首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The development of complete regional carbon (C) budgets for different biomes is an integral step in the effort to predict global response and potential feedbacks to a changing climate regime. Wetland and lake contributions to regional C cycling remain relatively uncertain despite recent research highlighting their importance. Using a combination of field surveys and tower‐based carbon dioxide (CO2) flux measurements, modeling, and published literature, we constructed a complete C budget for the Northern Highlands Lake District in northern Wisconsin/Michigan, a ~6400 km2 region rich in lakes and wetlands. This is one of the first regional C budgets to incorporate aquatic and terrestrial C cycling under the same framework. We divided the landscape into three major compartments (forests, wetlands, and surface waters) and quantified all major C fluxes into and out of those compartments, with a particular focus on atmospheric exchange but also including sedimentation in lakes and hydrologic fluxes. Landscape C storage was dominated by peat‐containing wetlands and lake sediments, which make up only 20% and 13% of the landscape area, respectively, but contain >80% of the total fixed C pool (ca. 400 Tg). We estimated a current regional C accumulation of 1.1±0.1 Tg yr?1, and the largest regional flux was forest net ecosystem exchange (NEE) into aggrading forests for a total of 1.0±0.1 Tg yr?1. Mean wetland NEE (0.12±0.06 Tg yr?1 into wetlands), lake CO2 emissions and riverine efflux (each ca. 0.03±0.01 Tg yr?1) were smaller but of consequence to the overall budget. Hydrologic transport from uplands/wetlands to surface waters within the region was an important vector of terrestrial C. Regional C fluxes and pools would be misrepresented without inclusion of surface waters and wetlands, and C budgets in heterogeneous landscapes open opportunities to examine the sensitivities of important fluxes to changes in climate and land use/land cover.  相似文献   

2.
The net exchange of CO2 (NEE) between a Scots pine (Pinus sylvestris L.) forest ecosystem in eastern Finland and the atmosphere was measured continuously by the eddy covariance (EC) technique over 4 years (1999–2002). The annual temperature coefficient (Q10) of ecosystem respiration (R) for these years, respectively, was 2.32, 2.66, 2.73 and 2.69. The light‐saturated rate of photosynthesis (Amax) was highest in July or August, with an annual average Amax of 10.9, 14.6, 15.3 and 17.1 μmol m?2 s?1 in the 4 years, respectively. There was obvious seasonality in NEE, R and gross primary production (GPP), exhibiting a similar pattern to photosynthetically active radiation (PAR) and air temperature. The integrated daily NEE ranged from 2.59 to ?4.97 g C m?2 day?1 in 1999, from 2.70 to ?4.72 in 2000, from 2.61 to ?4.71 in 2001 and from 5.27 to ?4.88 in 2002. The maximum net C uptake occurred in July, with the exception of 2000, when it was in June. The interannual variation in ecosystem C flux was pronounced. The length of the growing season, based on net C uptake, was 179, 170, 175 and 176 days in 1999–2002, respectively, and annual net C sequestration was 152, 101, 172 and 205 g C m?2 yr?1. It is estimated that ecosystem respiration contributed 615, 591, 752 and 879 g C m?2 yr?1 to the NEE in these years, leading to an annual GPP of ?768, ?692, ?924 and ?1084 g C m?2 yr?1. It is concluded that temperature and PAR were the main determinants of the ecosystem CO2 flux. Interannual variations in net C sequestration are predominantly controlled by average air temperature and integrated radiation in spring and summer. Four years of EC data indicate that boreal Scots pine forest ecosystem in eastern Finland acts as a relatively powerful carbon sink. Carbon sequestration may benefit from warmer climatic conditions.  相似文献   

