首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Postsynaptic alpha-adrenoceptor subtypes were studied using [3H]prazosin and [3H]rauwolscine binding to plasmalemma-enriched microsomal fractions isolated from dog saphenous veins and mesenteric veins. Both radioligands showed saturable binding consistent with the presence of a single homogeneous binding site in each case, based on Scatchard analysis. The Kd values of [3H]prazosin and [3H]rauwolscine, calculated from kinetic studies were similar to those from equilibrium binding data in both venous muscle membranes. The microsomal membranes of dog saphenous vein and mesenteric vein contained about a fourfold higher density of the high affinity [3H]rauwolscine binding sites than those for [3H]prazosin binding. In competition studies, IC50 values for displacement of rauwolscine or prazosin suggested that the sites of interaction for the antagonists prazosin and rauwolscine were independent. Phenylephrine, a functionally selective alpha-adrenoceptor agonist, competed with a similar IC50 value for the specific binding sites of [3H]prazosin and [3H]rauwolscine; but B-HT 920, a functionally selective alpha 2-adrenoceptor agonist, competed for [3H]rauwolscine and [3H]prazosin binding with distinctly different IC50 values. Our data show the existence of two populations of alpha-adrenoceptor antagonist binding sites in the plasma membranes of dog saphenous vein and mesenteric vein, and raise the question whether agonist selectively depends on different affinities or on differential efficacies at one or two sites.  相似文献   

2.
1. In order to determine the selectivity of classical and novel adrenergic agents for alpha 1- and beta-adrenergic receptors in brown adipose tissue, the ability of these agents to compete for binding sites labelled with [3H]prazosin and [3H]CGP-12177, respectively, was investigated. 2. The beta-antagonist propranolol, known to inhibit norepinephrine-induced respiration in micromolar concentrations, bound to the [3H]CGP-12177 site with nanomolar affinity. 3. Among agonists, only isoprenaline showed high selectivity for beta-receptors, and only oxymetazoline for alpha 1-receptors. 4. Unexpectedly, the novel thermogenic agonists (BRL-agonists), shown to be potent and selective stimulators of brown fat thermogenesis, were unselective and bound only with low affinity to the [3H]CGP-12177 binding sites. 5. These results suggest that the beta-adrenergic binding site in brown adipose tissue identified here with [3H]CGP-12177 may not be the one (or not the only one) coupled to thermogenesis.  相似文献   

3.
The relative influences of the in vivo administration of phenoxybenzamine on in vitro binding to alpha 1-adrenergic receptors and alpha 1-receptor-mediated responses were studied. Phenoxybenzamine treatment reduced maximal specific binding of the alpha 1-selective antagonist [3H]prazosin to liver cell membranes. This response was rapid (less than 90 min) and half-maximal following a phenoxybenzamine dose of approx. 10 mg/kg. A similar decrease in the ability of phenylephrine to stimulate glucose release and 45Ca2+ efflux from liver slices was also noted after phenoxybenzamine treatment. During the recovery period following administration of 30 mg/kg phenoxybenzamine, [3H]prazosin specific binding and phenylephrine-stimulated glucose release and 45Ca2+ efflux returned to their respective control levels with t 1/2 values of 42, 49 and 38 h, respectively. At all times studied during the recovery period, alpha 1-binding and both of the alpha 1-responses were similar fractions of their respective control values. These observations indicate that a close relationship exists between the density of [3H]prazosin binding sites and the ability of rat liver to respond to alpha 1-stimulation. We suggest that the binding sites identified in studies using the antagonist [3H]prazosin and those through which the agonist phenylephrine stimulates glucose release and 45Ca2+ efflux are either identical or in equilibrium with each other.  相似文献   

