首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Species distributions are limited by a complex array of abiotic and biotic factors. In general, abiotic (climatic) factors are thought to explain species’ broad geographic distributions, while biotic factors regulate species’ abundance patterns at local scales. We used species distribution models to test the hypothesis that a biotic interaction with a tree, the Colombian oak (Quercus humboldtii), limits the broad-scale distribution of the Acorn Woodpecker (Melanerpes formicivorus) in the Northern Andes of South America. North American populations of Acorn Woodpeckers consume acorns from Quercus oaks and are limited by the presence of Quercus oaks. However, Acorn Woodpeckers in the Northern Andes seldom consume Colombian oak acorns (though may regularly drink sap from oak trees) and have been observed at sites without Colombian oaks, the sole species of Quercus found in South America. We found that climate-only models overpredicted Acorn Woodpecker distribution, suggesting that suitable abiotic conditions (e.g. in northern Ecuador) exist beyond the woodpecker’s southern range margin. In contrast, models that incorporate Colombian oak presence outperformed climate-only models and more accurately predicted the location of the Acorn Woodpecker’s southern range margin in southern Colombia. These findings support the hypothesis that a biotic interaction with Colombian oaks sets Acorn Woodpecker’s broad-scale geographic limit in South America, probably because Acorn Woodpeckers rely on Colombian oaks as a food resource (possibly for the oak’s sap rather than for acorns). Although empirical examples of particular plants limiting tropical birds’ distributions are scarce, we predict that similar biotic interactions may play an important role in structuring the geographic distributions of many species of tropical montane birds with specialized foraging behavior.  相似文献   

2.
Ecological and evolutionary processes influence community assembly at both local and regional scales. Adding a phylogenetic dimension to studies of species turnover allows tests of the extent to which environmental gradients, geographic distance and the historical biogeography of lineages have influenced speciation and dispersal of species throughout a region. We compare measures of beta diversity, phylogenetic community structure and phylobetadiversity (phylogenetic distance among communities) in 34 plots of Amazonian trees across white‐sand and clay terra firme forests in a 60 000 square kilometer area in Loreto, Peru. Dominant taxa in white‐sand forests were phylogenetically clustered, consistent with environmental filtering of conserved traits. Phylobetadiversity measures found significant phylogenetic clustering between terra firme communities separated by geographic distances of <200–300 km, consistent within recent local speciation at the watershed scale in the Miocene‐aged clay‐soil forests near the foothills of the Andes. Although both distance and habitat type yielded statistically significant effects on both species and phylogenetic turnover, the patterns we observed were more consistent with an effect of habitat specialization than dispersal limitation. Our results suggest a role for both broad‐scale biogeographic and evolutionary processes, as well as habitat specialization, influencing community structure in Amazonian forests.  相似文献   

3.
The Andean uplift has played a major role in shaping the current Neotropical biodiversity. However, in arthropods other than butterflies, little is known about how this geographic barrier has impacted species historical diversification. Here, we examined the phylogeography of the widespread color polymorphic spider Gasteracantha cancriformis to evaluate the effect of the northern Andean uplift on its divergence and assess whether its diversification occurred in the presence of gene flow. We inferred phylogenetic relationships and divergence times in G. cancriformis using mitochondrial and nuclear data from 105 individuals in northern South America. Genetic diversity, divergence, and population structure were quantified. We also compared multiple demographic scenarios for this species using a model‐based approach (Phrapl ) to determine divergence with or without gene flow. At last, we evaluated the association between genetic variation and color polymorphism. Both nuclear and mitochondrial data supported two well‐differentiated clades, which correspond to populations occurring on opposite sides of the Eastern cordillera of the Colombian Andes. The final uplift of this cordillera was identified as the most likely force that shaped the diversification of G. cancriformis in northern South America, resulting in a cis‐ and trans‐Andean phylogeographic structure for the species. We also found shared genetic variation between the cis‐ and trans‐Andean clades, which is better explained by a scenario of historical divergence in the face of gene flow. This has been likely facilitated by the presence of low‐elevation passes across the Eastern Colombian cordillera. Our work constitutes the first example in which the Andean uplift coupled with gene flow influenced the evolutionary history of an arachnid lineage.  相似文献   