3.
One of the main challenges to quantifying ecosystem carbon budgets is properly quantifying the magnitude of night‐time ecosystem respiration. Inverse Lagrangian dispersion analysis provides a promising approach to addressing such a problem when measured mean CO2 concentration profiles and nocturnal velocity statistics are available. An inverse method, termed ‘Constrained Source Optimization’ or CSO, which couples a localized near‐field theory (LNF) of turbulent dispersion to respiratory sources, is developed to estimate seasonal and annual components of ecosystem respiration. A key advantage to the proposed method is that the effects of variable leaf area density on flow statistics are explicitly resolved via higher‐order closure principles. In CSO, the source distribution was computed after optimizing key physiological parameters to recover the measured mean concentration profile in a least‐square fashion. The proposed method was field‐tested using 1 year of 30‐min mean CO2 concentration and CO2 flux measurements collected within a 17‐year‐old (in 1999) even‐aged loblolly pine (Pinus taeda L.) stand in central North Carolina. Eddy‐covariance flux measurements conditioned on large friction velocity, leaf‐level porometry and forest‐floor respiration chamber measurements were used to assess the performance of the CSO model. The CSO approach produced reasonable estimates of ecosystem respiration, which permits estimation of ecosystem gross primary production when combined with daytime net ecosystem exchange (NEE) measurements. We employed the CSO approach in modelling annual respiration of above‐ground plant components (c. 214 g C m?2 year?1) and forest floor (c. 989 g C m?2 year?1) for estimating gross primary production (c. 1800 g C m?2 year?1) with a NEE of c. 605 g C m?2 year?1 for this pine forest ecosystem. We conclude that the CSO approach can utilise routine CO2 concentration profile measurements to corroborate forest carbon balance estimates from eddy‐covariance NEE and chamber‐based component flux measurements.  相似文献   

4.
Inland waters transport and emit into the atmosphere large amounts of carbon (C), which originates from terrestrial ecosystems. The effect of land cover and land‐use practises on C export from terrestrial ecosystems to inland waters is not fully understood, especially in heterogeneous landscapes under human influence. We sampled for dissolved C species in five tributaries with well‐determined subcatchments (total size 174.5 km2), as well as in various points of two of the subcatchments draining to a boreal lake in southern Finland over a full year. Our aim was to find out how land cover and land‐use affect C export from the catchments, as well as CH4 and CO2 concentrations of the streams, and if the origin of C in stream water can be determined from proxies for quality of dissolved organic matter (DOM). We further estimated the gas evasion from stream surfaces and the role of aquatic fluxes in regional C cycling. The export rate of C from the terrestrial system through an aquatic conduit was 19.3 g C m?2(catchment) yr?1, which corresponds to 19% of the estimated terrestrial net ecosystem exchange of the catchment. Most of the C load to the recipient lake consisted of dissolved organic carbon (DOC, 6.1 ± 1.0 g C m?2 yr?1); the share of dissolved inorganic carbon (DIC) was much smaller (1.0 ± 0.2 g C m?2 yr?1). CO2 and CH4 emissions from stream and ditch surfaces were 7.0 ± 2.4 g C m?2 yr?1 and 0.1 ± 0.04 g C m?2 yr?1, respectively, C emissions being thus equal with C load to the lake. The proportion of peatland in the catchment and the drainage density of peatland increased DOC in streams, whereas the proportion of agricultural land in the catchment decreased it. The opposite was true for DIC. Drained peatlands were an important CH4 source for streams.  相似文献   

5.
  • 1 In order to study the dynamics of primary production and decomposition in the lake littoral, an interface zone between the pelagial, the catchment and the atmosphere, we measured ecosystem/atmosphere carbon dioxide (CO2) exchange in the littoral zone of an eutrophic boreal lake in Finland during two open water periods (1998–1999). We reconstructed the seasonal net CO2 exchange and identified the key factors controlling CO2 dynamics. The seasonal net ecosystem exchange (NEE) was related to the amount of carbon accumulated in plant biomass.
  • 2 In the continuously inundated zones, spatial and temporal variation in the density of aerial shoots controlled CO2 fluxes, but seasonal net exchange was in most cases close to zero. The lower flooded zone had a net CO2 uptake of 1.8–6.2 mol m?2 per open water period, but the upper flooded zone with the highest photosynthetic capacity and above‐ground plant biomass, had a net CO2 loss of 1.1–7.1 mol m?2 per open water period as a result of the high respiration rate. The excess of respiration can be explained by decomposition of organic matter produced on site in previous years or leached from the catchment.
  • 3 Our results from the two study years suggest that changes in phenology and water level were the prime cause of the large interannual difference in NEE in the littoral zone. Thus, the littoral is a dynamic buffer and source for the load of allochthonous and autochthonous carbon to small lakes.
  相似文献   