4.
Treatment of liver plasma membranes with trypsin at low concentrations (1 to 2 microgram/mg of protein) caused at 3- to 4-fold increase in alpha-specific [3H]epinephrine binding. The change was due to an increase in the number of high affinity binding sites, with no change in the dissociation constant. With increasing trypsin concentrations, the dissociation constant was decreased and there was a progressive loss of binding. Elastase, papain, and thermolysin caused similar effects, whereas the thrombin, leucine aminopeptidase, phospholipase A2, phospholipase C, phospholipase D, and detergents did not cause an increase in [EH]epinephrine binding. The increase in epinephrine high affinity binding sites was correlated with a loss of high affinity [3H]-dihydroergocryptine binding sites which also bind [3H]epinephrine with low affinity (El-Refai, M. F., Blackmore, P. F., and Exton, J. H. (1979) J. Biol. Chem. 254, 4375-4386). Incubation of membranes with the alpha blockers dihydroergocryptine (50 nM) and phenoxybenzamine (20 nM) prior to protease treatment diminished the increase in [3H]epinephrine binding induced by trypsin (1.5 microgram/mg). The concentration dependence and time course of trypsin actions on 70 nM [3H]epinephrine binding and 10 nM [3H]dihydroergocryptine binding are consistent with a trypsin-mediated conversion of low affinity epinephrine binding sites to high affinity epinephrine binding sites.  相似文献   

5.
The investigation of [3H] PCP and [3H] TCP binding properties to rat cerebrum and cerebellum resulted in the demonstration of multiple binding sites for the two drugs. In the two tissue preparations PCP had a lower affinity than TCP. In membranes from the cerebrum an equal number of high affinity binding sites were present for [3H] PCP and [3H] TCP. However, low affinity binding sites were two times more numerous for [3H] PCP than for [3H] TCP. In the cerebellum, the number of high and low affinity sites labeled by the two radioligands was identical, but the number of high affinity sites was about 7 fold lower than in the cerebrum. Taken together these results may indicate that in the cerebrum [3H] PCP labels other sites than NMDA/PCP receptor(s), maybe sigma receptors and/or the dopamine uptake complex. In human cerebral cortex samples [3H] TCP also bound to two different sites. The number of high and low affinity sites were 12 and 3 times, respectively, less abundant than in the rat cerebrum. Low affinity sites were of higher affinity (5 times) than corresponding sites in the rat brain. In the human cerebellum [3H] TCP binding parameters were identical to those measured in the same region in the rat.  相似文献   

6.
《Life sciences》1987,41(13):1567-1576
[3H]Spiroxatrine was examined as a potential ligand for the labeling of 5-HT1A sites in the rat hippocampus. Analysis of the binding of [3H]spiroxatrine in the absence and presence of varying concentrations of three monoamine neurotransmitters revealed that serotonin (5-HT) had high affinity (IC50= 20.7 nM for the [3H]spiroxatrine binding sites, consistent with the labeling of 5-HT1 sites, while dopamine and norepinephrine had very low affinity (IC50=57600 nM and >10−4 M respectively). Saturation studies of the binding of [3H]spiroxatrine revealed a single population of sites with a Kd=2.21 nM. Further pharmacologic characterization with the 5-HT1A ligands 8-hydroxy-2-(di-n-propylamino) tetralin, ipsapirone, and WB4101 and the butyrophenone compounds spiperone and haloperidol gave results that were consistent with [3H]spiroxatrine labeling 5-HT1A sites. This ligand produced stable, reproducible binding with a good ratio of specific to nonspecific binding. The binding of [3H]spiroxatrine was sensitive to GTP, suggesting that this ligand may act as an agonist. This was supported by the finding that spiroxatrine inhibits forskolin-stimulated adenylate cyclase activity (a proposed 5-HT1A receptor model) in the rat hippocampus. Since [3H]spiroxatrine is structurally distinct from other currently available radioligands for the 5-HT1A site, it should provide new information about the properties of this putative serotonergic receptor.  相似文献   

