首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
DNA damage tolerance pathways facilitate the bypass of DNA lesions encountered during replication. These pathways can be mechanistically divided into recombinational damage avoidance and translesion synthesis, in which the lesion is directly bypassed by specialised DNA polymerases. We have recently shown distinct genetic dependencies for lesion bypass at and behind the replication fork in the avian cell line DT40, bypass at the fork requiring REV1 and bypass at post-replicative gaps requiring PCNA ubiquitination by RAD18. The WRN helicase/exonuclease, which is mutated in the progeroid and cancer predisposition disorder Werner's Syndrome, has previously been implicated in a RAD18-dependent DNA damage tolerance pathway. However, WRN has also been shown to be required to maintain normal replication fork progression on a damaged DNA template, a defect reminiscent of REV1-deficient cells. Here we use the avian cell line DT40 to demonstrate that WRN assists REV1-dependent translesion synthesis at the replication fork and that PCNA ubiquitination-dependent post-replicative lesion bypass provides an important backup mechanism for damage tolerance in the absence of WRN protein.  相似文献   

3.
In yeast, Rev1, Rev3, and Rev7 are involved in translesion synthesis over various kinds of DNA damage and spontaneous and UV-induced mutagenesis. Here, we disrupted Rev1, Rev3, and Rev7 in the chicken B-lymphocyte line DT40. REV1-/- REV3-/- REV7-/- cells showed spontaneous cell death, chromosomal instability/fragility, and hypersensitivity to various genotoxic treatments as observed in each of the single mutants. Surprisingly, the triple-knockout cells showed a suppressed level of sister chromatid exchanges (SCEs), which may reflect postreplication repair events mediated by homologous recombination, while each single mutant showed an elevated SCE level. Furthermore, REV1-/- cells as well as triple mutants showed a decreased level of immunoglobulin gene conversion, suggesting participation of Rev1 in a recombination-based pathway. The present study gives us a new insight into cooperative function of three Rev molecules and the Polzeta (Rev3-Rev7)-independent role of Rev1 in vertebrate cells.  相似文献   

4.
During normal DNA replication, the proliferating cell nuclear antigen (PCNA) enhances the processivity of DNA polymerases at the replication fork. When DNA damage is encountered, PCNA is monoubiquitinated on Lys-164 by the Rad6-Rad18 complex as the initiating step of translesion synthesis. DNA damage bypass by the translesion synthesis polymerase Rev1 is enhanced by the presence of ubiquitinated PCNA. Here we have carried out a mutational analysis of Rev1, and we have identified the functional domain in the C terminus of Rev1 that mediates interactions with PCNA. We show that a unique motif within this domain binds the ubiquitin moiety of ubiquitinated PCNA. Point mutations within this ubiquitin-binding motif of Rev1 (L821A,P822A,I825A) abolish its functional interaction with ubiquitinated PCNA in vitro and strongly attenuate damage-induced mutagenesis in vivo. Taken together, these studies suggest a specific mechanism by which the interaction between Rev1 and ubiquitinated PCNA is stabilized during the DNA damage response.  相似文献   

5.
DNA polymerase zeta (Pol zeta), a heterodimer of Rev3 and Rev7, is essential for DNA damage provoked mutagenesis in eukaryotes. DNA polymerases that function in a processive complex with the replication clamp proliferating cell nuclear antigen (PCNA) have been shown to possess a close match to the consensus PCNA-binding motif QxxLxxFF. This consensus motif is lacking in either subunit of Pol zeta, yet its activity is stimulated by PCNA. In particular, translesion synthesis of UV damage-containing DNA is dramatically stimulated by PCNA such that translesion synthesis rates are comparable with replication rates by Pol zeta on undamaged DNA. PCNA also stimulated translesion synthesis of a model abasic site by Pol zeta. Efficient PCNA stimulation required that PCNA was prevented from sliding off the damage-containing model oligonucleotide template-primer through the use of biotin-streptavidin bumpers or other blocks. Under those experimental conditions, facile bypass of the abasic site was also detected by DNA polymerase delta or eta (Rad30). The yeast DNA damage checkpoint clamp, consisting of Rad17, Mec3, and Ddc1, and an ortholog of human 9-1-1, has been implicated in damage-induced mutagenesis. However, this checkpoint clamp did not stimulate translesion synthesis by Pol zeta or by DNA polymerase delta.  相似文献   