6.
7.
Evasion of gaseous carbon (C) from streams is often poorly quantified in landscape C budgets. Even though the potential importance of the capillary network of streams as C conduits across the land–water–atmosphere interfaces is sometimes mentioned, low‐order streams are often left out of budget estimates due to being poorly characterized in terms of gas exchange and even areal surface coverage. We show that evasion of C is greater than all the total dissolved C (both organic and inorganic) exported downstream in the waters of a boreal landscape. In this study evasion of carbon dioxide (CO2) from running waters within a 67 km2 boreal catchment was studied. During a 4 year period (2006–2009) 13 streams were sampled on 104 different occasions for dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC). From a locally determined model of gas exchange properties, we estimated the daily CO2 evasion with a high‐resolution (5 × 5 m) grid‐based stream evasion model comprising the entire ~100 km stream network. Despite the low areal coverage of stream surface, the evasion of CO2 from the stream network constituted 53% (5.0 (±1.8) g C m?2 yr?1) of the entire stream C flux (9.6 (±2.4) g C m?2 yr?1) (lateral as DIC, DOC, and vertical as CO2). In addition, 72% of the total CO2 loss took place already in the first‐ and second‐order streams. This study demonstrates the importance of including CO2 evasion from low‐order boreal streams into landscape C budgets as it more than doubled the magnitude of the aquatic conduit for C from this landscape. Neglecting this term will consequently result in an overestimation of the terrestrial C sink strength in the boreal landscape.  相似文献   

8.
Response of soil respiration (CO2 emission) to simulated nitrogen (N) deposition in a mature tropical forest in southern China was studied from October 2005 to September 2006. The objective was to test the hypothesis that N addition would reduce soil respiration in N saturated tropical forests. Static chamber and gas chromatography techniques were used to quantify the soil respiration, following four‐levels of N treatments (Control, no N addition; Low‐N, 5 g N m?2 yr?1; Medium‐N, 10 g N m?2 yr?1; and High‐N, 15 g N m?2 yr?1 experimental inputs), which had been applied for 26 months before and continued throughout the respiration measurement period. Results showed that soil respiration exhibited a strong seasonal pattern, with the highest rates found in the warm and wet growing season (April–September) and the lowest rates in the dry dormant season (December–February). Soil respiration rates showed a significant positive exponential relationship with soil temperature, whereas soil moisture only affect soil respiration at dry conditions in the dormant season. Annual accumulative soil respiration was 601±30 g CO2‐C m?2 yr?1 in the Controls. Annual mean soil respiration rate in the Control, Low‐N and Medium‐N treatments (69±3, 72±3 and 63±1 mg CO2‐C m?2 h?1, respectively) did not differ significantly, whereas it was 14% lower in the High‐N treatment (58±3 mg CO2‐C m?2 h?1) compared with the Control treatment, also the temperature sensitivity of respiration, Q10 was reduced from 2.6 in the Control with 2.2 in the High‐N treatment. The decrease in soil respiration occurred in the warm and wet growing season and were correlated with a decrease in soil microbial activities and in fine root biomass in the N‐treated plots. Our results suggest that response of soil respiration to atmospheric N deposition in tropical forests is a decline, but it may vary depending on the rate of N deposition.  相似文献   