7.
Binding of the alpha-adrenergic agonist [3H]clonidine and the alpha-adrenergic antagonist [3H]WB-4101 exhibited multiple binding site characteristics in both rat frontal cortex and cerebellum. Kinetic analysis of the dissociation of both radioligands in rat frontal cortex suggests two high affinity sites for each ligand. Competition of various noradrenergic agonists and antagonists for [3H]WB-4101 binding yielded shallow competition curves, with Hill coefficients ranging from 0.45 to 0.7. This further suggests multiplicity in [3H]WB-4101 binding. In the rat cerebellum, competition of various noradrenergic drugs for [3H]clonidine binding yielded biphasic competition curves. Furthermore Scatchard analysis of [3H]clonidine binding in rat cerebellum showed two high affinity sites with KD = 0.5 nM and 1.9 nM, respectively. Competition of various noradrenergic drugs for [3H]WB-4101 binding in the rat cerebellum yielded biphasic competition curves. Lesioning of the dorsal bundle with 6-hydroxydopamine did not significantly affect the binding of either [3H]clonidine or [3H]WB-4101. These findings for both [3H]clonidine and [3H]WB-4101 binding in rat frontal cortex and cerebellum can be explained by the existence of postsynaptic binding sites for both 3H ligands.  相似文献   

8.
Lesions of the serotonergic afferents to the hippocampus, by fimbrial transection or by 5,7-dihydroxytryptamine treatment, produce an increase in the Bmax of [3H]WB4101 to its nanomolar affinity binding site, with no effect on its picomolar affinity binding site or on [3H]prazosin binding. The nanomolar site is serotonergic as the serotonergic agonists, serotonin and 8-hydroxydipropylaminotetraline (8-OH-DPAT) have nanomolar affinity for [3H]WB4101 binding when studied in the presence of a prazosin mask (30 nM) of the alpha-1 component of [3H]WB4101 binding. The serotonin receptor antagonists metergoline, lysergic acid diethylamide and lisuride also have high nanomolar affinities while ketanserin, yohimbine, prazosin and noradrenergic agonists have affinities in the micromolar range. Fimbrial transection or 5,7-dihydroxytryptamine injections produced 32% and 44% increases in the Bmax of [3H]WB4101 binding in the presence of a prazosin mask. Serotonin competition for [3H]WB4101 binding was identical in control and experimental tissue from each lesion experiment. Although specific binding of [3H]WB4101 was increased, there was no change in the affinities or the percentages of the two binding components for serotonin competition with [3H]WB4101. These data suggest that removal of the serotonergic input to the hippocampus produces an increase in the Bmax of serotonin receptor binding sites labeled by [3H]WB4101.  相似文献   

9.
The [3H]PK 11195, 1-(2-chlorophenyl)-N-methyl-N-(1-methyl-propyl)-3-isoquinolinecarboxamide, binding sites in rat cardiac membranes are saturable, with high affinity, specific GABA-independent and correspond to the peripheral type of benzodiazepine. The order of potency of displacing agents was: PK 11195 greater than RO5-4864 greater than dipyridamole greater than diazepam greater than clonazepam. The Bmax obtained with [3H]PK 11195 was equivalent of the Bmax obtained with [3H]RO5-4864 in the same experimental conditions. However thermodynamic analysis indicates that the [3H]PK 11195 binding was entropy driven whereas the [3H]RO5-4864 binding was enthalpy driven. Consequently PK 11195 might be an antagonist of these binding sites and RO5-4864 an agonist or a partial agonist. The simultaneous use of both drugs might help to elucidate the physiological relevance of peripheral benzodiazepine binding sites.  相似文献   

10.
Abstract

[3H]Ketanserin, a serotonin receptor antagonist, labelled high affinity, saturable sites in homogenates of porcine neurointermediate lobe tissue. Cinanserin, a potent and selective serotonin receptor antagonist, inhibited the specific binding of 5 × 10-10M [3H]ketanserin with a high affinity component representing 20% of the total binding. Prazosin, a potent and selective alpha1 adrenergic antagonist, inhibited [3H]ketanserin binding with a high affinity component representing 60% of total binding. The prazosin-specific component was demonstrated to be distinct from the cinanserin-specific component. 10-7M cinanserin was co-incubated with [3H]ketanserin to eliminate the serotonergic component of the binding and allow pharmacological characterization of the remaining prazosin-specific component. The prazosin-specific binding of [3H]ketanserin binding closely resembled the results of experiments using [3H]prazosin to label alpha1 receptors in neurointermediate lobe tissue homogenates. Ketanserin was found to be sevenfold more potent in inhibiting [3H]prazosin binding to alpha1 adrenergic receptors in the neurointermediate lobe tissue than in brain tissue. This observation explains why low concentrations of [3H]ketanserin can selectively label serotonin receptors in the brain but will label both adrenergic and serotonin receptors in the neurointermediate lobe.  相似文献   