6.
The function of the Saccharomyces cerevisiae REV1 gene is required for translesion replication and mutagenesis induced by a wide variety of DNA-damaging agents. We showed previously that Rev1p possesses a deoxycytidyl transferase activity, which incorporates dCMP opposite abasic sites in the DNA template, and that dCMP insertion is the major event during bypass of an abasic site in vivo. However, we now find that Rev1p function is needed for the bypass of a T-T (6-4) UV photoproduct, a process in which dCMP incorporation occurs only very rarely, indicating that Rev1p possesses a second function. In addition, we find that Rev1p function is, as expected, required for bypass of an abasic site. However, replication past this lesion was also much reduced in the G-193R rev1-1 mutant, which we find retains substantial levels of deoxycytidyl transferase activity. This mutant is, therefore, presumably deficient principally in the second, at present poorly defined, function. The bypass of an abasic site and T-T (6-4) lesion also depended on REV3 function, but neither it nor REV1 was required for replication past the T-T dimer; bypass of this lesion presumably depends on another enzyme.  相似文献   

7.
DNA damage tolerance consisting of template switching and translesion synthesis is a major cellular mechanism in response to unrepaired DNA lesions during replication. The Rev1 pathway constitutes the major mechanism of translesion synthesis and base damage-induced mutagenesis in model cell systems. Rev1 is a dCMP transferase, but additionally plays non-catalytic functions in translesion synthesis. Using the yeast model system, we attempted to gain further insights into the non-catalytic functions of Rev1. Rev1 stably interacts with Rad5 (a central component of the template switching pathway) via the C-terminal region of Rev1 and the N-terminal region of Rad5. Supporting functional significance of this interaction, both the Rev1 pathway and Rad5 are required for translesion synthesis and mutagenesis of 1,N6-ethenoadenine. Furthermore, disrupting the Rev1–Rad5 interaction by mutating Rev1 did not affect its dCMP transferase, but led to inactivation of the Rev1 non-catalytic function in translesion synthesis of UV-induced DNA damage. Deletion analysis revealed that the C-terminal 21-amino acid sequence of Rev1 is uniquely required for its interaction with Rad5 and is essential for its non-catalytic function. Deletion analysis additionally implicated a C-terminal region of Rev1 in its negative regulation. These results show that a non-catalytic function of Rev1 in translesion synthesis and mutagenesis is mediated by its interaction with Rad5.  相似文献   

8.
Kalifa L  Sia EA 《DNA Repair》2007,6(12):1732-1739
Ultraviolet light is a potent DNA damaging agent that induces bulky lesions in DNA which block the replicative polymerases. In order to ensure continued DNA replication and cell viability, specialized translesion polymerases bypass these lesions at the expense of introducing mutations in the nascent DNA strand. A recent study has shown that the N-terminal sequences of the nuclear translesion polymerases Rev1p and Pol zeta can direct GFP to the mitochondrial compartment of Saccharomyces cerevisiae. We have investigated the role of these polymerases in mitochondrial mutagenesis. Our analysis of mitochondrial DNA point mutations, microsatellite instability, and the spectra of mitochondrial mutations indicate that these translesion polymerases function in a less mutagenic pathway in the mitochondrial compartment than they do in the nucleus. Mitochondrial phenotypes resulting from the loss of Rev1p and Pol zeta suggest that although these polymerases are responsible for the majority of mitochondrial frameshift mutations, they do not greatly contribute to mitochondrial DNA point mutations. Analysis of spontaneous mitochondrial DNA point mutations suggests that Pol zeta may play a role in general mitochondrial DNA maintenance. In addition, we observe a 20-fold increase in UV-induced mitochondrial DNA point mutations in rev deficient strains. Our data provides evidence for an alternative damage tolerance pathway that is specific to the mitochondrial compartment.  相似文献   

