首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The stratified epithelium of the central collecting duct of the elasmobranch(Scylliorhinus canicula, Galeorhinus galeus andRaja batis) rectal gland consists of 3 to 6 layers of cells: one superficial, and several basal cell layers. In the superficial layer normally three different types of cells can be distinguished (a) goblet cells, (b) cells with apical secretory granules and (c) flask-shaped cells. The superficial layer ofScylliorhinus canicula reveals a further cell type, so-called mitochondria-rich cells. The epithelial areas built by these cells are always single-layered. The goblet-cells are very similar to goblet cells found in the intestine of vertebrates. Their dominant structures are a well developed ergastoplasm, a large Golgi-apparatus and mucous granules compactly filling the apical cell region. The cells with apical secretory granules are columnar or dumbbell shaped. They contain a rough-surfaced endoplasmic reticulum and a well developed Golgi-apparatus. The secretory granules are loosely distributed within the Golgi-field and are arranged in one or more rows just below the cell apex. The flask shaped cells are characterized by a cytoplasm rich in small vesicles. They posses few dictyosomes and several small mitochondria. There is some evidence for endocytotic activity. The mitochondria-rich cells are characterized by lateral cell interdigitations, by a basal labyrinth and by numerous mitochondria. They are similar to the excretory cells of rectal gland parenchyma. The cells of the basal epithelium layers are differenciated only to a small extent. They are joined in a loose formation with white blood cells often found in the intercellular spaces. The function of the elasmobranch rectal gland is not restricted to the excretion of concentrated salt solutions. There is also a significant secretion of mucous substances. The tubule glands are primarily excretory, the epithelium cells of the central collecting duct mainly secretory in function.  相似文献   

2.
Scanning electron microscopy shows that lingual papillae occur all over the dorsal surface of the tongue of the freshwater turtle, Geoclemys reevesii. The surface of each papilla is composed of compactly distributed hemispherical bulges, each composed of a single cell. Microvilli are widely distributed over the surface of cells. Histological examination reveals that the connective tissue penetrates deep into the center of papillae and that the epithelium is stratified columnar. Under the transmission electron microscope, the cells of the basal and the deep intermediate layers of the epithelium appear rounded. A large nucleus lies in the central area of each cell. The cytoplasm contains mitochondria, endoplasmic reticulum and free ribosomes. The cell membrane form numerous processes. The shallow intermediate layer contains two types of cell. The cytoplasm of the first has numerous fine granules, in addition to mitochondria, ribosomes, and endoplasmic reticulum. The other type of cell contains highly electron-dense granules. The surface layer shows two cell types. One type consists of typical mucous cells. The other type of cell contains fine, electron-lucent granules. The latter cells lie on the free-surface side, covering the mucous cells, and have microvilli on their free surfaces.  相似文献   

3.
Summary The glycoconjugates of the human fundic mucosa were characterized at the ultrastructural level by means of direct (Helix pomatia agglutinin-gold complex) and indirect lectin techniques (Concanavalin A and horseradish peroxidase-gold complex; wheat germ agglutinin and ovomucoid-gold complex). Surface mucous cells and mucous neck cells secreted O-glycoproteins with N-acetylgalactosamine and N-acetylglucosamine residues at the non reducing terminus of the saccharidic chain. The secretory granules of the mucous neck cells showed condensed areas slightly reactive to ConA. The results obtained in the chief cells suggest that these cells secrete N-glycoproteins rich in mannose and/or glucose residues. Transitional cells, presenting both morphological characteristics and lectin binding pattern intermediate to the mucous neck and chief cells have been observed. The surface of the intracellular canaliculi of the parietal cell was labelled by HPA, WGA and ConA. In the neck region of the gastric glands, immature parietal cells containing abundant mucous granules reactive to HPA, WGA and ConA were observed. The present results further corroborate the existence of a common cell precursor for surface mucous, mucous neck and parietal cells. In a further step, mucous neck cells gradually differentiate into chief cells the transitional cells being an intermediate stage.  相似文献   

