首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Summary In the gastric mucosa of two teleost species, the perch (Perca fluviatilis) and the catfish (Ameiurus nebulosus) three endocrine cell types were found, located predominantly between the mucoid cells of the gastric mucosa. A fourth cell type is present in the gastric glands of catfish. Each cell type was defined by its characteristic secretory granules. Type-I cells were predominant in both fish. These cells contained round or oval granules with a pleomorphic core. The average diameter of granules was 400 nm for the perch and 270 nm for the catfish. Type-II cells of both species displayed small, highly osmiophilic granules about 100 nm in diameter. The secretory granules of type-III cells (260 nm in the perch and 190 nm in the catfish) were round or slightly oval in shape and were filled with a finely particulate electron-dense material. Type-IV cells of the catfish were found in the gastric glands only. Their cytoplasm was filled with homogeneous, moderately electron-dense granules averaging 340 nm in diameter. The physiological significance of these different morphological types of gastric endocrine cells requires further investigation.  相似文献   

3.
The cardiac and pyloric glands in the gastric mucosa of the South African hedgehog, Atelerix frontalis, are described. The cardiac area of the stomach contains proper cardiac glands and lacks undifferentiated fundic glands. The cardiac glands are simple tubular, coiled, and lined with columnar cells ultrastructurally similar to those of the gastric surface epithelium. Secretory granules with varying electron densities fill the apical cytoplasm of these cells. In contrast to other mammals, these glands lack mucous neck cells. The neck of the pyloric glands contains only a single cell type, whereas the basal regions of these glands contain “light” and “dark” cells. The secretory granules in the “dark” cells and the pyloric neck cells have a moderate electron density and often contain an electron dense core. An electron-lucent cytoplasm with numerous polysomes is characteristic of the “light” cells. Some “light” cells contain electron-dense granules in the apical cytoplasm. The presence of only neutral mucins in the cardiac gland cells denotes the absence of mucous neck cells. The acidic mucins within the pyloric neck cells seem to indicate that these cells are mucous neck cells, whereas the neutral mucins within the basally located pyloric gland cells show at least a partial functional difference from the pyloric neck cells. © 1993 Wiley-Liss, Inc.  相似文献   

4.
Summary The gastric mucosa of a reptile, the lizard Tiliqua scincoides, has been examined by light and electron microscopy. The gastric pits lead into glands that are extensively coiled in the proximal stomach but become progressively shorter and straighter in the distal stomach. The following epithelial cell types have been identified: (i) Surface mucous cells (SMC) line the entire lumenal surface as well as the pits. They contain mucus granules that stain with periodic acid-Schiff and, like the granules of mammalian SMC, commonly contain an electron dense core that appears not to be mucus (periodic acid-chromic acid-silver methenamine nonreactive). (ii) Glandular mucous cells are present in glands throughout the mucosa. They are probably homologous with the mucous neck and antral gland cells of mammals; like SMC their mucus granules contain nonglycoprotein cores. (iii) Oxynticopeptic cells (OPC) are the predominant cell type in the proximal glands but become infrequent distally. Their fine structure resembles that of OPC in other nonmammalian vertebrates, with features like those of both parietal cells and zymogen cells of mammals, (iv) Endocrine cells of three different types have been identified. Two of these show close similarities to the EC and ECL cells of mammals.The authors thank Mrs. D. Flavell for technical assistance. This study was supported by a grant from the Clive and Vera Ramaciotti Foundations  相似文献   