11.
[3H]H-D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 ([3H]CTOP), a potent and highly selective mu opioid antagonist, was used to localize the mu receptors in rat brain by light microscopic autoradiography. Radioligand binding studies with [3H]CTOP using slide-mounted tissue sections of rat brain produced a Kd value of 1.1 nM with a Bmax value of 79.1 fmol/mg protein. Mu opioid agonists and antagonists inhibited [3H]CTOP binding with high affinity (IC50 values of 0.2-2.4 nM), while the delta agonist DPDPE, delta antagonist ICI 174,864, and kappa agonist U 69, 593 were very weak inhibitors of [3H]CTOP binding (IC50 values of 234-3631 nM). Light microscopic autoradiography of [3H]CTOP binding sites revealed regions of high density (nucleus of the solitary tract, clusters in the caudate-putamen, interpeduncular nucleus, superior and inferior colliculus, subiculum, substantia nigra zona reticulata, medial geniculate, locus coeruleus and dorsal motor nucleus of the vagus) and regions of moderate labeling (areas outside of clusters in the caudate-putamen, cingulate cortex, claustrum and nucleus accumbens). The cerebral cortex (parietal) showed a low density of [3H]CTOP binding.  相似文献   

12.
[3H]U-69593 is an opiate agonist that has been reported to bind in vitro with high affinity and selectivity to the kappa receptor subtype. The studies reported here were designed to determine the optimal conditions for labeling kappa receptors with [3H]U-69593 and to further characterize the binding site. The effects of temperature and NaCl on [3H]U-69593 binding were of particular interest because previous studies reported that [3H]ethylketocyclazocine ([3H]EKC) and [3H]bremazocine binding to kappa receptors was optimal at 4 degrees C in the presence of NaCl. Those conditions were not found to be optimal for [3H]U-69593 binding. Although the pharmacological specificity and Bmax of [3H]U-69593 binding was similar at room temperature and at 4 degrees C, the binding affinity was approximately three times lower at 4 degrees C than at room temperature. In addition, NaCl had an effect on [3H]U-69593 binding that was opposite that on [3H]EKC binding at 4 degrees C (100 nM DAGO and 100 nM DADLE were included in all [3H]EKC assays to prevent binding to mu and delta receptors), i.e. NaCl decreased, rather than increased, [3H]U-69593 binding at 4 degrees C. These differences between [3H]U-69593 and [3H]EKC binding at 4 degrees C were accentuated by a vast difference in the density of the binding sites [Bmax approximately equal to 12 fmol/mg protein for [3H]U-69593 vs approximately equal to 375 fmol/mg protein for [3H]EKC at 4 degrees C in the presence of NaCl) and suggested that [3H]U-69593 might bind selectively to a kappa receptor subtype. This concept was supported by competition experiments. In particular, the site labeled by [3H]EKC at 4 degrees C was found to be relatively insensitive (compared to [3H]U-69593 and [3H]EKC binding at room temperature) to the kappa agonist U-50488H, a close analog to U-69593. Based on these findings, we propose that [3H]U-69593 (and U-50488H) labels a kappa receptor subtype which differs from that labeled by [3H]EKC at 4 degrees C.  相似文献   

13.
Torpedo marmorata acetylcholine binding sites were photolabeled using 360 nm light, at equilibrium in the desensitized state, with the agonist [3H]DCTA utilizing the CeIV/glutathione procedure described previously (Grutter, et al. (1999) Biochemistry 38, 7476-7484). Photoincorporation of [3H]DCTA was concentration-dependent with a maximum of 7.5% specific labeling on the alpha-subunit and 1.2% on the gamma-subunit. The apparent dissociation constants for labeling of the alpha- and gamma-subunits were 2.2 +/- 1.1 and 3.6 +/- 2.8 microM, respectively. The alpha-chains isolated from receptor-rich membranes photolabeled in the absence or in the presence of carbamylcholine were cleaved with CNBr using an efficient "in gel" procedure. The resulting peptide fragments were purified by HPLC and further submitted to trypsinolysis. The digest was analyzed by HPLC leading to a single radioactive peak which, by microsequencing, revealed two sequences extending from alpha Lys-179 and from alpha His-186, respectively. Radioactive signals could be unambiguously attributed to positions corresponding to residues alpha Tyr-190, alpha Cys-192, alpha Cys-193, and alpha Tyr-198. These four identified [3H]DCTA-labeled residues, which have been also labeled with other affinity and photoaffinity probes including the agonist [3H]nicotine, belong to loop C of the ACh binding site. The chemical structure of [3H]DCTA, together with its well-defined and powerful photochemical reactivity, provides convincing evidence that loop C-labeled residues are primarily involved in the interaction with the ester moiety of acetylcholine.  相似文献   