4.
Summary The posterior salivary gland of Octopods comprises a parenchyma of branching tubules in a connective tissue stroma. The tubules are lined by either of two distinct epithelia.Type A is composed predominantly of columnar cells containing large granules whose contents vary in appearance from cell to cell.Type B consists of three cell types: A circumferential layer of processes ofstriated cells containing radially orientated infoldings of the cellular membrane, between which are packed numerous mitochondria;cistern cells which contain an invaginated system of membrane loops, the interior of which is in communication with the lumen; andlumen lining cells. All these cells send processes to the basement membrane of the tubule, so that both epithelia are pseudostratified. The functional significance of this cytological specialisation is discussed.Thanks are due to Prof. J. Z. Young F. R. S. and Prof. E. G. Gray for helpful discussion and use of facilities during the course of this study, and to Prof. Young for the loan of the Cajal preparations. I also wish to thank Miss E. Franke for excellent technical assistance.  相似文献   

5.
The fine structure of the esophagus of Pratylenchus penetrans is described. The gland lobe is syncytial and contains two types of nuclei: three large nuclei with little chromatin, and more numerous smaller nuclei with large amounts of chromatin. Some of the smaller nuclei are associated only with glandular tissue, whereas others are part of nerve ceils within the esophagus. Clusters of free ribosomes, rough endoplasmic reticulum, and numerous mitochondria occur in the lobe region where the secretory granules are formed. No Golgi bodies were observed. On the basis of these observations, possible differences in the mechanism of secretory granule formation between plant-parasitic nematodes are discussed. Several other minor differences between the fine structure of other plant-parasitic nematodes previously examined and that of P. penetrans are also noted.  相似文献   

6.
The principal and accessory submandibular glands of the common vampire bat, Desmodus rotundus, were examined by electron microscopy. The secretory endpieces of the principal gland consist of serous tubules capped at their blind ends by mucous acini. The substructure of the mucous droplets and of the serous granules varies according to the mode of specimen preparation. With ferrocyanide-reduced osmium postfixation, the mucous droplets are moderately dense and homogeneous; the serous granules often have a polygonal outline and their matrix shows clefts in which bundles of wavy filaments may be present. With conventional osmium postfixation, the mucous droplets have a finely fibrillogranular matrix; the serous granules are homogeneously dense. Mucous cells additionally contain many small, dense granules that may be small peroxisomes, as well as aggregates of 10-nm cytofilaments. Intercalated duct cells are relatively unspecialized. Striated ducts are characterized by highly folded basal membranes and vertically oriented mitochondria. Luminal surfaces of all of the secretory and duct cells have numerous microvilli, culminating in a brush borderlike affair in the striated ducts. The accessory gland has secretory endpieces consisting of mucous acini with small mucous demilunes. The acinar mucous droplets contain a large dense region; the lucent portion has punctate densities. Demilune mucous droplets lack a dense region and consist of a light matrix in which fine fibrillogranular material is suspended. A ring of junctional cells, identifiable by their complex secretory granules, separates the mucous acini from the intercalated ducts. The intercalated ducts lack specialized structure. Striated ducts resemble their counterparts in the principal gland. As in the principal gland, all luminal surfaces are covered by an array of microvilli. At least some of the features of the principal and accessory submandibular glands of the vampire bat may be structural adaptations to the exigencies posed by the exclusively sanguivorous diet of these animals and its attendant extremely high intake of sodium chloride.  相似文献   