5.
Summary An ultrastructural study of enterochromaffin-like (ECL) cells in the gastric mucosa of the white-belly opossum Didelphis albiventris (Marsupialia) was carried out. In parallel, histochemical methods were used at the light-microscopical level to demonstrate argentaffin cells, argyrophilic cells, and serotonin- and histamine-immunoreactive elements. Argentaffin and serotonin-immunoreactive cells were scattered, and argyrophilic cells were numerous, within the full thickness of the mucosa. Argyrophilic cell distribution was similar to that of histamine-immunoreactive elements. At the electron-microscopical level, the oxyntic mucosa of D. albiventris presented endocrine cells with secretory granules morphologically similar to those of the ECL cell of eutherian mammals. However, in this marsupial, the ECL cell exhibited a variable mixture of two distinct types of secretory granules: (1) granules with the morphological appearance of the eutherian ECL cell, and (2) granules morphologically similar to those of the eutherian enterochromaffin (EC) cells. Based on this morphological pattern of the ECL cell granules, it is proposed that in the oxyntic mucosa of the opossum D. albiventris, the EC and ECL cells represent distinct steps in the same line of cell differentiation; the ECL cell should also be a site of histamine storage.  相似文献   

6.
Summary Chromogranins A and B are glycoproteins originally detected in the adrenal medulla. These proteins are also present in a variety of neuroendocrine cells. The subcellular distribution of the chromogranins, and particularly their intra-granular topology are of special interest with respect to their putative functions.Endocrine cells of the guinea pig adrenal medulla, pancreas and gastric mucosa were investigated immunoelectron microscopically for the subcellular distribution of both chromogranins. Out of 13 established endocrine cell types in all locations, only two endocrine cell types showed immunoreactivity for both chromogranin A and B, and eight endocrine cell types showed immunoreactivities only for chromogranin A. These immunoreactivities varied inter-cellularly. Three endocrine cell types were unreactive for the chromogranins. Moreover, some hormonally non-identified endocrine cells in the pancreas and the gastric mucosa also contained chromogranin A immunoreactivities.Subcellularly, chromogranin A or B were confined to secretory granules. In most endocrine cells, the secretory granules showed chromogranin immunoreactivities of varying densities. Furthermore, the intra-granular topology of chromogranin A or B in the secretory granules varied considerably: in some endocrine cell types, i.e. chromaffin-, gastrin- and enterochromaffin-like-cells, chromogranin A immunoreactivity was localized in the perigranular and/or dense core region of the secretory granules; in others, i.e. insulin-, pancreatic polypeptide-and bovine adrenal medulla dodecapeptide-cells, it was present preferentially in the electron-opaque centre of the secretory granules; chromogranin B immunoreactivity was localized preferentially in the perigranular region of the secretory granules of chromaffin cells and gastrin-cells. The inter-cellular and inter-granular variations of chromogranin A and B immunoreactivities point to differences in biosynthesis or processing of the chromogranins among endocrine cells and their secretory granules.  相似文献   

7.
Y Cetin  D Grube 《Histochemistry》1991,96(4):301-310
Chromogranins A and B are glycoproteins originally detected in the adrenal medulla. These proteins are also present in a variety of neuroendocrine cells. The subcellular distribution of the chromogranins, and particularly their intra-granular topology are of special interest with respect to their putative functions. Endocrine cells of the guinea pig adrenal medulla, pancreas and gastric mucosa were investigated immunoelectron microscopically for the subcellular distribution of both chromogranins. Out of 13 established endocrine cell types in all locations, only two endocrine cell types showed immunoreactivity for both chromogranin A and B, and eight endocrine cell types showed immunoreactivities only for chromogranin A. These immunoreactivities varied inter-cellularly. Three endocrine cell types were unreactive for the chromogranins. Moreover, some hormonally non-identified endocrine cells in the pancreas and the gastric mucosa also contained chromogranin A immunoreactivities. Subcellularly, chromogranin A or B were confined to secretory granules. In most endocrine cells, the secretory granules showed chromogranin immunoreactivities of varying densities. Furthermore, the intra-granular topology of chromogranin A or B in the secretory granules varied considerably: in some endocrine cell types, i.e. chromaffin-, gastrin- and enterochromaffin-like-cells, chromogranin A immunoreactivity was localized in the perigranular and/or dense core region of the secretory granules; in others, i.e. insulin-, pancreatic polypeptide- and bovine adrenal medulla dodecapeptide-cells, it was present preferentially in the electron-opaque centre of the secretory granules; chromogranin B immunoreactivity was localized preferentially in the perigranular region of the secretory granules of chromaffin cells and gastrin-cells. The inter-cellular and inter-granular variations of chromogranin A and B immunoreactivities point to differences in biosynthesis or processing of the chromogranins among endocrine cells and their secretory granules.  相似文献   