14.
Short-term receptor regulation by agonists is a well-known phenomenon for a number of receptors, including beta-adrenergic receptors, and has been associated with receptor changes revealed by radioligand binding. In the present study, we investigated the rapid changes in alpha 1-adrenergic receptors induced by agonists. alpha 1-receptors were studied on DDT1 MF-2 smooth muscle cells (DDT1-MF-2 cells) by specific [3H]prazosin binding. In competition binding on membranes and on intact cells at 4 degrees C or at 37 degrees C in 1-min assays, agonists competed for a single class of sites with relatively high affinity. By contrast, in equilibrium binding at 37 degrees C on intact cells agonists competed with two receptor forms (high- and low-affinity). We quantified the receptors in the high-affinity form by measuring the [3H]prazosin binding inhibited by 20 microM norepinephrine (this concentration selectively saturated the high-affinity sites). The low-affinity sites were measured by subtracting the binding of [3H]prazosin to the high-affinity sites from the total specific binding. High-affinity receptors were 85% of the total sites in binding experiments at 4 degrees C, but only 30% at 37 degrees C. On DDT1-MF-2 cells preequilibrated with [3H]prazosin at 4 degrees C, and then shifted to 37 degrees C for a few minutes, norepinephrine selectively reduced the high-affinity sites by 30%. We suggest that at 4 degrees C it is the native form of alpha 1-receptors that is measured, with most of the sites in the high-affinity form, while during incubation at 37 degrees C the norepinephrine present in the binding assay converts most of the receptors to an apparent low-affinity form, so that they are no longer recognized by 20 microM norepinephrine. The nature of this low-affinity form was further investigated. On DDT1-MF-2 cells preincubated with the agonist and then extensively washed at 4 degrees C (to maintain the receptor changes induced by the agonist) the number of receptors recognized by [3H]prazosin at 4 degrees C was reduced by 38%. After fragmentation of the cells, the number of receptors measured at 4 degrees C was the same in control and norepinephrine-treated cells, suggesting that the disruption of cellular integrity might expose the receptors which are probably sequestered after agonist treatment. In conclusion, the appearance of the low affinity for agonists at 37 degrees C may be due to the agonist-induced sequestration of alpha 1-adrenergic receptors, resulting in a limited accessibility to hydrophilic ligands.  相似文献   

15.
The changes of [3H]yohimbine and [3H]clonidine binding sites in rat vas deferens on treatments with adenosine receptor agonists (2-chloroadenosine, adenosine) or reserpine were examined. Treatment with adenosine agonist in vitro increased [3H]clonidine binding sites but had no influence on affinity and number of binding sites of α2-antagonist, [3H]yohimbine. Amount of [3H]yohimbine binding sites was found to be higher than that of [3H]clonidine with or without the treatment. Inhibition curves of α2-agonists, clonidine and norepinephrine, on [3H]yohimbine binding were less than unity though α2-antagonist inhibited with about 1.0 of nH. The treatment with adenosine agonist reduced the IC50 value of agonists on the [3H]yohimbine binding but had no influence on the inhibitory effect of antagonist. These effect of adenosine agonists was completely blocked by theophylline. Accordingly it was considered that activation of adenosine receptor caused configurational change in α2-adrenergic receptor from low affinity state for agonist to the high affinity state, though both states had same affinity for antagonist.On the other hand, treatment with reserpine in vivo increased the affinity of clonidine for α2-adrenergic receptors and also increased the amount of the α2-receptors.  相似文献   