4.
The patterns of genetic diversity and morphological variation are of central importance in understanding the evolutionary process that drive diversification. We use molecular, morphological, and ecological data to explore the influence of geography and ecology in promoting speciation in the widespread Andean hummingbird genus Adelomyia. Six monophyletic clades were recovered which show distributional limits at well-defined geographic barriers. Percentage sequence divergence ranged between 5.8% and 8.2% between phylogroups separated by large (>4000 km) and small (<50 km) distances respectively, suggesting that geographic isolation may be influential at very different scales. We show that morphological traits in independent phylogroups are more related to environmental heterogeneity than to geographic barriers. We provide a molecular reconstruction of relationships within Adelomyia and recommend its use in future comparative studies of historical biogeography and diversification in the Andes.  相似文献   

5.
All species have limited geographic distributions; but the ecological and evolutionary mechanisms causing range limits are largely unknown. That many species’ geographic range limits are coincident with niche limits suggests limited evolutionary potential of marginal populations to adapt to conditions experienced beyond the range. We provide a test of range limit theory by combining population genetic analysis of microsatellite polymorphisms with a transplant experiment within, at the edge of, and 60 km beyond the northern range of a coastal dune plant. Contrary to expectations, lifetime fitness increased toward the range limit with highest fitness achieved by most populations at and beyond the range edge. Genetic differentiation among populations was strong, with very low, nondirectional gene flow suggesting range limitation via constraints to dispersal. In contrast, however, local adaptation was negligible, and a distance‐dependent decline in fitness only occurred for those populations furthest from home when planted beyond the range limit. These results challenge a commonly held assumption that stable range limits match niche limits, but also raise questions about the unique value of peripheral populations in expanding species’ geographical ranges.  相似文献   

6.
Jordano  Pedro 《Plant Ecology》1993,(1):85-104
Spatial and temporal predictability in the mutual selective pressures of plants and frugivorous birds is a prerequisite for coevolution to occur. I examine the interaction patterns of strongly frugivorous thrushes (Turdus spp.) and their major winter food plants (Juniperus spp., Cupressaceae) and how they vary in space and time. Spatial congruency, rarely considered in seed dispersal studies, is studied at three spatial scales: 1) the total species range; 2) regional distribution; and 3) local abundance and its variation between seasons. Southern Spanish frugivorous thrushes and junipers show very low congruence in distribution patterns at each of these scales. Most juniper species show geographic distributions that are nested within the geographic ranges of thrush species. Bird species showed greater habitat breadth values than plants and were found in a greater percentage of localities. The local bird abundance was strongly correlated across years and sites with the local availability of juniper cones. Cone production varied markedly between years, but the rankings for different species in different years were statistically concordant at mid-elevation and lowland sites. Both bird abundance and cone production showed greater temporal than spatial variability. Variation of cone productions at both temporal and spatial scales was greater than variability in bird abundance. Species with strong interactions of mutual dependence showed very low values of biogeographic congruence, caused by differences in geographic range and habitat specificity. This obviously limits the possibilities for pairwise, specific coevolution to occur. However, mutual effects of species groups are possible to the extent that the component species are ecologically interchangeable in their selective effects and other constraints on coevolution are not operating. The approach used here to examine the patterns of species interactions at different biogeographic scales might prove useful in comparative studies of plant-animal interactions.  相似文献   

7.
The impacts of climate change have re‐energized interest in understanding the role of climate in setting species geographic range edges. Despite the strong focus on species' distributions in ecology and evolution, defining a species range edge is theoretically and empirically difficult. The challenge of determining a range edge and its relationship to climate is in part driven by the nested nature of geography and the multidimensionality of climate, which together generate complex patterns of both climate and biotic distributions across landscapes. Because range‐limiting processes occur in both geographic and climate space, the relationship between these two spaces plays a critical role in setting range limits. With both conceptual and empirical support, we argue that three factors—climate heterogeneity, collinearity among climate variables, and spatial scale—interact to shape the spatial structure of range edges along climate gradients, and we discuss several ways that these factors influence the stability of species range edges with a changing climate. We demonstrate that geographic and climate edges are often not concordant across species ranges. Furthermore, high climate heterogeneity and low climate collinearity across landscapes increase the spectrum of possible relationships between geographic and climatic space, suggesting that geographic range edges and climatic niche limits correspond less frequently than we may expect. More empirical explorations of how the complexity of real landscapes shapes the ecological and evolutionary processes that determine species range edges will advance the development of range limit theory and its applications to biodiversity conservation in the context of changing climate.  相似文献   