8.
Class III mucin, identified by paradoxical concanavalin A staining, is confined to gastric gland mucous cells and is an essential component of the gastric surface mucous gel layer. The pretreatment required has hampered the application of this method to electron microscopic studies. Antibody HIK1083 reacts selectively with class III mucins. The present study was undertaken to explore, electron microscopically, the immunoreactivity of the human stomach to HIK1083. We examined normal mucosa from resected human stomachs (five cases; formalin-fixed, paraffin-embedded) and gastric biopsy specimens from patients with early gastric cancer [nine cases; glutaraldehyde- and osmium-fixed, epoxy-embedded (seven cases) and half-strength Karnovsky’s solution-fixed, Lowicryl K4M-embedded (two cases)]. Immunostaining with HIK1083 and anti-lysozyme antibody was examined under light and electron microscopes. Gland mucous cells were labeled with HIK1083, and lysozyme was detected in some gland mucous cells and surface mucous cells. Electron microscopically, the secretory granules of gland mucous cells contained a single electron-dense core. HIK1083-positive mucins and lysozyme coexisted in the secretory granules of gastric gland mucous cells. HIK1083-reactive mucins and lysozyme were distributed in the matrix and in the dense core of these secretory granules, respectively. HIK1083 can be used for electron immunohistochemistry. Accepted: 1 December 1999  相似文献   

9.
10.
The oxyntic mucosa of the mammalian stomach is rich in endocrine cells, such as ECL cells, A-like cells, somatostatin cells, D1/P cells and, in some species, enterochromaffin cells. The various endocrine cell types can be distinguished on the basis of their characteristic cytoplasmic granules and vesicles. The ECL cells contain numerous large secretory vesicles and relatively few, small electron-dense granules and small clear microvesicles. We have suggested that in the rat the ECL cells contain most of the gastric histamine with the secretory vesicles as the major histamine storage site in these cells. α-Fluoromethylhistidine is an irreversible inhibitor of histidine decarboxylase, the histamine-forming enzyme. We have previously shown that this enzyme inhibitor depletes histamine from the ECL cells in the rat and reduces the number of secretory vesicles in the cytoplasm. In the present study, we have examined whether α-fluoromethylhistidine affects the ECL cells in other species and whether it affects other types of endocrine cells in the oxyntic mucosa of the rat. Mice, rats and hamsters were treated with the inhibitor (3 mg/kg per h) via minipumps subcutaneously for 24 h. This treatment lowered the oxyntic mucosal histamine concentration by 65–90% and the number and volume density of the secretory vesicles by 85–95% in the ECL cells of the three species examined. In contrast, the number and volume density of granules and microvesicles were not greatly affected. No evidence was found for an effect of α-fluoromethylhistidine on A-like cells, somatostatin cells or D1/P cells of the rat stomach, suggesting that, unlike the ECL cells, they do not contain histamine. Received: 18 January 1996 / Accepted: 23 May 1996  相似文献   