7.
Fine structure of the corpuscles of stannius in the toadfish.   总被引:1,自引:0,他引:1  
The micro-anatomy of the corpuscles of Stannius of the toadfish, Opsanus tau, an aglomerular marine teleost, has been studied by light and electron microscopy. The corpuscles are composed of extensively anastomosed cords of epithelial cells which maintain intimate contact with blood capillaries. Most of the epithelial cells contain acidophilic granules which also show a positive reaction with the periodic acid-Schiff technique and aldehyde fuchsin. On the basis of fine structural criteria, three cell types can be recognized. The granular cells contain abundant quantities of granular endoplasmic reticulum, ribosomes, Golgi apparatus with prosecretory granules, coated vesicles, polymorphic mitochondria with lamellar cristae, filaments, microtubules, a cilium, a variety of lysosome-like dense bodies, glycogen particles, lipid droplets, secretory granules and intranuclear lipid-like inclusions. One variety of agranular cell (type I) is characterized by the total absence of secretory granules, but it contains large amounts of granular endoplasmic reticulum and ribosomes, conspicuous profiles of Golgi apparatus, coated vesicles and sometimes an abundance of glycogen. Another variety of agranular cell (type II) has poorly developed cytoplasmic organelles. The perivascular space between the capillary and parenchyma contains connective tissue cells and abundant nerve fibers. The different types of epithelial cells observed in the corpuscles of Stannius of this fish may represent functional stages of the secretory cycle in a single cell type.  相似文献   

8.
Summary The ultrastructure of the mucous and endocrine cells of the gastric mucosa of the cane toad (Bufo marinus) has been examined. Surface mucous cells line the entire gastric mucosa and pits. Many of their secretory granules contain an electron-dense core that remains unreactive after cytochemical testing for glycoproteins. A second spatially and structurally discrete population of mucous cells is present in the gastric glands. These glandular mucous cells are probably homologous with the antral gland and mucous neck cells of mammals; their secretory granules also contain non-glycoprotein cores. Three distinct populations of endocrine cells show structural homologies with gastric hormone-storing cells of higher vertebrates.This study was supported by grants from N.H. & M.R.C. (Australia) and the Clive and Vera Ramaeiotti Foundations  相似文献   

9.
Three types of mature epidermal neurons and several of theirdifferentiating stages aie presented in this ultrastructuralstudy. Each of the three types, neurosensory, neurosecretory,and ganglionic cells, is derived from interstitial cells, (i)Mature neurosensory cells contain elongated nuclei, a well-developedcilium in each cell, and membrane-bounded neurosecretory droplets(700–1300 A in diameter). There may be two or more neuritesin which are numerous microtubules, glycogen particles, ribosomesand many neurosecretory droplets, (ii) Mature neurosecretorycells closely resemble neurosensory cells, except that no ciliumis present. The perikarya contain small, dense nuclei, neurosecretorydroplets (850–1300 A in diameter), mitochondria, glycogenparticles, and microtubules. Active Golgi complexes are presentin both cell types. The nemites are similar to those describedfor neurosensory cells, (iii) Mature ganglionic cells are bipolaror multipolar. The small, dense nuclei are surrounded by a smallamount of cytoplasm. The neurites contain mostly microtubules;a few mitochondria, ribosomes, and glycogen particles are alsopresent, but there are no secretory droplets. To date, only neurosensory and neurosecretory cells have beenobserved in the gastiodermis. They are structurally indistinguishablefrom their epideimal counterparts. A significant finding is that three types of synapses—neuromuscular,neuronematocyte, and interneuronal—are identified in boththe epidermal and gastrodermal neurons.  相似文献   

10.
In squirrel monkey (Saimiri sciureus) the position of submandibular glands in the neck, on either side of the trachea, more closely resembles that of rodents than that of other primates. The glands exhibit seromucous acini and mucous tubules with seromucous demilunes. Electron microscopy shows basal cytoplasmic folds and well-developed intercellular tissue spaces and canaliculi only in relation to seromucous cells. Greatly dilated cisternae of the granular endoplasmic reticulum and prominent Golgi membranes are characteristic of the mucous cells. The secretory granules of seromucous and mucous cells are morphologically distinct and indicate chemically different products for the two cell types. Histochemically, the seromucous cell shows the presence of acid mucosubstance as indicated by the PAS and Alcian blue techniques. Preliminary studies showed no appreciable quantity of amylase in submandibular glands. The intercalated duct cell is juxtaposed with the acinar cell or mucous tubule cell. Short luminal microvilli, prominent Golgi complexes and scant apical granules are notable features of intercalated duct cells. Four cell types compose the striated ducts, viz., granular light cells, agranular dark cells, vesiculated dark cells, and basal cells. Peripheral nerves are found in five different locations: in the connective tissue (interstitial), between adjacent myoepithelial and mucous-secreting cells, in the intercellular space between adjacent secretory cells, and between basal plications of striated ducts and between adjacent myoepithelial and intercalated duct cells.  相似文献   