9.
Diagnostic carbon cycle models produce estimates of net ecosystem production (NEP, the balance of net primary production and heterotrophic respiration) by integrating information from (i) satellite‐based observations of land surface vegetation characteristics; (ii) distributed meteorological data; and (iii) eddy covariance flux tower observations of net ecosystem exchange (NEE) (used in model parameterization). However, a full bottom‐up accounting of NEE (the vertical carbon flux) that is suitable for integration with atmosphere‐based inversion modeling also includes emissions from decomposition/respiration of harvested forest and agricultural products, CO2 evasion from streams and rivers, and biomass burning. Here, we produce a daily time step NEE for North America for the year 2004 that includes NEP as well as the additional emissions. This NEE product was run in the forward mode through the CarbonTracker inversion setup to evaluate its consistency with CO2 concentration observations. The year 2004 was climatologically favorable for NEP over North America and the continental total was estimated at 1730 ± 370 TgC yr?1 (a carbon sink). Harvested product emissions (316 ± 80 TgC yr?1), river/stream evasion (158 ± 50 TgC yr?1), and fire emissions (142 ± 45 TgC yr?1) counteracted a large proportion (35%) of the NEP sink. Geographic areas with strong carbon sinks included Midwest US croplands, and forested regions of the Northeast, Southeast, and Pacific Northwest. The forward mode run with CarbonTracker produced good agreement between observed and simulated wintertime CO2 concentrations aggregated over eight measurement sites around North America, but overestimates of summertime concentrations that suggested an underestimation of summertime carbon uptake. As terrestrial NEP is the dominant offset to fossil fuel emission over North America, a good understanding of its spatial and temporal variation – as well as the fate of the carbon it sequesters ─ is needed for a comprehensive view of the carbon cycle.  相似文献   

10.
The quantity of carbon dioxide (CO2) emissions from inland waters into the atmosphere varies, depending on spatial and temporal variations in the partial pressure of CO2 (pCO2) in waters. Using 22,664 water samples from 851 boreal lakes and 64 boreal streams, taken from different water depths and during different months we found large spatial and temporal variations in pCO2, ranging from below atmospheric equilibrium to values greater than 20,000???atm with a median value of 1048???atm for lakes (n?=?11,538 samples) and 1176???atm for streams (n?=?11,126). During the spring water mixing period in April/May, distributions of pCO2 were not significantly different between stream and lake ecosystems (P?>?0.05), suggesting that pCO2 in spring is determined by processes that are common to lakes and streams. During other seasons of the year, however, pCO2 differed significantly between lake and stream ecosystems (P?<?0.0001). The variable that best explained the differences in seasonal pCO2 variations between lakes and streams was the temperature difference between bottom and surface waters. Even small temperature differences resulted in a decline of pCO2 in lake surface waters. Minimum pCO2 values in lake surface waters were reached in July. Towards autumn pCO2 strongly increased again in lake surface waters reaching values close to the ones found in stream surface waters. Although pCO2 strongly increased in the upper water column towards autumn, pCO2 in lake bottom waters still exceeded the pCO2 in surface waters of lakes and streams. We conclude that throughout the year CO2 is concentrated in bottom waters of boreal lakes, although these lakes are typically shallow with short water retention times. Highly varying amounts of this CO2 reaches surface waters and evades to the atmosphere. Our findings have important implications for up-scaling CO2 fluxes from single lake and stream measurements to regional and global annual fluxes.  相似文献   

11.
Natural fires annually decimate up to 1% of the forested area in the boreal region of Québec, and represent a major structuring force in the region, creating a mosaic of watersheds characterized by large variations in vegetation structure and composition. Here, we investigate the possible connections between this fire‐induced watershed heterogeneity and lake metabolism and CO2 dynamics. Plankton respiration, and water–air CO2 fluxes were measured in the epilimnia of 50 lakes, selected to lie within distinct watershed types in terms of postfire terrestrial succession in the boreal region of Northern Québec. Plankton respiration varied widely among lakes (from 21 to 211 μg C L?1 day?1), was negatively related to lake area, and positively related to dissolved organic carbon (DOC). All lakes were supersaturated in CO2 and the resulting carbon (C) flux to the atmosphere (150 to over 3000 mg C m2 day?1) was negatively related to lake area and positively to DOC concentration. CO2 fluxes were positively related to integrated water column respiration, suggesting a biological component in this flux. Both respiration and CO2 fluxes were strongly negatively related to years after the last fire in the basin, such that lakes in recently burnt basins had significantly higher C emissions, even after the influence of lake size was removed. No significant differences were found in nutrients, chlorophyll, and DOC between lakes in different basin types, suggesting that the fire‐induced watershed features influence other, more subtle aspects, such as the quality of the organic C reaching lakes. The fire‐induced enhancement of lake organic C mineralization and C emissions represents a long‐term impact that increases the overall C loss from the landscape as the result of fire, but which has never been included in current regional C budgets and future projections. The need to account for this additional fire‐induced C loss becomes critical in the face of predictions of increasing incidence of fire in the circumboreal landscape.  相似文献   