11.
An immunocytochemical technique using specific antiglucagon serum reveals the presence of glucagon-containing cells situated exclusively in the oxyntic glandular mucosa of the dog stomach. Electron microscope examination of the mucosa demonstrated endocrine cells containing secretory granules with a round dense core surrounded by a clear halo, indistinguishable from secretory granules of pancreatic A cells. Like the alpha granules of pancreatic A cells, the granules of these gastric endocrine cells exhibited a peripheral distribution of silver grains after Grimelius silver staining. Moreover, the granules of these cells were found to be specifically labeled with reaction product, using the peroxidase immunocytochemical technique at the ultrastructural level. Accordingly, these cells were named gastric A cells. These data suggest that the gastric oxyntic mucosa contains cells indistinguishable cytologically, cytochemically, and immunocytochemically from pancreatic A cells. It is believed that gastric A cells are responsible for the secretion of the gastric glucagon.  相似文献   

12.
Analyses of the histology, histochemistry, and ultrastructre of the Harderian gland of Coluber viridiflavus prove the gland to be compound acinar and to produce a seromucous secretion. Acinar cells (type I) contain secretory granules that are composite, consisting ultrastructurally of three distinct parts that are sharply separated. They are similar to the “special secretory granules” described in the cells of the Harderian gland of the lizard Podarcis s. sicula. Some acini of the most anterior and posterior parts of the gland are mucous. Acinar cells (type II) of this type contain secretory granules that are Alcian blue/PAS positve. At the ultrastructural level, they appear homogeneous and of low density, characteristic of mucous secretions. These mucus-secreting anterior and posterior parts of the Harderian gland may by considered as regions of intial differentiation of the anterior and posterior lacrimal galnds.  相似文献   

13.
Membranous organelles, acid glycoconjugates and lipids were characterized in the digestive tract mucosa of Hemisorubim platyrhynchos by cytochemistry techniques. Two types of mucous‐secreting cells were observed in the digestive tract epithelium: goblet cells in the oesophagus and intestine and epithelial cells in the stomach. These cells had a Golgi apparatus more developed than the other cell types. The cytochemical analysis revealed that secretory granules are reactive to acid glycoconjugates, varying in reaction intensity according to the region of the digestive tract. Acid glycoconjugate reactions were also observed in oesophageal epithelial cell microridges and in enterocyte microvilli. In the digestive tract, acid glycoconjugates act to protect the epithelial surface, increasing mucous viscosity, which facilitates the passage of food, prevents the binding of parasites and facilitates their removal. Through lipid staining, a coated membrane was observed around each secretory granule of the oesophageal and intestinal goblet cells, while gastric epithelial cells granules were fully reactive. Oxynticopeptic cells of the gastric glands showed lipid droplets in the cytoplasm and also in the mitochondrial matrix, which act as an energy reserve for these cells that have a high energy demand. Enterocytes showed a well‐developed smooth endoplasmic reticulum, especially in the apical region of the cell, being related to absorption and resynthesis of lipids.  相似文献   

14.
Background. Two types of mucous cell are present in gastric mucosa: surface mucous cells (SMCs) and gland mucous cells (GMCs), which consist of cardiac gland cells, mucous neck cells, and pyloric gland cells. We have previously reported that the patterns of glycosylation of SMC mucins are reversibly altered by Helicobacter pylori infection. In this study, we evaluated the effects of H. pylori infection on the expression of GMC mucins in pyloric gland cells. Methods. Gastric biopsy specimens from the antrums of 30 H. pylori‐infected patients before and after eradication of H. pylori and 10 normal uninfected volunteers were examined by immunostaining for MUC6 (a core protein of GMC mucins), α1,4‐N‐acetyl‐glucosaminyl transferase (α4GnT) (the glycosyltransferase which forms GlcNAcα1‐4Galβ‐R), and GlcNAcα1‐4Galβ‐R (a GMC mucin‐specific glycan). Results. MUC6, α4GnT, and HIK1083‐reactive glycan were expressed in the cytoplasm, supranuclear region, and secretory granules in pyloric gland cells, respectively. The immunoreactivity of MUC6 and α4GnT, but not of GlcNAcα1‐4Galβ‐R, in the pyloric gland increased in H. pylori‐associated gastritis, and after the eradication of H. pylori, the increased expression of MUC6 and α4GnT in the gastric mucosa of H. pylori‐infected patients decreased to almost normal levels. This up‐regulation was correlated with the degree of inflammation. Conclusions. In addition to the synthesis of GMC mucins increasing reversibly, their metabolism or release may also increase reversibly in H. pylori‐associated gastritis. The up‐regulation of the expression of gastric GMC mucins may be involved in defense against H. pylori infection in the gastric surface mucous gel layer and on the gastric mucosa.  相似文献   