9.
In Saccharomyces cerevisiae, Rad18 functions in post-replication repair pathways, such as error-free damage bypass involving Rad30 (Poleta) and error-prone damage bypass involving Rev3/7 (Polzeta). Chicken DT40 RAD18(-/-) cells were found to be hypersensitive to camptothecin (CPT), while RAD30(-/-) and REV3(-/-) cells, which are defective in translesion DNA synthesis, were not. RAD18(-/-) cells also showed higher levels of H2AX phosphorylation and chromosomal aberrations, particularly chromosomal gaps and breaks, upon exposure to CPT. Detailed analysis by alkaline sucrose density gradient centrifugation revealed that RAD18(-/-) and wild type cells exhibited similar rates of elongation of newly synthesized DNA in the presence or absence of low concentrations of CPT but that DNA breaks frequently occurred on both parental and nascent strands within 1h after a brief exposure to an elevated concentration of CPT, with more breaks induced in RAD18(-/-) cells than in wild type cells. These data suggest a previously unanticipated role for Rad18 in dealing with replication forks upon encountering DNA lesions induced by CPT.  相似文献   

10.
DNA polymerase zeta (Pol zeta) and Rev1p carry out translesion replication in budding yeast, Saccharomyces cerevisiae, and are jointly responsible for almost all base pair substitution and frameshift mutations induced by DNA damage in this organism. In addition, Pol zeta is responsible for the majority of spontaneous mutations in yeast and has been proposed as the enzyme responsible for somatic hypermutability. Pol zeta, a non-processive enzyme that lacks a 3' to 5' exonuclease proofreading activity, is composed of Rev3p, the catalytic subunit, and a second subunit encoded by REV7. In keeping with its role, extension by Pol zeta is relatively tolerant of abnormal DNA structure at the primer terminus and is much more capable of extension from terminal mismatches than yeast DNA polymerase alpha (Pol alpha). Rev1p is a bifunctional enzyme that possesses a deoxycytidyl transferase activity that incorporates deoxycytidyl opposite abasic sites in the template and a second, at present poorly defined, activity that is required for the bypass of a variety of lesions as well as abasic sites. Human homologues of the yeast REV1 and REV3 have been identified and, based on the phenotype of cells producing antisense RNA to one or other of these genes, their products appear also to be employed in translation replication and spontaneous mutagenesis. We suggest that Pol zeta is best regarded as a replication enzyme, albeit one that is used only intermittently, that promotes extension at forks the progress of which is blocked for any reason, whether the presence of an unedited terminal mismatch or unrepaired DNA lesion.  相似文献   

11.
REV1 protein, a eukaryotic member of the Y family of DNA polymerases, is involved in the tolerance of DNA damage by translesion DNA synthesis. It is unclear how REV1 is recruited to replication foci in cells. Here, we report that mouse REV1 can bind directly to PCNA and that monoubiquitylation of PCNA enhances this interaction. The interaction between REV1 protein and PCNA requires a functional BRCT domain located near the N terminus of the former protein. Deletion or mutational inactivation of the BRCT domain abolishes the targeting of REV1 to replication foci in unirradiated cells, but not in UV-irradiated cells. In vivo studies in both chicken DT40 cells and yeast directly support the requirement of the BRCT domain of REV1 for cell survival and DNA damage-induced mutagenesis.  相似文献   

12.
Translesion synthesis by the UmuC family of DNA polymerases.   总被引:10,自引:0,他引:10  
Z Wang 《Mutation research》2001,486(2):59-70
Translesion synthesis is an important cellular mechanism to overcome replication blockage by DNA damage. To copy damaged DNA templates during replication, specialized DNA polymerases are required. Translesion synthesis can be error-free or error-prone. From E. coli to humans, error-prone translesion synthesis constitutes a major mechanism of DNA damage-induced mutagenesis. As a response to DNA damage during replication, translesion synthesis contributes to cell survival and induced mutagenesis. During 1999-2000, the UmuC superfamily had emerged, which consists of the following prototypic members: the E. coli UmuC, the E. coli DinB, the yeast Rad30, the human RAD30B, and the yeast Rev1. The corresponding biochemical activities are DNA polymerases V, IV, eta, iota, and dCMP transferase, respectively. Recent studies of the UmuC superfamily are summarized and evidence is presented suggesting that this family of DNA polymerases is involved in translesion DNA synthesis.  相似文献   