8.
Matudaea is the only genus of the Hamamelidaceae found in South America. The genus is composed by two extant species, M. trinervia, from Mexico and Costa Rica, and Matudaea colombiana, from the Colombian Andes; additional fossil records are present in Central Europe. Population genetics, molecular phylogenetics and niche modelling approaches were applied to explain processes related with the trans-Panamanian M. trinervia/M. colombiana split and the putative colonization of the latter to the northern Andes. The split between the two Matudaea species was estimated during Middle Miocene. The colonization of Matudaea into South America could have been facilitated by the closure of the Isthmus of Panama and the global decreasing of temperature during Miocene. Five haplotypes of M. colombiana were identified, which show an eastwards decline of genetic diversity and suggest a founder effect in the colonization of Eastern cordillera of the Colombian Andes. We detected a niche conservatism signal between the two Matudaea species related with Temperature of Coldest Month and Mean Temperature of Driest Quarter bioclimatic variables; this signal might be related to the narrow altitudinal range occupied by the two species.  相似文献   

9.
Aim We explore the utility of newly available optical and microwave remote sensing data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and QuikSCAT (QSCAT) instruments for species distribution modelling at regional to continental scales. Using eight Neotropical species from three taxonomic groups, we assess the extent to which remote sensing data can improve predictions of their geographic distributions. For two bird species, we investigate the specific contributions of different types of remote sensing variables to the predictions and model accuracy at the regional scale, where the benefits of the MODIS and QSCAT satellite data are expected to be most significant. Location South America, with a focus on the tropical and subtropical Andes and the Amazon Basin. Methods Potential geographic distributions of eight species, namely two birds, two mammals and four trees, were modelled with the maxent algorithm at 1‐km resolution over the South American continent using climatic and remote sensing data separately and combined. For each species and model scenario, we assess model performance by testing the agreement between observed and simulated distributions across all thresholds and, in the case of the two focal bird species, at selected thresholds. Results Quantitative performance tests showed that models built with remote sensing and climatic layers in isolation performed well in predicting species distributions, suggesting that each of these data sets contains useful information. However, predictions created with a combination of remote sensing and climatic layers generally resulted in the best model performance across the three taxonomic groups. In Ecuador, the inclusion of remote sensing data was critical in resolving the known geographically isolated populations of the two focal bird species along the steep Amazonian–Andean elevational gradients. Within remote sensing subsets, microwave‐based data were more important than optical data in the predictions of the two bird species. Main conclusions Our results suggest that the newly available remote sensing data (MODIS and QSCAT) have considerable utility in modelling the contemporary geographical distributions of species at both regional and continental scales and in predicting range shifts as a result of large‐scale land‐use change.  相似文献   

10.
Understanding the forms that the geographic range limits of species take, their causes and their consequences are key issues in ecology and evolutionary biology. They are also topics on which understanding is advancing rapidly. This themed issue of Proc. R. Soc. B focuses on the wide variety of current research perspectives on the nature and determinants of the limits to geographic ranges. The contributions address important themes, including the roles and influences of dispersal limitation, species interactions and physiological limitation, the broad patterns in the structure of geographic ranges, and the fundamental question of why at some point species no longer evolve the ability to overcome the factors constraining their distributions and thus fail to continue to spread. In this introduction, these contributions are placed in the wider context of these broad themes.  相似文献   