15.
Summary The epithelium of the fundic region mucosa of the hind stomach in the Llama guanacoe has been studied using morphological and histochemical methods. Morphology suggests that solute and water absorption may occur in the epithelium of the surface and of the foveolae, although this absorption can not be estimated because of the extensive secretion of the gastric glands. The same cells of the surface and foveolar epithelium show numerous secretory granules. The glands reveal neck cells, chief cells, a large number of oxyntic cells, four types of endocrine cells (A-like, ECL, D and EC), brush cells and wandering cells. PAS and Alcian blue reactions for light microscopy suggest a secretion of neutral and acidic mucosubstances in the surface and foveolar epithelium, of neutral mucosubstances only in the neck cells. Periodic acid-thiocarbohydrazide silver proteinate (PA-TCH-SP) reaction for electron microscopy confirms the presence of neutral mucosubstances within the secretory granules of the surface, foveolar and neck epithelial cells. In all these cells, the reaction product is also evident within sacculi and vesicles of the maturing surface of the Golgi apparatus. A positive PA-TCH-SP reaction also occurs on the membrane (and not on the contents) of the Golgi apparatus (maturing surface) and of the secretory granules of the chief cells as well as on the membrane of the Golgi apparatus and of apical vesicles and tubules of the oxyntic cells. In addition, silver granules slightly enhance the electron density of the contents of the secretory granules in the endocrine cells. Morphological and histochemical findings are discussed and compared with results described by others for monogastric mammals.  相似文献   

16.
The results of an ultrastructural investigation of the gastric glands of the ruin lizard are reported. In this reptile the stomach can be divided into a larger fundus and a smaller pars pilorica. Fundic glands are characterized by three main kinds of cells: mucous, endocrine, and oxynticopeptic; the latter were not observed in the pyloric glands. The morphological features of the oxynticopeptic cells change from the proximal to the distal region of the fundic mucosa. In the proximal region, numerous electron-dense secretory granules, a well-developed granular endoplasmic reticulum, an evident Golgi complex, and a reduced system of smooth-surfaced vesicles and tubules in the apical cytoplasm characterize these cells. In the distal fundic region, oxynticopeptic cells possessed numerous mitochondria and a well-developed smooth-surfaced endoplasmic reticulum, but secretory granules were rare. These data suggest the existence of a gradient in the production of proteolytic enzymes, and perhaps also of hydrochloric acid, along the oral-aboral axis of the stomach. The results are discussed with regard to the evolution of the gastric glands and of the digestive mechanism in vertebrates.  相似文献   

17.
Summary Argyrophilic and argentaffin cells occur in the stomach and intestinal epithelium of the sea-squirt, Ciona intestinalis L.. These cells are characterized by their basal swelling which contains the nucleus surrounded by small secretory granules and by a filamentous cell-apex which reaches the gut lumen. The cells are scattered unevenly within the epithelium. Their number decreases rapidly towards the lower part of the intestine. The localization, size of granules and their shape are features which differentiate these cells from other secretory cells in the gut epithelium such as mucous cells. These cells are thought to possess an endocrine function.The excellent technical assistance of Mrs. R. Sprang is gratefully acknowledged  相似文献   