12.
Peatland streams have repeatedly been shown to be highly supersaturated in both CO2 and CH4 with respect to the atmosphere, and in combination with dissolved (DOC) and particulate organic carbon (POC) represent a potentially important pathway for catchment greenhouse gas (GHG) and carbon (C) losses. The aim of this study was to create a complete C and GHG (CO2, CH4, N2O) budget for Auchencorth Moss, an ombrotrophic peatland in southern Scotland, by combining flux tower, static chamber and aquatic flux measurements from 2 consecutive years. The sink/source strength of the catchment in terms of both C and GHGs was compared to assess the relative importance of the aquatic pathway. During the study period (2007–2008) the catchment functioned as a net sink for GHGs (352 g CO2‐Eq m?2 yr?1) and C (69.5 g C m?2 yr?1). The greatest flux in both the GHG and C budget was net ecosystem exchange (NEE). Terrestrial emissions of CH4 and N2O combined returned only 4% of CO2 equivalents captured by NEE to the atmosphere, whereas evasion of GHGs from the stream surface returned 12%. DOC represented a loss of 24% of NEE C uptake, which if processed and evaded downstream, outside of the catchment, may lead to a significant underestimation of the actual catchment‐derived GHG losses. The budgets clearly show the importance of aquatic fluxes at Auchencorth Moss and highlight the need to consider both the C and GHG budgets simultaneously.  相似文献   

13.
Southwestern North America faces an imminent transition to a warmer, more arid climate, and it is critical to understand how these changes will affect the carbon balance of southwest ecosystems. In order to test our hypothesis that differential responses of production and respiration to temperature and moisture shape the carbon balance across a range of spatio‐temporal scales, we quantified net ecosystem exchange (NEE) of CO2 and carbon storage across the New Mexico Elevational Gradient, which consists of six eddy‐covariance sites representing biomes ranging from desert to subalpine conifer forest. Within sites, hotter and drier conditions were associated with an increasing advantage of respiration relative to production such that daily carbon uptake peaked at intermediate temperatures – with carbon release often occurring on the hottest days – and increased with soil moisture. Across sites, biotic adaptations modified but did not override the dominant effects of climate. Carbon uptake increased with decreasing temperature and increasing precipitation across the elevational gradient; NEE ranged from a source of ~30 g C m?2 yr?1 in the desert grassland to a sink of ~350 g C m?2 yr?1 in the subalpine conifer forest. Total aboveground carbon storage increased dramatically with elevation, ranging from 186 g C m?2 in the desert grassland to 26 600 g C m?2 in the subalpine conifer forest. These results make sense in the context of global patterns in NEE and biomass storage, and support that increasing temperature and decreasing moisture shift the carbon balance of ecosystems in favor of respiration, such that the potential for ecosystems to sequester and store carbon is reduced under hot and/or dry conditions. This implies that projected climate change will trigger a substantial net release of carbon in these New Mexico ecosystems (~3 Gt CO2 statewide by the end of the century), thereby acting as a positive feedback to climate change.  相似文献   