16.
The newly available and highly selective radiolabeled antagonist [3H]RX 821002 was used to examine the distribution of alpha 2 adrenoceptors in human brain. High densities of alpha 2 adrenoceptors were found in the hippocampus, frontal cortex, thalamus, amygdala, pons, and medulla oblongata. Intermediate densities were observed in the striatum (nucleus accumbens, nucleus caudatus, and putamen), globus pallidus, and substantia nigra. The KD values for [3H]RX 821002 were similar in all regions (ranging from 2.8 to 7.5 nM). On the basis of their different affinities for prazosin and oxymetazoline, the alpha 2 adrenoceptors have been divided into alpha 2A and alpha 2B subtypes. To examine the alpha 2A/alpha 2B-adrenoceptor ratio in the different brain regions, we performed oxymetazoline and prazosin/[3H]RX 821002 competition binding experiments. In frontal cortex membranes, the competition curves with prazosin were steep, indicating a single class of binding sites, whereas the competition curves with oxymetazoline were shallow and fitted by computer best to a two-site model. However, in the presence of GTP, the high-affinity sites for oxymetazoline were partially converted into low-affinity sites, indicating that this agonist interacts with high- and low-affinity states of the alpha 2 adrenoceptors. This implies that oxymetazoline is not very suitable for discriminating the alpha 2A- and alpha 2B-receptor subtypes in radioligand binding studies. Therefore, prazosin/[3H]RX 821002 competition binding experiments were used to investigate the distribution of the alpha 2-adrenoceptor subtypes in human brain. The alpha 2A-receptor subtype was detected in all brain regions examined. In contrast, alpha 2B receptors were only observed in striatum and globus pallidus.  相似文献   

17.
alpha 1- and beta-adrenergic receptor properties of intact hepatocytes from adult male and female rats were evaluated in ligand binding studies using [3H]prazosin and [3H]CGP-12177 (4-(t-butylamino-2-hydroxypropoxy)-[5,7-3H]benzimidazole-2-one-HCl), a hydrophilic beta antagonist. Prior work had suggested that the response of hepatocytes from males to alpha 1-adrenergic stimulation was greater than that of cells from females. However, little sexual difference in prazosin affinity, number of binding sites or kinetics of association/dissociation with the cells was found. Epinephrine, [3H]prazosin competition for binding sites on intact cells was performed at 2 degrees C and 80-90% of agonist sites remained in a high affinity state with an epinephrine Kd comparable to that previously found in glucose release and phosphorylase alpha activation studies. Agonist Kd inferred from these competition experiments also showed no sexual dimorphism. These data suggest that the greater rise in the concentration of cytosolic free calcium and release of 45Ca from cells of males in response to epinephrine stimulation is not due to male/female alpha 1-receptor differences but, rather, may be a function of the previously observed sexual difference in cell calcium metabolism. [3H]CGP binding to hepatocytes from females was stereospecific, saturable and identified a single, high affinity site. Comparable sites were not found on cells from males, however, [3H]CGP binding to crude membrane preparations from both sexes was identical. This suggests that the loss of hepatic beta-receptor function in the adult male is due to an inaccessibility of beta-receptors at the external surface of the plasma membrane of the intact cell. Further studies with other beta-receptor ligands are being carried out to confirm these initial findings.  相似文献   