18.
Summary The glycoconjugates of the human fundic mucosa were characterized at the ultrastructural level by means of direct (Helix pomatia agglutinin-gold complex) and indirect lectin techniques (Concanavalin A and horseradish peroxidase-gold complex; wheat germ agglutinin and ovomucoid-gold complex). Surface mucous cells and mucous neck cells secreted O-glycoproteins with N-acetylgalactosamine and N-acetylglucosamine residues at the non reducing terminus of the saccharidic chain. The secretory granules of the mucous neck cells showed condensed areas slightly reactive to ConA. The results obtained in the chief cells suggest that these cells secrete N-glycoproteins rich in mannose and/or glucose residues. Transitional cells, presenting both morphological characteristics and lectin binding pattern intermediate to the mucous neck and chief cells have been observed. The surface of the intracellular canaliculi of the parietal cell was labelled by HPA, WGA and ConA. In the neck region of the gastric glands, immature parietal cells containing abundant mucous granules reactive to HPA, WGA and ConA were observed. The present results further corroborate the existence of a common cell precursor for surface mucous, mucous neck and parietal cells. In a further step, mucous neck cells gradually differentiate into chief cells the transitional cells being an intermediate stage.  相似文献   

19.
Summary The ultrastructure of endocrine-like cells of the human lung was compared to the ultrastructure of endocrine-like cells of the stomach and pancreas in both adult and foetal material.Three types of endocrine-like cells were found in the human foetal lung. Type 1 or P1 cells contained very small granules (about 110 nm) of two varieties, cored and vesicular; type 2 or P2 cells with cored granules measuring about 130 nm; and type 3 cells with cored granules of about 180–190 nm. In the adult lung only one type Pa cells with cored granules could be found.Cells resembling foetal P1 cells were not found in foetal or adult gastric mucosa, or in the pancreas. In the gastric mucosa cells resembling pulmonary Pa or P2 cells were moderately represented and often difficult to distinguish from each other. Thus, they were grouped together as gastric P cells. Cells with granules resembling those of pulmonary type 3 cells were found most numerous in the adult oxyntic mucosa. Cells resembling gastric P cells (and pulmonary P2 cells) were rather numerous in foetal pancreas, but very rare in adult pancreas. Few cells containing granules somewhat resembling those of pulmonary type 3 cells were present in both foetal and adult pancreas.The results were discussed in respect to 1) the similarities between some gastric or pancreatic carcinoids and lung carcinoids, 2) the gastro-pancreatic P cells as a separate cell population, 3) the possible secretion by the lung endocrine-like cells of active substances, either amines or peptides, 4) the similarity between the secretory granules of Pa and P1 cells and neurosecretory granules of the hypothalamus and between P2 cells and some endocrine cells of the pituitary.Supported in part by the Italian National Research Council (Grants N. 75.00630.04 and N. 76.01558.04)  相似文献   

20.
Summary The following five cell types have been recognized and defined on the basis of their fine structure in the gastric epithelium of B. schlosseri: vacuolated and zymogenic cells (described in a previous paper); ciliated mucous, endocrine and plicated cells. The ciliated mucous cells are distributed at the apex and the bottom of the gastric folds and along the dorsal groove. The mucus droplets appear to form from the Golgi complex as secretory granules of variable density and texture, which are released from the cell after fusion of their membranes with the apical plasma membrane. Holocrine or apocrine secretion has not been observed. The endocrine cells are scattered and are characterized by electron dense granules, especially numerous in the basal region of the cell. Finally, the plicated cells, present in the pyloric caecum, show rod-like microvilli, a well developed Golgi complex and abundant, deep infoldings of the basal plasma membrane, which are associated with numerous mitochondria. The possible role of the gastric cell types is discussed taking into account information concerning morphologically similar cells in other animals, as well as previously reported data on the biochemistry and physiology of digestion and excretion in ascidians.The authors are grateful to Mr. G. Tognon for technical help and to the Staff of the Stazione Idrobiologica di Chioggia for their assistance in collecting material. Work supported by a C.N.R. Grant from the Istituto di Biologia del Mare, Venezia, Contract n. 71.00396/04.115.542.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号