11.
Summary The following five cell types have been recognized and defined on the basis of their fine structure in the gastric epithelium of B. schlosseri: vacuolated and zymogenic cells (described in a previous paper); ciliated mucous, endocrine and plicated cells. The ciliated mucous cells are distributed at the apex and the bottom of the gastric folds and along the dorsal groove. The mucus droplets appear to form from the Golgi complex as secretory granules of variable density and texture, which are released from the cell after fusion of their membranes with the apical plasma membrane. Holocrine or apocrine secretion has not been observed. The endocrine cells are scattered and are characterized by electron dense granules, especially numerous in the basal region of the cell. Finally, the plicated cells, present in the pyloric caecum, show rod-like microvilli, a well developed Golgi complex and abundant, deep infoldings of the basal plasma membrane, which are associated with numerous mitochondria. The possible role of the gastric cell types is discussed taking into account information concerning morphologically similar cells in other animals, as well as previously reported data on the biochemistry and physiology of digestion and excretion in ascidians.The authors are grateful to Mr. G. Tognon for technical help and to the Staff of the Stazione Idrobiologica di Chioggia for their assistance in collecting material. Work supported by a C.N.R. Grant from the Istituto di Biologia del Mare, Venezia, Contract n. 71.00396/04.115.542.  相似文献   

12.
There are two main epithelial cell types in the secretory tubules of mammalian glands: serous and mucous. The former is believed to secrete predominantly water and antimicrobials, the latter mucins. Primary cultures of human airway gland epithelium have been available for almost 20 yr, but they are poorly differentiated and lack clear features of either serous or mucous cells. In this study, by varying growth supports and media, we have produced cultures from human airway glands that in terms of their ultrastructure and secretory products resemble either mucous or serous cells. Of four types of porous-bottomed insert tested, polycarbonate filters (Transwells) most strongly promoted the mucous phenotype. Coupled with the addition of epidermal growth factor (EGF), this growth support produced “mucous” cells that contained the large electron-lucent granules characteristic of native mucous cells, but lacked the small electron-dense granules characteristic of serous cells. Furthermore, they showed high levels of mucin secretion and low levels of release of lactoferrin and lysozyme (markers of native serous cells). By contrast, growth on polyethylene terephthalate filters (Cyclopore) in medium lacking EGF produced “serous” cells in which small electron-dense granules replaced the electron-lucent ones, and the cells had high levels of lactoferrin and lysozyme but low levels of mucins. Measurements of transepithelial resistance and short-circuit current showed that both “serous” and “mucous” cell cultures possessed tight junctions, had become polarized, and were actively secreting Cl.  相似文献   

13.
The localization of pepsinogens (PG A and PG C) was studied intracellularly in human gastric biopsies embedded in Lowicryl K4M, using affinity-purified antibodies and protein A-gold. The homogeneous secretory granules of the chief cells contained both PG A and PG C, as was proved by serial sections. Identical reaction was also seen in the core of the biphasic mucous neck cell granules, whereas the mantle did not label. The rough endoplasmic reticulum (RER) and Golgi complex of the chief cells and mucous neck cells contained ample label. Transitional cells identified by the presence of granules of both chief cells and mucous neck cells were recognized. This type of mucous neck cell is thought to transform into a chief cell. However, an increase of RER that could explain an increase of the pepsinogen production was not observed. A mixture of these granules was also found in cells morphologically characterized as young parietal cells, suggesting a common precursor for these three cell types. These observations make the transformation from mucous neck to chief cells questionable. Antral gland cells contained only PG C, as was shown in serial section, too.  相似文献   