13.
Guo D  Xie Z  Shen H  Zhao B  Wang Z 《Nucleic acids research》2004,32(3):1122-1130
Translesion synthesis is an important mechanism in response to unrepaired DNA lesions during replication. The DNA polymerase ζ (Polζ) mutagenesis pathway is a major error-prone translesion synthesis mechanism requiring Polζ and Rev1. In addition to its dCMP transferase, a non-catalytic function of Rev1 is suspected in cellular response to certain types of DNA lesions. However, it is not well understood about the non-catalytic function of Rev1 in translesion synthesis. We have analyzed the role of Rev1 in translesion synthesis of an acetylaminofluorene (AAF)-dG DNA adduct. Purified yeast Rev1 was essentially unresponsive to a template AAF-dG DNA adduct, in contrast to its efficient C insertion opposite a template 1,N6-ethenoadenine adduct. Purified yeast Polζ was very inefficient in the bypass of the AAF-dG adduct. Combining Rev1 and Polζ, however, led to a synergistic effect on translesion synthesis. Rev1 protein enhanced Polζ-catalyzed nucleotide insertion opposite the AAF-dG adduct and strongly stimulated Polζ-catalyzed extension from opposite the lesion. Rev1 also stimulated the deficient synthesis by Polζ at the very end of undamaged DNA templates. Deleting the C-terminal 205 aa of Rev1 did not affect its dCMP transferase activity, but abolished its stimulatory activity on Polζ-catalyzed extension from opposite the AAF-dG adduct. These results suggest that translesion synthesis of AAF-dG adducts by Polζ is stimulated by Rev1 protein in yeast. Consistent with the in vitro results, both Polζ and Rev1 were found to be equally important for error-prone translesion synthesis across from AAF-dG DNA adducts in yeast cells.  相似文献   

14.
Post-translational modifications of Proliferating Cell Nuclear Antigen (PCNA) play a key role in regulating the bypass of DNA lesions during DNA replication. PCNA can be monoubiquitylated at lysine 164 by the RAD6-RAD18 ubiquitin ligase complex. Through this modification, PCNA can interact with low fidelity Y family DNA polymerases to promote translesion synthesis. Monoubiquitylated PCNA can be polyubiquitylated on lysine 63 of ubiquitin by a further ubiquitin-conjugating complex. This modification promotes a template switching bypass process in yeast, while its role in higher eukaryotes is less clear.We investigated the function of PCNA ubiquitylation using a PCNAK164R mutant DT40 chicken B lymphoblastoma cell line, which is hypersensitive to DNA damaging agents such as methyl methanesulfonate (MMS), cisplatin or ultraviolet radiation (UV) due to the loss of PCNA modifications. In the PCNAK164R mutant we also detected cell cycle arrest following UV treatment, a reduced rate of damage bypass through translesion DNA synthesis on synthetic UV photoproducts, and an increased rate of genomic mutagenesis following MMS treatment. PCNA-ubiquitin fusion proteins have been reported to mimic endogenous PCNA ubiquitylation. We found that the stable expression of a PCNAK164R-ubiquitin fusion protein fully or partially rescued the observed defects of the PCNAK164R mutant. The expression of a PCNAK164R-ubiquitinK63R fusion protein, on which the formation of lysine 63-linked polyubiquitin chains is not possible, similarly rescued the cell cycle arrest, DNA damage sensitivity, reduction of translesion synthesis and increase of MMS-induced genomic mutagenesis. Template switching bypass was not affected by the genetic elimination of PCNA polyubiquitylation, but it was reduced in the absence of the recombination proteins BRCA1 or XRCC3. Our study found no requirement for PCNA polyubiquitylation to protect cells from replication-stalling DNA damage.  相似文献   

15.
16.
DNA damages hinder the advance of replication forks because of the inability of the replicative polymerases to synthesize across most DNA lesions. Because stalled replication forks are prone to undergo DNA breakage and recombination that can lead to chromosomal rearrangements and cell death, cells possess different mechanisms to ensure the continuity of replication on damaged templates. Specialized, translesion synthesis (TLS) polymerases can take over synthesis at DNA damage sites. TLS polymerases synthesize DNA with a high error rate and are responsible for damage-induced mutagenesis, so their activity must be strictly regulated. However, the mechanism that allows their replacement of the replicative polymerase is unknown. Here, using protein complex purification and yeast genetic tools, we identify Def1 as a key factor for damage-induced mutagenesis in yeast. In in vivo experiments we demonstrate that upon DNA damage, Def1 promotes the ubiquitylation and subsequent proteasomal degradation of Pol3, the catalytic subunit of the replicative polymerase δ, whereas Pol31 and Pol32, the other two subunits of polymerase δ, are not affected. We also show that purified Pol31 and Pol32 can form a complex with the TLS polymerase Rev1. Our results imply that TLS polymerases carry out DNA lesion bypass only after the Def1-assisted removal of Pol3 from the stalled replication fork.  相似文献   