11.
Haemosporidian parasites of birds are ubiquitous in terrestrial ecosystems, but their coevolutionary dynamics remain poorly understood. If species turnover in parasites occurs at a finer scale than turnover in hosts, widespread hosts would encounter diverse parasites, potentially diversifying as a result. Previous studies have shown that some wide-ranging hosts encounter varied haemosporidian communities throughout their range, and vice-versa. More surveys are needed to elucidate mechanisms that underpin spatial patterns of diversity in this complex multi-host multi-parasite system. We sought to understand how and why a community of avian haemosporidian parasites varies in abundance and composition across elevational transects in eight sky islands in southwestern North America. We tested whether bird community composition, environment, or geographic distance explain haemosporidian parasite species turnover in a widespread host that harbors a diverse haemosporidian community, the Audubon’s Warbler (Setophaga auduboni). We tested predictors of infection using generalized linear models, and predictors of bird and parasite community dissimilarity using generalized dissimilarity modeling. Predictors of infection differed by parasite genus: Parahaemoproteus was predicted by elevation and climate, Leucocytozoon varied idiosyncratically among mountains, and Plasmodium was unpredictable, but rare. Parasite turnover was nearly three-fold higher than bird turnover and was predicted by elevation, climate, and bird community composition, but not geographic distance. Haemosporidian communities vary strikingly at fine spatial scales (hundreds of kilometers), across which the bird community varies only subtly. The finer scale of turnover among parasites implies that their ranges may be smaller than those of their hosts. Avian host species should encounter different parasite species in different parts of their ranges, resulting in spatially varying selection on host immune systems. The fact that parasite turnover was predicted by bird turnover, even when considering environmental characteristics, implies that host species or their phylogenetic history plays a role in determining which parasite species will be present in a community.  相似文献   

12.
Co-divergence between host and parasites suggests that evolutionary processes act across similar spatial and temporal scales. Although there has been considerable work on the extent and correlates of co-divergence of RNA viruses and their mammalian hosts, relatively little is known about the extent to which virus evolution is determined by the phylogeographic history of host species. To test hypotheses related to co-divergence across a variety of spatial and temporal scales, we explored phylogenetic signatures in Andes virus (ANDV) sampled from Chile and its host rodent, Oligoryzomys longicaudatus. ANDV showed strong spatial subdivision, a phylogeographic pattern also recovered in the host using both spatial and genealogical approaches, and despite incomplete lineage sorting. Lineage structure in the virus seemed to be a response to current population dynamics in the host at the spatial scale of ecoregions. However, finer scale analyses revealed contrasting patterns of genetic structure across a latitudinal gradient. As predicted by their higher substitution rates, ANDV showed greater genealogical resolution than the rodent, with topological congruence influenced by the degree of lineage sorting within the host. However, despite these major differences in evolutionary dynamics, the geographic structure of host and virus converged across large spatial scales.  相似文献   

13.
Birds living in riverine environments may show weak population structure because high dispersal abilities required to track habitat dynamics can result in gene flow over broad spatial scales. Alternatively, the configuration of river networks may result in restricted dispersal within river courses or basins, leading to high genetic structure. Although several bird species are riverine specialists in the Andes, no study has extensively evaluated the population genetic structure of any of them. We examined evidence from genetic and morphological data to address questions about the biogeography and taxonomy of the Torrent Duck (Merganetta armata), a riverine specialist bird with a broad distribution in Andean riverine habitats which certainly comprises different subspecies and may comprise more than one species. We found deep subdivisions of Torrent Duck populations from the northern, central and southern portions of the Andes. These lineages, which partly coincide with subspecies described based on plumage variation and body size, do not share mtDNA haplotypes, have private nuclear alleles and exhibit marked differences in morphometric traits. Some geographic barriers presumably restricting gene flow between groups partially coincide with those associated with major genetic breaks in forest species with similar distributions along the Andes, suggesting that bird assemblages including species occupying different habitats were likely affected by common biogeographical events. The three groups of Torrent Ducks may be considered different species under some species definitions and are distinct evolutionary lineages to be conserved and managed separately.  相似文献   

14.
Aim To improve our understanding of species range limits by studying how height growth, a trait related to plant survival, varies throughout the geographic range of Fagus sylvatica L. in France. Location The geographic range of beech in France, representing the western area of its European distribution, within which this species exhibits range distribution limits in both plains and mountainous areas. Methods A generalized linear regression model was used to link beech growth performance to environmental variables using data from 819 plots of the French National Forest Inventory (IFN) database. This model was applied to predict potential growth on 97,281 IFN plots covering the geographic range of beech in France. A kriging technique was used to interpolate estimated growth potential. Finally, the performance of plot‐based predictions of potential growth from the map (i.e. map quality) was evaluated against an independent data set. Results The beech growth performance model highlighted the major impact of climate on potential tree growth at a broad spatial scale. The relevant climatic factors were related mainly to spring cold, summer heat, and winter temperatures and rainfall. The study also revealed the predictive power of soil parameters, which explained a large proportion of the variation in potential beech growth (c. 30%). Analyses of height growth patterns near the boundary of the species range in France showed that the limit only partly coincides with the growth decline caused by climatic and soil factors. Along parts of the range limit, the predicted potential for growth was high, suggesting that in these areas the limit of the range could be explained by other factors, such as competition or constraints on reproduction. Main conclusions The spatial variation in the potential height growth of Fagus sylvatica can be explained by environmental factors and is partly correlated with its regional range limits. By identifying areas where growth potential constrains the geographic range of species, environmental growth models can help to improve our knowledge of the spatial drivers of species geographic range limits and shed light on their response to future environmental changes.  相似文献   

