2013年12月至2014年11月,通过野外原位试验,对华西雨屏区常绿阔叶林进行了模拟氮沉降和降雨试验,采用LI-8100土壤碳通量分析系统(LI-COR Inc.,USA)测定了对照(CK)、氮沉降(N)、减雨(R)、增雨(W)、氮沉降+减雨(NR)、氮沉降+增雨(NW)6个处理水平的土壤呼吸速率,并通过回归方程分析了温度和湿度与土壤呼吸速率间的关系。结果表明:(1)氮沉降和增雨抑制了常绿阔叶林土壤呼吸速率,减雨促进了常绿阔叶林土壤呼吸速率。(2)减雨使华西雨屏区常绿阔叶林土壤呼吸年通量增加了258 g/m~2,而模拟氮沉降和增雨使华西雨屏区常绿阔叶林土壤呼吸年通量分别减少了321g/m~2和406g/m~2。(3)减雨增加了土壤呼吸的温度敏感性,模拟氮沉降和增雨降低了土壤呼吸的温度敏感性。(4)模拟温度和湿度与土壤呼吸速率间回归方程分析表明,土壤水分对土壤呼吸速率的影响较小。(5)模拟氮沉降和增雨处理减少土壤微生物生物量碳、氮的含量,减雨处理增加了土壤微生物生物量碳、氮的含量。(6)模拟氮沉降和降雨对华西雨屏区土壤CO_2释放的影响未表现出明显的交互作用。  相似文献   

14.
Summary Natural cores of vegetation and soils of arctic tundra were collected in frozen condition in winter near Barrow, Alaska (71°20N). These cores were used as microcosms in a phytotron experiment to measure the interactions, if any, between increasing atmospheric CO2 concentration and fertilization by ammonium nitrate on net ecosystem CO2 exchange and net yield of tundra vegetation. Increased soil N significantly enhanced net ecosystem CO2 uptake. The effect of increased CO2 concentration had little or no effect on mean net ecosystem carbon balance of the tundra microcosms. Added N significantly increased leaf area and phytomass of vascular plants in the microcosms while increased atmospheric CO2 had no effect on these parameters. We conclude that atmospheric CO2 is not now limiting net ecosystem production in the tundra and that its direct effects will be slight even at double the present concentration. the most probable effects of carbon dioxide in the coastal tundra will be through its indirect effects on temperature, water table, peat decomposition, and the availability of soil nutrients.  相似文献   

15.
The high-arctic terrestrial environment is generally recognized as one of the world's most sensitive areas with regard to global warming. In this study, we examined the influence of an isolated warm period on net ecosystem carbon dioxide (CO2) exchange at high latitude during autumn. Using the Free Air Temperature Increase (FATI) technique, we manipulated air, soil, and vegetation temperatures in late August in a tundra site at Zackenberg in the National Park of North and East Greenland (74°N 21°W). The consequences for gross canopy photosynthesis, canopy respiration, and belowground respiration of increasing these temperatures by approximately 2.5°C were determined with closed dynamic CO2 exchange systems. Under current temperatures, the ecosystem acted as a net CO2 source, releasing 19 g CO2-C m−2 over the 14-day study period. Warm soils and senescing vegetation in autumn were unequivocally responsible for this efflux. Heating enhanced CO2 efflux to 29 g CO2-C m−2. This effect was attributed to a 39% increase in belowground respiration, which was the main component of the carbon (C) budget. Gross photosynthesis, on the other hand, was not affected significantly by the simulated warming. Although the aftereffects of an isolated warm period on the C balance in early winter could be significant, simulations with a simple C budget model suggest that soil carbon pools are not affected to a great extent by such a climatic disturbance. The influence on atmospheric carbon, however, appears to be significant. Received 9 June 2000; accepted 20 December 2000.  相似文献   

16.
The effect of soil water content on efflux of CO2 from soils has been described by linear, logarithmic, quadratic, and parabolic functions of soil water expressed as matric potential, gravimetric and volumetric water content, water holding capacity, water-filled pore space, precipitation indices, and depth to water table. The effects of temperature and water content are often statistically confounded. The objectives of this study are: (1) to analyze seasonal variation in soil water content and soil respiration in the eastern Amazon Basin where seasonal temperature variation is minor; and (2) to examine differences in soil CO2 emissions among primary forests, secondary forests, active cattle pastures, and degraded cattle pastures. Rates of soil respiration decreased from wet to dry seasons in all land uses. Grasses in the active cattle pasture were productive in the wet season and senescent in the dry season, resulting in the largest seasonal amplitude of CO2 emissions, whereas deep-rooted forests maintained substantial soil respiration during the dry season. Annual emissions were 2.0, 1.8, 1.5, and 1.0 kg C m-2 yr-1 for primary forest, secondary forest, active pasture, and degraded pasture, respectively. Emissions of CO2 were correlated with the logarithm of matric potential and with the cube of volumetric water content, which are mechanistically appropriate functions for relating soil respiration at below-optimal water contents. The parameterization of these empirical functions was not consistent with those for a temperate forest. Relating rates of soil respiration to water and temperature measurements made at some arbitrarily chosen depth of the surface horizons is simplistic. Further progress in defining temperature and moisture functions may require measurements of temperature, water content and CO2 production for each soil horizon.  相似文献   