14.
Cultivation of bioenergy crops has been suggested as a promising option for reduction of greenhouse gas (GHG) emissions from arable organic soils (Histosols). Here, we report the annual net ecosystem exchange (NEE) fluxes of CO2 as measured with a dynamic closed chamber method at a drained fen peatland grown with reed canary grass (RCG) and spring barley (SB) in a plot experiment (= 3 for each cropping system). The CO2 flux was partitioned into gross photosynthesis (GP) and ecosystem respiration (RE). For the data analysis, simple yet useful GP and RE models were developed which introduce plot‐scale ratio vegetation index as an active vegetation proxy. The GP model captures the effect of temperature and vegetation status, and the RE model estimates the proportion of foliar biomass dependent respiration (Rfb) in the total RE. Annual RE was 1887 ± 7 (mean ± standard error, = 3) and 1288 ± 19 g CO2‐C m?2 in RCG and SB plots, respectively, with Rfb accounting for 32 and 22% respectively. Total estimated annual GP was ?1818 ± 42 and ?1329 ± 66 g CO2‐C m?2 in RCG and SB plots leading to a NEE of 69 ± 36 g CO2‐C m?2 yr?1 in RCG plots (i.e., a weak net source) and ?41 ± 47 g CO2‐C m?2 yr?1 in SB plots (i.e., a weak net sink). Standard errors related to spatial variation were small (as shown above), but more significant uncertainties were related to the modelling approach for establishment of annual budgets. In conclusion, the bioenergy cropping system was not more favourable than the food cropping system when looking at the atmospheric CO2 emissions during cultivation. However, in a broader GHG life‐cycle perspective, the lower fertilizer N input and the higher biomass yield in bioenergy cropping systems could be beneficial.  相似文献   

15.
Canada's forests play an important role in the global carbon (C) cycle because of their large and dynamic C stocks. Detailed monitoring of C exchange between forests and the atmosphere and improved understanding of the processes that affect the net ecosystem exchange of C are needed to improve our understanding of the terrestrial C budget. We estimated the C budget of Canada's 2.3 × 106 km2 managed forests from 1990 to 2008 using an empirical modelling approach driven by detailed forestry datasets. We estimated that average net primary production (NPP) during this period was 809 ± 5 Tg C yr?1 (352 g C m?2 yr?1) and net ecosystem production (NEP) was 71 ± 9 Tg C yr?1 (31 g C m?2 yr?1). Harvesting transferred 45 ± 4 Tg C yr?1 out of the ecosystem and 45 ± 4 Tg C yr?1 within the ecosystem (from living biomass to dead organic matter pools). Fires released 23 ± 16 Tg C yr?1 directly to the atmosphere, and fires, insects and other natural disturbances transferred 52 ± 41 Tg C yr?1 from biomass to dead organic matter pools, from where C will gradually be released through decomposition. Net biome production (NBP) was only 2 ± 20 Tg C yr?1 (1 g C m?2 yr?1); the low C sequestration ratio (NBP/NPP=0.3%) is attributed to the high average age of Canada's managed forests and the impact of natural disturbances. Although net losses of ecosystem C occurred during several years due to large fires and widespread bark beetle outbreak, Canada's managed forests were a sink for atmospheric CO2 in all years, with an uptake of 50 ± 18 Tg C yr?1 [net ecosystem exchange (NEE) of CO2=?22 g C m?2 yr?1].  相似文献   