15.
Studies of species' range limits focus most often on abiotic factors, although the strength of biotic interactions might also vary along environmental gradients and have strong demographic effects. For example, pollinator abundance might decrease at range limits due to harsh environmental conditions, and reduced plant density can reduce attractiveness to pollinators and increase or decrease herbivory. We tested for variation in the strength of pollen limitation and herbivory by ungulates along a gradient leading to the upper elevational range limits of Trillium erectum (Melanthiaceae) and Erythronium americanum (Liliaceae) in Mont Mégantic National Park, Québec, Canada. In T. erectum, pollen limitation was higher at the range limit, but seed set decreased only slightly with elevation and only in one of two years. In contrast, herbivory of T. erectum increased from <10% at low elevations to >60% at the upper elevational range limit. In E. americanum, we found no evidence of pollen limitation despite a significant decrease in seed set with elevation, and herbivory was low across the entire gradient. Overall, our results demonstrate the potential for relatively strong negative interactions (herbivory) and weak positive interactions (pollination) at plant range edges, although this was clearly species specific. To the extent that these interactions have important demographic consequences—highly likely for herbivory on Trillium, based on previous studies—such interactions might play a role in determining plant species' range limits along putatively climatic gradients.  相似文献   

16.
Climate change is causing widespread geographical range shifts, which likely reflects different processes at leading and trailing range margins. Progressive warming is thought to relax thermal barriers at poleward range margins, enabling colonization of novel areas, but imposes increasingly unsuitable thermal conditions at equatorward margins, leading to range losses from those areas. Few tests of this process during recent climate change have been possible, but understanding determinants of species’ range limits will improve predictions of their geographical responses to climate change and variation in extinction risk. Here, we examine the relationship between poleward and equatorward range margin dynamics with respect to temperature‐related geographical limits observed for 34 breeding passerine species in North America between 1984–1988 and 2002–2006. We find that species’ equatorward range margins were closer to their upper realized thermal niche limits and proximity to those limits predicts equatorward population extinction risk through time. Conversely, the difference between breeding bird species’ poleward range margin temperatures and the coolest temperatures they tolerate elsewhere in their ranges was substantial and remained consistent through time: range expansion at species’ poleward range margins is unlikely to directly reflect lowered thermal barriers to colonization. The process of range expansion may reflect more complex factors operating across broader areas of species’ ranges. The latitudinal extent of breeding bird ranges is decreasing through time. Disparate responses observed at poleward versus equatorward margins arise due to differences in range margin placement within the realized thermal niche and suggest that climate‐induced geographical shift at equatorward range limits more strongly reflect abiotic conditions than at their poleward range limits. This further suggests that observed geographic responses to date may fail to demonstrate the true cost of climate change on the poleward portion of species’ distributions. Poleward range margins for North American breeding passerines are not presently in equilibrium with realized thermal limits.  相似文献   