14.
Summary The structure of the frog gastric and esophageal mucosa was studied in the course of a complete hibernation period and compared with that in summer frogs (see preceding article).It appeared that especially chief cells and parietal cells are liable to cytoplasmic remodelling. Thus, in chief cells the rough endoplasmic reticulum (RER) undergoes disorganization, the number of free ribosomes increases and the Golgi system becomes transformed into a compact vesicular structure. The number of pepsinogen granules in chief cells of late winter frogs is only 20% of that in frogs studied at the onset of hibernation. The loss of pepsinogen granules is at least partly due to autophagy. In addition, lysosomes are involved in focal degradation of the cytoplasm, which may ultimately result in complete degeneration of some chief cells. The presence of zymogen granules containing fibrocyte-like cells in the tunica propria proved heterophagocytosis by these cells.In parietal cells, the area occupied by smooth endoplasmic reticulum becomes reduced. The basal cytoplasm of both chief cells and parietal cells contains numerous lipid droplets, which, in contrast to those in summer frogs, are continuous with RER cisternae. The juxtaposition of lipid droplets and mitochondria seen in summer frogs is eventually lost in hibernating animals.Apart from the appearance of supra-nuclear lipid droplets, the mucous cells of the surface epithelium show no striking alterations. However, in the glandular pits both surface mucous cells and mucous neck cells contain less mucous granules than in summer frogs.The results are discussed in connection with parallel biochemical work and available literature, and in the light of our previous studies on the exocrine pancreas in hibernating frogs.  相似文献   

15.
The fine structure of the hemocytes and nephrocytes in Argas (Persicargas) arboreus is described and compared with that of similar cells in other tick species and insects. The hemocytes are of three types: prohemocytes, with a relatively undifferentiated cytoplasm lacking granular inclusions and probably serving as progenitors of the other hemolymph cell types; plasmatocytes, containing abundant mitochondria, cisternae of rough endoplasmic reticulum (RER), and free ribosomes, as well as some small granular inclusions; granulocytes, the predominant cell type in the hemolymph, containing numerous granules of variable electron density and maturity, and pseudopodia-like processes on the cell surface. Plasmatocytes and granulocytes are phagocytic and possibly also have other functions in the tick body. Cells with intermediate features appear to be in a stage of transition from plasmatocyte to granulocyte. Nephrocytes contain vacuoles enclosing fibrillar material, some electrondense granules, and moderate amounts of the active organelles—mitochondria, RER, and ribosomes. The nephrocyte is surrounded by a basal lamina and its plasma membrane infolds to form many deep invaginations coated by a fine fibrillar material. Openings to these invaginations are closed by membranous diaphragms. Coated tubular elements connect the surface invaginations with large coated vesicles, which appear to be specialized for internalization of proteins from the hemolymph. The dense granules may represent an advanced stage of condensation of ingested protein and thus may be lysosomal residual bodies, or they may develop by accumulation of secretory products.  相似文献   