17.
The spatial and temporal controls on soil CO2 production and surface CO2 efflux have been identified as outstanding gaps in our understanding of carbon cycling. We investigated both across two riparian-hillslope transitions in a subalpine catchment, northern Rocky Mountains, Montana. Riparian-hillslope transitions provide ideal locations for investigating the controls on soil CO2 dynamics due to strong, natural gradients in the factors driving respiration, including soil water content (SWC) and soil temperature. We measured soil air CO2 concentrations (20 and 50 cm), surface CO2 efflux, soil temperature, and SWC at eight locations. We investigated (1) how soil CO2 concentrations differed within and between landscape positions; (2) how the timing of peak soil CO2 concentrations varied across riparian and hillslope zones; and (3) whether higher soil CO2 concentrations necessarily resulted in higher efflux (i.e. did surface CO2 efflux follow patterns of subsurface CO2)? Soil CO2 concentrations were significantly higher in the riparian zones, likely due to higher SWC. The timing of peak soil CO2 concentrations also differed between riparian and hillslope zones, with highest hillslope concentrations near peak snowmelt and highest riparian concentrations during the late summer and early fall. Surface CO2 efflux was relatively homogeneous at monthly timescales as a result of different combinations of soil CO2 production and transport, which led to equifinality in efflux across the transects. However, efflux was 57% higher in the riparian zones when integrated to cumulative growing season efflux, and suggests higher riparian soil CO2 production.  相似文献   

18.
青藏高原高寒草甸土壤CO2排放对模拟氮沉降的早期响应   总被引:5,自引:0,他引:5  
研究大气氮沉降输入对青藏高原高寒草甸土壤-大气界面CO2交换通量的影响,对于准确评价全球变化背景下区域碳平衡至关重要。通过构建多形态、低剂量的增氮控制试验,利用静态箱-气相色谱法测定土壤CO2排放通量,同时测定相关土壤变量和地上生物量,分析高寒草甸土壤CO2排放特征及其主要驱动因子。研究结果表明:低、高剂量氮输入倾向于消耗土壤水分,而中剂量氮输入有利于土壤水分的保持;施氮初期总体上增加了土壤无机氮含量,铵态氮累积效应更为显著;施氮显著增加地上生物量和土壤CO2排放通量,铵态氮的促进效应显著高于硝态氮。另外,土壤CO2排放通量主要受土壤温度驱动,其次为地上生物量和铵态氮储量。上述结果反映了氮沉降输入短期内可能刺激了植物生长和土壤微生物活性,加剧了土壤-大气界面CO2排放。  相似文献   

19.
Similar nonsteady‐state automated chamber systems were used to measure and partition soil CO2 efflux in contrasting deciduous (trembling aspen) and coniferous (black spruce and jack pine) stands located within 100 km of each other near the southern edge of the Boreal forest in Canada. The stands were exposed to similar climate forcing in 2003, including marked seasonal variations in soil water availability, which provided a unique opportunity to investigate the influence of climate and stand characteristics on soil CO2 efflux and to quantify its contribution to the net ecosystem CO2 exchange (NEE) as measured with the eddy‐covariance technique. Partitioning of soil CO2 efflux between soil respiration (including forest‐floor vegetation) and forest‐floor photosynthesis showed that short‐ and long‐term temporal variations of soil CO2 efflux were related to the influence of (1) soil temperature and water content on soil respiration and (2) below‐canopy light availability, plant water status and forest‐floor plant species composition on forest‐floor photosynthesis. Overall, the three stands were weak to moderate sinks for CO2 in 2003 (NEE of ?103, ?80 and ?28 g C m?2 yr?1 for aspen, black spruce and jack pine, respectively). Forest‐floor respiration accounted for 86%, 73% and 75% of annual ecosystem respiration, in the three respective stands, while forest‐floor photosynthesis contributed to 11% and 14% of annual gross ecosystem photosynthesis in the black spruce and jack pine stands, respectively. The results emphasize the need to perform concomitant measurements of NEE and soil CO2 efflux at longer time scales in different ecosystems in order to better understand the impacts of future interannual climate variability and vegetation dynamics associated with climate change on each component of the carbon balance.  相似文献   

20.
Peatlands contain large amount of carbon stock that is vulnerable to release into the atmosphere. Mostly because of human impact, the peatlands at Zoige Wetlands face severe degradation, and the groundwater table is now lower than before, which has increased the population of the plateau zokor, a burrowing rodent. However, the impact of these changes on ecosystem carbon flows has not been studied. To investigate how the plateau zokor and the groundwater level alter the ecosystem respiration of the Zoige peatlands, we sampled the CO2 flux of hummocks shaped by the zokors and compared it with the CO2 flux of undisturbed sites with different groundwater table levels. The soil organic carbon (SOC), soil water content (SWC) and soil temperature at 5 cm (T5) were measured. SOC showed no significant difference among the four sampling sites and did not correlate with the CO2 flux, while SWC was found to partly determine the CO2 flux. A linear equation could adequately describe the relationship between the natural logarithm of the ecosystem respiration and the soil temperature. It is demonstrated that descending groundwater table might accelerate ecosystem respiration and the CO2 flux from hummocks was higher than the CO2 flux from the control site in the non-growing season. With rising temperature, the CO2 flux from the control site accelerated faster than that from the hummocks. Our results show that ecosystem respiration was significantly lower from hummocks than at the control site in the growing season. The results on the impact of zokors on greenhouse gas emissions presented in this paper provide a useful reference to help properly manage not only this, but other litter-burrowing mammals at peatland sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号