17.
Aim Local‐scale processes at species distribution margins can affect larger‐scale distribution dynamics, but are rarely studied. The objective of this research was to elucidate the nature of distribution limits by studying the comparative structure, dynamics and environmental associations of breeding bird populations at their distribution margin. We hypothesized that climate is principally responsible for setting distribution limits, whereas biotic habitat features are more strongly associated with distribution patterns within the range. Location Southern California, USA. Methods During 2005–2007 we studied the distribution patterns of breeding birds in three study areas, each spanning a low‐elevation (200–1800 m) desert scrub‐to‐chaparral gradient. We used logistic regression with hierarchical partitioning to assess the independent effects of environmental variables (e.g. climate versus habitat) on distributions. We tested for shifts in the relative importance of these environmental variables in determining distribution limits versus within‐range patterns, and we also compared higher‐ and lower‐elevation groups of species. Results Distribution patterns were highly variable among species, but were remarkably static over the three study areas and 3‐year study period. Across species, habitat floristic variables performed relatively well at explaining distribution patterns. For higher‐elevation species (chaparral birds), climate was relatively important in setting their lower distribution limits, and there was a shift to a greater importance of biotic habitat (mainly habitat structural variables) for determining within‐range patterns. Relationships were more mixed for lower‐elevation species (desert scrub birds), but with respect to distribution limits, biotic habitat variables tended to be more important relative to climate than we observed for chaparral birds. Main conclusions Along this warm, arid elevational gradient, higher‐elevation chaparral birds are more limited by climate at their lower margin than are lower‐elevation desert birds at their upper margin, suggesting that climate plays a strong role (relative to other values) in excluding non‐desert birds from desert. However, given the strong differences among species, predictive distribution models will need to be individually tailored, and for most species biotic habitat variables were of greater importance than climate in determining limits. This research highlights the usefulness of studying environmental relationships at distribution margins and the importance of considering biotic relationships in forecasting distribution shifts under changing climates.  相似文献   

18.
Across a large mountain area of the western Swiss Alps, we used occurrence data (presence‐only points) of bird species to find suitable modelling solutions and build reliable distribution maps to deal with biodiversity and conservation necessities of bird species at finer scales. We have performed a multi‐scale method of modelling, which uses distance, climatic, and focal variables at different scales (neighboring window sizes), to estimate the efficient scale of each environmental predictor and enhance our knowledge on how birds interact with their complex environment. To identify the best radius for each focal variable and the most efficient impact scale of each predictor, we have fitted univariate models per species. In the last step, the final set of variables were subsequently employed to build ensemble of small models (ESMs) at a fine spatial resolution of 100 m and generate species distribution maps as tools of conservation. We could build useful habitat suitability models for the three groups of species in the national red list. Our results indicate that, in general, the most important variables were in the group of bioclimatic variables including “Bio11” (Mean Temperature of Coldest Quarter), and “Bio 4” (Temperature Seasonality), then in the focal variables including “Forest”, “Orchard”, and “Agriculture area” as potential foraging, feeding and nesting sites. Our distribution maps are useful for identifying the most threatened species and their habitat and also for improving conservation effort to locate bird hotspots. It is a powerful strategy to improve the ecological understanding of the distribution of bird species in a dynamic heterogeneous environment.  相似文献   

19.
Relationship between avian range limits and plant transition zones in Maine   总被引:1,自引:0,他引:1  
Aim To determine if vegetation complexity associated with transition zones may be a contributing factor affecting bird species distributions in Maine, USA, and in increased numbers of bird species at about 45° north latitude in northeastern North America. Location Maine, USA; North America north of Mexico. Methods We delineated the ranges within Maine (86,156 km2) of 186 bird species and 240 woody plants using literature and expert review. Maps showing species richness and numbers of range limits, at 324 km2 resolution, were developed for woody plants and groups of breeding birds: forest specialists, forest generalists, and those that used barren and urban habitats, early successional areas, and wetlands or open water. Two plant transition zones for Maine were identified previously, with the north–south transition zone mapped across eastern North America. Patterns in bird distribution maps were compared to woody plant maps and to transition zones. Results When the distributions of forest specialists were compared to the north–south vegetation transition zone in Maine, they were spatially coincident, but were not for other groups. Forest specialists had more species with range limits in the state (61%) than generalists (13%) or any other group. At a continental‐scale, the vegetation transition zone within eastern North America agreed fairly well with the areas of highest bird richness. Main conclusions A bird transition zone occurs in Maine and across eastern North America, akin to and overlapping the vegetation transition zone. Seasonality is likely the primary source of the inverse gradient in bird richness in the eastern USA, as reported by others. However, vegetation structure and habitat selection at very broad spatial scales appear to contribute to the reversed gradient. North of the vegetation transition zone, forest structure is simpler and coniferous forests more dominant, and this may contribute to reduced bird species richness. However, the northern (> 49°) typical gradient in bird species richness has been related to many hypotheses, and several are likely involved in the genesis of the gradient.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号