16.
ULTRASTRUCTURAL ZONATION OF ADRENOCORTEX IN THE RAT   总被引:15,自引:11,他引:4       下载免费PDF全文
The fine structure of the different zones in the adrenal cortex of the adult rat has been studied under the electron microscope. Four regions mainly differentiated by the mitochondrial morphology, the lipid droplets, and the structure of the ground cytoplasm were recognized. In the glomerular zone mitochondria are thin and elongated with an abundant matrix. The inner structure is characterized by the presence of tubules of 300 A that are straight or bend at an angle and which may be grouped in parallel array giving a pseudocrystalline pattern. The wall of each tubule is a finger-like projection of the inner membrane and its cavity corresponds to the outer chamber of the mitochondrion. In the intermediary zone mitochondria are larger and irregular. The matrix is filled with convoluted tubules and vesicular elements. The lipid droplets are larger and irregular in the glomerulosa and and small in the intermedia. The ground substance is dense and contains free ribosomes in the glomerulosa and starts to be vacuolated in the intermedia. In the fasciculata mitochondria are round or oval and are filled with vesicular elements with a mean size of 450 A. Larger vesicles and more clear elements (vacuoles) are seen near the edge as if their content was diluted. Some of these vacuoles protrude on the surface. In the reticular zone mitochondria are also vesicular but frequently show signs of alteration and disruption. Dense elements recognized as microbodies are observed in the fasciculata but they increase in number in the reticularis. These results are discussed on the light of the so called zonal theory of the adrenal cortex. Two stages in the differentiation of the mitochondria are postulated. The tubular structure of the glomerulosa undergoes a process of disorientation and dilatation of the tubules to form the tubulo-vesicular elements of the intermediary zone. In a second stage of differentiation, by fragmentation of the tubules, the vesicular structure of fasciculata is formed. These findings are discussed from the viewpoint of the relationship between mitochondria and synthesis of steroid hormones. A secretory process that starts within mitochondria by the formation of vesicles and proceeds into the ground cytoplasm, as extruded and more clear vacuoles, is postulated.  相似文献   

17.
The fine structure of the oxyntic cell from the gastric glands of the bullfrog was studied in lead hydroxide—stained sections of gastric mucosa fixed in buffered osmium tetroxide and embedded in n-butyl methacrylate. The oxyntic cell in non-acid-secreting stomachs (gastric juice pH, 7.4–7.8) is characterized by: (a) numerous closely packed smooth surfaced vesicular and tubular profiles disposed randomly in the cell; some of these elements show interconnections making it possible to identify this component with smooth surfaced endoplasmic reticula of certain other cell types, (b) a small percentage of rough surfaced profiles characteristic of endoplasmic reticula possessing RNP particles on the outer membrane surfaces, (c) a Golgi complex consisting of multiple isolated non-polarized arrays of smooth surfaced parallel elongated profiles and associated vesicular elements, (d) a sparse granular component (140 A) scattered freely in the cytoplasmic matrix, (e) numerous mitochondria with a dense matrix and containing an unusually large number of closely approximated cristae, (f) a number of zymogen granules consisting of either a dense body limited by a membrane or surrounded by a halo of less dense material which is in turn limited by a membrane, and (g) a number of granules (~260 A) containing several smaller granules (~80 A) identified presumably as glycogen. Intracellular canaliculi were not observed. Instead the free surface of the oxyntic cell facing the lumen of the gastric gland shows a complicated plication of the plasma membrane. Intercellular canaliculi are seen frequently between adjacent oxyntic cells. The walls of these canaliculi are made up of folded and ruffled cell membranes. The basal surface of the cell also exhibited this type of configuration. Occasional smooth surfaced profiles are seen communicating with the free surface, the wall of an intercellular canaliculus, or the basal surface of the cell. Although nerve endings were not found in association with oxyntic cells, unmyelinated nerves were observed in the vicinity of the gastric glands.  相似文献   

18.
Summary The gastric mucosa of a reptile, the lizard Tiliqua scincoides, has been examined by light and electron microscopy. The gastric pits lead into glands that are extensively coiled in the proximal stomach but become progressively shorter and straighter in the distal stomach. The following epithelial cell types have been identified: (i) Surface mucous cells (SMC) line the entire lumenal surface as well as the pits. They contain mucus granules that stain with periodic acid-Schiff and, like the granules of mammalian SMC, commonly contain an electron dense core that appears not to be mucus (periodic acid-chromic acid-silver methenamine nonreactive). (ii) Glandular mucous cells are present in glands throughout the mucosa. They are probably homologous with the mucous neck and antral gland cells of mammals; like SMC their mucus granules contain nonglycoprotein cores. (iii) Oxynticopeptic cells (OPC) are the predominant cell type in the proximal glands but become infrequent distally. Their fine structure resembles that of OPC in other nonmammalian vertebrates, with features like those of both parietal cells and zymogen cells of mammals, (iv) Endocrine cells of three different types have been identified. Two of these show close similarities to the EC and ECL cells of mammals.The authors thank Mrs. D. Flavell for technical assistance. This study was supported by a grant from the Clive and Vera Ramaciotti Foundations  相似文献   