18.
The effects of mono- and di-valent cations and the nonhydrolyzable guanyl nucleotide derivative 5'-guanylimidodiphosphate (Gpp(NH)p) on the binding of the selective, high affinity mu-opiate receptor agonist, [3H]DAGO ([3H]Tyr-D-Ala-Gly-Mephe-Gly-ol), to rat brain membranes were studied in a low ionic strength 5 mM Tris-HCl buffer. Na+ and Li+ (50 mM) maximally increased [3H]DAGO binding (EC50 values for Na+, 2.9 mM and Li+, 6.2 mM) by revealing a population of low affinity binding sites. The density of high affinity [3H]DAGO binding sites was unaffected by Na+ and Li+, but was maximally increased by 50 mM K+ and Rb+ (EC50 values for K+, 8.5 mM and Rb+, 12.9 mM). Divalent cations (Ca2+, Mg2+; 50 mM) inhibited [3H]DAGO binding. Gpp(NH)p decreased the affinity of [3H]DAGO binding, an effect that was enhanced by Na+ but not by K+. The binding of the mu-agonist [3H]dihydromorphine was unaffected by 50 mM Na+ in 5 mM Tris-HCl. In 50 mM Tris-HCl, Na+ (50 mM) inhibited [3H]DAGO binding by decreasing the density of high affinity binding sites and promoting low affinity binding. The effects of Na+ in 5 mM and 50 mM Tris-HCl were also investigated on the binding of other opiate receptor agonists and antagonists. [3H]D-Ala-D-Leu-enkephalin binding was increased and inhibited. [3H]etorphine binding increased and was unchanged, and both [3H]bremazocine and [3H]naloxone binding increased by 50 mM Na+ in 5 mM and 50 mM Tris-HCl, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
This report describes the uptake of L-[propyl-2,3-3H]dihydroalprenolol, a beta-adrenergic antagonist, by HeLa (human adenocarcinoma) cells. [3H]Dihydroalprenolol binds to sites of high capacity and low affinity in intact HeLa cells. The binding achieves equilibrium rapidly and is rapidly reversible. Bound [3H]dihydroalprenolol is displaceable by beta-adrenergic antagonists in a nonstereoselective fashion, but is not displaceable by isoproterenol, an adrenergic agonist. Phentolamine, an alpha-adrenergic antagonist, and chloroquine, a lysosomotropic amine, also compete for [3H]dihydroalprenolol binding sites. [3H]Dihydroalprenolol binding is inhibited by metabolic inhibitors, but not by cytoskeletal blocking agents. The binding is sensitive to extracellular pH (less binding at lower pH) and is temperature-sensitive (less binding at lower temperatures). The bound radioligand is rapidly reversed following hypotonic lysis of the cells. These [3H]dihydroalprenolol binding sites in intact HeLa cells therefore do not have the characteristics expected for beta-adrenergic receptors. Further studies showed that beta-adrenergic receptors could be detected in a HeLa membrane preparation using [125I]iodohydroxybenzylpindolol, and that chloroquine had very low affinity for these receptors. We conclude that [3H]dihydroalprenolol diffuses across the plasma membrane of intact HeLa cells and accumulates in acidic intracellular compartments.  相似文献   

20.
R E Middleton  J B Cohen 《Biochemistry》1991,30(28):6987-6997
The agonist [3H]nicotine was used as a photoaffinity label for the acetylcholine binding sites on the Torpedo nicotinic acetylcholine receptor (AChR). [3H]nicotine binds at equilibrium with Keq = 0.6 microM to the agonist binding sites. Irradiation with 254-nm light of AChR-rich membranes equilibrated with [3H]nicotine resulted in covalent incorporation into the alpha- and gamma-subunits, which was inhibited by agonists and competitive antagonists but not by noncompetitive antagonists. Inhibition of labeling by d-tubocurarine demonstrated that the alpha-subunit was labeled via both agonist sites but the gamma-subunit was labeled only via the site that binds d-tubocurarine with high affinity. Within the alpha-subunit, 93% of the labeling was contained within a 20-kDa Staphylococcus aureus V8 proteolytic fragment beginning at Ser-173. Sequence analysis of this peptide indicated that approximately 80% of the incorporation was into Tyr-198, approximately 13% was into Cys-192, and approximately 7% was into Tyr-190. Chymotryptic digestion of the alpha-subunit confirmed that Tyr-198 was the principal amino acid labeled by [3H]nicotine. This confirmation required a novel radio-sequencing strategy employing omicron-phthalaldehyde, since the efficiency of photolabeling was low (approximately 1.0%) and the labeled chymotryptic peptide was not isolated in sufficient quantity to be identified by mass. [3H]Nicotine, which is the first photoaffinity agonist used, labels primarily Tyr-198 in contrast to competitive antagonist affinity labels, which label primarily Tyr-190 and Cys-192/Cys-193.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号