17.
Proliferating cell nuclear antigen (PCNA) is a DNA polymerase cofactor and regulator of replication-linked functions. Upon DNA damage, yeast and vertebrate PCNA is modified at the conserved lysine K164 by ubiquitin, which mediates error-prone replication across lesions via translesion polymerases. We investigated the role of PCNA ubiquitination in variants of the DT40 B cell line that are mutant in K164 of PCNA or in Rad18, which is involved in PCNA ubiquitination. Remarkably, the PCNAK164R mutation not only renders cells sensitive to DNA-damaging agents, but also strongly reduces activation induced deaminase-dependent single-nucleotide substitutions in the immunoglobulin light-chain locus. This is the first evidence, to our knowledge, that vertebrates exploit the PCNA-ubiquitin pathway for immunoglobulin hypermutation, most likely through the recruitment of error-prone DNA polymerases.  相似文献   

18.
Translesion synthesis (TLS) is a potentially mutagenic method of bypassing DNA damage encountered during replication that requires the recruitment of specialized DNA polymerases to stalled replication forks or postreplicative gaps. Current models suggest that TLS is activated by monoubiquitination of the DNA sliding clamp PCNA. However, in higher organisms, fully effective TLS also requires a noncatalytic function of the Y family polymerase REV1. Using the genetically tractable chicken cell line DT40, we show that TLS at stalled replication forks requires that both the translesion polymerase-interaction domain and ubiquitin-binding domain in the C terminus of REV1 are intact. Surprisingly, however, PCNA ubiquitination is not required to maintain normal fork progression on damaged DNA. Conversely, PCNA ubiquitination is essential for filling postreplicative gaps. Thus, PCNA ubiquitination and REV1 play distinct roles in the coordination of DNA damage bypass that are temporally separated relative to replication fork arrest.  相似文献   

19.
DNA polymerase ζ (Pol ζ) and Rev1 are key players in translesion DNA synthesis. The error-prone Pol ζ can also participate in replication of undamaged DNA when the normal replisome is impaired. Here we define the nature of the replication disturbances that trigger the recruitment of error-prone polymerases in the absence of DNA damage and describe the specific roles of Rev1 and Pol ζ in handling these disturbances. We show that Pol ζ/Rev1-dependent mutations occur at sites of replication stalling at short repeated sequences capable of forming hairpin structures. The Rev1 deoxycytidyl transferase can take over the stalled replicative polymerase and incorporate an additional ‘C’ at the hairpin base. Full hairpin bypass often involves template-switching DNA synthesis, subsequent realignment generating multiply mismatched primer termini and extension of these termini by Pol ζ. The postreplicative pathway dependent on polyubiquitylation of proliferating cell nuclear antigen provides a backup mechanism for accurate bypass of these sequences that is primarily used when the Pol ζ/Rev1-dependent pathway is inactive. The results emphasize the pivotal role of noncanonical DNA structures in mutagenesis and reveal the long-sought-after mechanism of complex mutations that represent a unique signature of Pol ζ.  相似文献   

20.
DNA polymerase ζ is believed to be an essential constituent of DNA damage tolerance, comprising several pathways that allow the replication of DNA templates containing unrepaired damage. We wanted to better define the role of polymerase ζ in DNA damage tolerance in mammalian cells. To this aim we have investigated replication of ultraviolet light-damaged DNA templates in mouse embryonic fibroblasts deficient for Rev3, the catalytic subunit of polymerase ζ. We found that Rev3 is important for a post-replication repair pathway of helix-distorting [6-4]pyrimidine-pyrimidone photoproducts and, to a lesser extent, of cyclobutane pyrimidine dimers. Unlike its partner Rev1, Rev3 appears not to be involved in an immediate translesion synthesis pathway at a stalled replication fork. The deficiency of Rev3?/? MEFs in post-replication repair of different photoproducts contributes to the extreme sensitivity of these cells to UV light.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号