19.
Lee JS  Lee YG  Park JJ  Shin YK 《Tissue & cell》2012,44(5):316-324
In this study, the morphology and ultrastructure of the foot of Tegillarca granosa was compared with the bivalves from different habitats. The sediment of habitat of T. granosa is mostly a mixture of sand (68.93%) and mud (24.12%). The foot is wedge-shaped with multiple projections on the surface and covered with ciliary tufts. The epithelial layer is simple and composed of ciliated columnar epithelia and mucous cells. Although the mucous cells are distributed mostly in the epithelial layer, they are developed even in the connective tissues and muscle layers, and the mucous cells mostly contain acidic carboxylated mucosubstances. From the TEM observation, secretory cells are classified into three types. Type A secretory cell has a goblet form and is most widely distributed among the three types. Type B secretory cell has an oval form and the secretory granule has fibrous substance. Type C secretory cell has an elongated elliptic form and membrane-bounded secretory granules. The muscle fiber bundles are composed mainly of smooth muscle fibers. The smooth muscle fibers can be divided into two types. Type A muscle fibers have evenly distributed thick microfilaments between the thin microfilaments of cytoplasm. Type B muscle fiber has cluster of condensed microfilaments in the medulla cytoplasm while the cortical cytoplasm has loose distribution of thin microfilaments.  相似文献   

20.
The alimentary canal of the spittlebug Lepyronia coleopterata (L.) differentiates into esophagus, filter chamber, midgut (conical segment, tubular midgut), and hindgut (ileum, rectum). The filter chamber is composed of the anterior extremity of the midgut, posterior extremity of the midgut, proximal Malpighian tubules, and proximal ileum; it is externally enveloped by a thin cellular sheath and thick muscle layers. The sac-like anterior extremity of the midgut is coiled around by the posterior extremity of the midgut and proximal Malpighian tubules. The tubular midgut is subdivided into an anterior tubular midgut, mid-midgut, posterior tubular midgut, and distal tubular midgut. Four Malpighian tubules run alongside the ileum, and each terminates in a rod closely attached to the rectum. Ultrastructurally, the esophagus is lined with a cuticle and enveloped by circular muscles; its cytoplasm contains virus-like fine granules of high electron-density. The anterior extremity of the midgut consists of two cellular types: (1) thin epithelia with well-developed and regularly arranged microvilli, and (2) large cuboidal cells with short and sparse microvilli. Cells of the posterior extremity of the midgut have regularly arranged microvilli and shallow basal infoldings devoid of mitochondria. Cells of the proximal Malpighian tubule possess concentric granules of different electron-density. The internal proximal ileum lined with a cuticle facing the lumen and contains secretory vesicles in its cytoplasm. Dense and long microvilli at the apical border of the conical segment cells are coated with abundant electron-dense fine granules. Cells of the anterior tubular midgut contain spherical secretory granules, oval secretory vesicles of different size, and autophagic vacuoles. Ferritin-like granules exist in the mid-midgut cells. The posterior tubular midgut consists of two cellular types: 1) cells with shallow and bulb-shaped basal infoldings containing numerous mitochondria, homocentric secretory granules, and fine electron-dense granules, and 2) cells with well-developed basal infoldings and regularly-arranged apical microvilli containing vesicles filled with fine granular materials. Cells of the distal tubular midgut are similar to those of the conical segment, but lack electron-dense fine granules coating the microvilli apex. Filamentous materials coat the microvilli of the conical segment, anterior and posterior extremities of the midgut, which are possibly the perimicrovillar membrane closely related to the nutrient absorption. The lumen of the hindgut is lined with a cuticle, beneath which are cells with poorly-developed infoldings possessing numerous mitochondria. Single-membraned or double-membraned microorganisms exist in the anterior and posterior extremities of the midgut, proximal Malpighian tubule and ileum; these are probably symbiotic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号