16.
Thus far, grassland ecosystem research has mainly been focused on low‐lying grassland areas, whereas research on high‐altitude grassland areas, especially on the carbon budget of remote areas like the Qinghai‐Tibetan plateau is insufficient. To address this issue, flux of CO2 were measured over an alpine shrubland ecosystem (37°36′N, 101°18′E; 325 above sea level [a. s. l.]) on the Qinghai‐Tibetan Plateau, China, for 2 years (2003 and 2004) with the eddy covariance method. The vegetation is dominated by formation Potentilla fruticosa L. The soil is Mol–Cryic Cambisols. To interpret the biotic and abiotic factors that modulate CO2 flux over the course of a year we decomposed net ecosystem CO2 exchange (NEE) into its constituent components, and ecosystem respiration (Reco). Results showed that seasonal trends of annual total biomass and NEE followed closely the change in leaf area index. Integrated NEE were ?58.5 and ?75.5 g C m?2, respectively, for the 2003 and 2004 years. Carbon uptake was mainly attributed from June, July, August, and September of the growing season. In July, NEE reached seasonal peaks of similar magnitude (4–5 g C m?2 day?1) each of the 2 years. Also, the integrated night‐time NEE reached comparable peak values (1.5–2 g C m?2 day?1) in the 2 years of study. Despite the large difference in time between carbon uptake and release (carbon uptake time < release time), the alpine shrubland was carbon sink. This is probably because the ecosystem respiration at our site was confined significantly by low temperature and small biomass and large day/night temperature difference and usually soil moisture was not limiting factor for carbon uptake. In general, Reco was an exponential function of soil temperature, but with season‐dependent values of Q10. The temperature‐dependent respiration model failed immediately after rain events, when large pulses of Reco were observed. Thus, for this alpine shrubland in Qinghai‐Tibetan plateau, the timing of rain events had more impact than the total amount of precipitation on ecosystem Reco and NEE.  相似文献   

17.
We show that sediment respiration is one of the key factors contributing to the high CO2 supersaturation in and evasion from Finnish lakes, and evidently also over large areas in the boreal landscape, where the majority of the lakes are small and shallow. A subpopulation of 177 randomly selected lakes (<100 km2) and 32 lakes with the highest total phosphorus (Ptot) concentrations in the Nordic Lake Survey (NLS) data base were sampled during four seasons and at four depths. Patterns of CO2 concentrations plotted against depth and time demonstrate strong CO2 accumulation in hypolimnetic waters during the stratification periods. The relationship between O2 departure from the saturation and CO2 departure from the saturation was strong in the entire data set (r2=0.79, n=2 740, P<0.0001). CO2 concentrations were positively associated with lake trophic state and the proportion of agricultural land in the catchment. In contrast, CO2 concentrations negatively correlated with the peatland percentage indicating that either input of easily degraded organic matter and/or nutrient load from agricultural land enhance degradation. The average lake‐area‐weighted annual CO2 evasion based on our 177 randomly selected lakes and all Finnish lakes >100 km2 ( Rantakari & Kortelainen, 2005 ) was 42 g C m?2 LA (lake area), approximately 20% of the average annual C accumulation in Finnish forest soils and tree biomass (covering 51% of the total area of Finland) in the 1990s. Extrapolating our estimate from Finland to all lakes of the boreal region suggests a total annual CO2 evasion of about 50 TgC, a value upto 40% of current estimates for lakes of the entire globe, emphasizing the role of small boreal lakes as conduits for transferring terrestrially fixed C into the atmosphere.  相似文献   

18.
Natural soil pipes, which have been widely reported in peatlands, have been shown to contribute significantly to total stream flow. Here, using measurements from eight pipe outlets, we consider the role of natural pipes in the transport of fluvial carbon within a 17.4‐ha blanket‐peat‐covered catchment. Concentrations of dissolved and particulate organic carbon (DOC and POC) from pipe waters varied greatly between pipes and over time, ranging between 5.3 and 180.6 mg L?1 for DOC and 0.08 and 220 mg L?1 for POC. Pipes were important pathways for peatland fluvial carbon export, with fluxes varying between 0.6 and 67.8 kg yr?1 (DOC) and 0.1 and 14.4 kg yr?1 (POC) for individual pipes. Pipe DOC flux was equivalent to 20% of the annual DOC flux from the stream outlet while the POC flux from pipes was equivalent to 56% of the annual stream POC flux. The proportion of different forms of aquatic carbon to total aquatic carbon flux varied between pipes, with DOC ranging between 80.0% and 91.2%, POC from 3.6% to 17.1%, dissolved CO2‐C from 2.4% to 11.1% and dissolved CH4‐C from 0.004% to 1.3%. The total flux of dissolved CO2‐C and CH4‐C scaled up to all pipe outlets in the study catchment was estimated to be 89.4 and 3.6 kg yr?1 respectively. Overall, pipe outlets produced discharge equivalent to 14% of the discharge in the stream but delivered an amount of aquatic carbon equivalent to 22% of the aquatic carbon flux at the catchment outlet. Pipe densities in blanket peatlands are known to increase when peat is affected by drainage or drying. Hence, environmental change in many peatlands may lead to an increase in aquatic carbon fluxes from natural pipes, thereby influencing the peatland carbon balance and downstream ecological processes.  相似文献   

19.
Effects of stream phosphorus levels on microbial respiration   总被引:2,自引:0,他引:2  
SUMMARY 1. We examined microbial respiration among streams in lowland Costa Rica comprising a natural phosphorus gradient (5–350 μg SRP L?1) resulting from variable inputs of solute‐rich (e.g. P, SO4 and Cl) groundwater. 2. Microbial respiration rates were determined by measuring oxygen change in situ in nine low‐order streams on three substrate types: mixed leaves collected from the stream bottom, conditioned Ficus leaves and sediments. 3. Respiration rates on both leaf types were positively related to phosphorus and negatively related to N : P ratios. Microbial respiration rates on sediments were not related to any of the variables [i.e. soluble reactive phosphorus (SRP), N‐NO3 and N : P] measured. 4. Respiration rates on newly colonised Ficus leaves formed an asymptotic curve increasing to a plateau, suggesting that saturation with phosphorus occurred at concentrations <15 μg SRP L?1. 5. To test the hypothesis that phosphorus was the main solute in solute‐rich water that was driving observed differences in microbial respiration rates, we artificially enriched a small stream with phosphorus and measured changes in respiration before and after enrichment. 6. Experimental phosphorus enrichment produced increases in respiration rates similar in magnitude to those observed in the nine streams forming the natural phosphorus gradient, supporting our hypothesis that phosphorus was the major variable driving interstream differences in microbial respiration rates. Respiration rates were higher in this study than those reported for most other tropical streams and rivers with the exception of those reported for tropical Asian streams. 7. Results indicate that variations in phosphorus concentrations can potentially affect patterns of microbial respiration rates at a landscape level via differential inputs of solute‐rich groundwater into streams.  相似文献   

20.
SUMMARY 1. The Weichsel glaciation has divided Denmark into two regions with different susceptibility to acidification. East of the Weichselian terminal moraine, soils are usually clayey and calcareous, and the streams are alkaline (mean alkalinity 2.24 mmol 1--1) and resistant to inputs of acidifying substances. 2. Trend analysis of pH and alkalinity of water samples taken over 15 years in two streams with alkalinities above 1.5 mmol 1?1 in eastern Jutland, showed no trends of acidification. 3. West of the terminal moraine the soils are sandy and leached and alkalinity is lower (mean 0.59 mmol 1?1). Although such streams with medium alkalinity are believed not to be vulnerable to acidification, we have documented significant decreases in their pH and alkalinity over 12 years. 4. Trends of pH and alkalinity in four western streams with mean alkalinities between 0.05 and 0.79 mmol 1?1 showed annual decreases of 0.027 pH units and 4.7 nmol 1?1 in alkalinity. 5. Overall, Danish streams contain about 7.9 times more calculated free CO2 (pCO2=10?2.6 atm) than water in equilibrium with air (pCO2= 10?3.5 atm). The calculated free CO2 content has increased significantly in western Danish streams over the study period (6.9 μmol 1?1 yr-1). This increase cannot be explained by the prevailing global increase in atmospheric pCO2 which only can account for 0.54 pmol 1?1 yr?1 at maximum. 6. Reasons for the ongoing stream acidification in the western part of Denmark are discussed. We suggest that atmospheric deposition causes stream acidification in a heath-covered catchment without agriculture. In heavily cultivated regions the main acidification factor is argued to be proton production in the soil through nitrification of ammonium-containing fertilizers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号