首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 508 毫秒
1.
The ancestor of cetaceans underwent a macroevolutionary transition from land to water early in the Eocene Period >50 million years ago. However, little is known about how diverse retroviruses evolved during this shift from terrestrial to aquatic environments. Did retroviruses transition into water accompanying their hosts? Did retroviruses infect cetaceans through cross-species transmission after cetaceans invaded the aquatic environments? Endogenous retroviruses (ERVs) provide important molecular fossils for tracing the evolution of retroviruses during this macroevolutionary transition. Here, we use a phylogenomic approach to study the origin and evolution of ERVs in cetaceans. We identify a total of 8,724 ERVs within the genomes of 25 cetaceans, and phylogenetic analyses suggest these ERVs cluster into 315 independent lineages, each of which represents one or more independent endogenization events. We find that cetacean ERVs originated through two possible routes. 298 ERV lineages may derive from retrovirus endogenization that occurred before or during the transition from land to water of cetaceans, and most of these cetacean ERVs were reaching evolutionary dead-ends. 17 ERV lineages are likely to arise from independent retrovirus endogenization events that occurred after the split of mysticetes and odontocetes, indicating that diverse retroviruses infected cetaceans through cross-species transmission from non-cetacean mammals after the transition to aquatic life of cetaceans. Both integration time and synteny analyses support the recent or ongoing activity of multiple retroviral lineages in cetaceans, some of which proliferated into hundreds of copies within the host genomes. Although ERVs only recorded a proportion of past retroviral infections, our findings illuminate the complex evolution of retroviruses during one of the most marked macroevolutionary transitions in vertebrate history.  相似文献   

2.
Endogenous retroviruses (ERVs) are integrated as DNA proviruses in the genomes of all mammalian species. Several ERVs are replication-competent and produced as fully infectious viruses from host cell. Thus, live-attenuated vaccines and biological substances have been prepared using the cell lines which may produce ERV. Indeed, we recently reported that several commercial live-attenuated vaccines for pets were contaminated with the infectious feline endogenous retrovirus, RD-114. In this study, to establish a cell line for vaccine manufacture with reduced risk of ERVs, we generated a cell line stably expressing human tetherin (Teth-CRFK cells). The release of infectious ERV from Teth-CRFK cells was suppressed to undetectable levels, while the production of parvovirus in Teth-CRFK cells was similar to that in parental CRFK cells. These observations suggest that Teth-CRFK cells will be useful as a cell line for the manufacture of live-attenuated vaccines or biological substances with reduced risk of ERV.  相似文献   

3.
All vertebrate genomes have been colonized by retroviruses along their evolutionary trajectory. Although endogenous retroviruses (ERVs) can contribute important physiological functions to contemporary hosts, such benefits are attributed to long-term coevolution of ERV and host because germline infections are rare and expansion is slow, and because the host effectively silences them. The genomes of several outbred species including mule deer (Odocoileus hemionus) are currently being colonized by ERVs, which provides an opportunity to study ERV dynamics at a time when few are fixed. We previously established the locus-specific distribution of cervid ERV (CrERV) in populations of mule deer. In this study, we determine the molecular evolutionary processes acting on CrERV at each locus in the context of phylogenetic origin, genome location, and population prevalence. A mule deer genome was de novo assembled from short- and long-insert mate pair reads and CrERV sequence generated at each locus. We report that CrERV composition and diversity have recently measurably increased by horizontal acquisition of a new retrovirus lineage. This new lineage has further expanded CrERV burden and CrERV genomic diversity by activating and recombining with existing CrERV. Resulting interlineage recombinants then endogenize and subsequently expand. CrERV loci are significantly closer to genes than expected if integration were random and gene proximity might explain the recent expansion of one recombinant CrERV lineage. Thus, in mule deer, retroviral colonization is a dynamic period in the molecular evolution of CrERV that also provides a burst of genomic diversity to the host population.  相似文献   

4.
Bats are increasingly recognized as reservoir species for a variety of zoonotic viruses that pose severe threats to human health. While many RNA viruses have been identified in bats, little is known about bat retroviruses. Endogenous retroviruses (ERVs) represent genomic fossils of past retroviral infections and, thus, can inform us on the diversity and history of retroviruses that have infected a species lineage. Here, we took advantage of the availability of a high-quality genome assembly for the little brown bat, Myotis lucifugus, to systematically identify and analyze ERVs in this species. We mined an initial set of 362 potentially complete proviruses from the three main classes of ERVs, which were further resolved into 13 major families and 86 subfamilies by phylogenetic analysis. Consensus or representative sequences for each of the 86 subfamilies were then merged to the Repbase collection of known ERV/long terminal repeat (LTR) elements to annotate the retroviral complement of the bat genome. The results show that nearly 5% of the genome assembly is occupied by ERV-derived sequences, a quantity comparable to findings for other eutherian mammals. About one-fourth of these sequences belong to subfamilies newly identified in this study. Using two independent methods, intraelement LTR divergence and analysis of orthologous loci in two other bat species, we found that the vast majority of the potentially complete proviruses identified in M. lucifugus were integrated in the last ∼25 million years. All three major ERV classes include recently integrated proviruses, suggesting that a wide diversity of retroviruses is still circulating in Myotis bats.  相似文献   

5.
Endogenous retrovirus (ERV) genomes integrated into the chromosomal DNA of the host were first detected in chickens and mice as Mendelian determinants of Gag and Env proteins and of the release of infectious virus particles. The presence of ERV was confirmed by DNA hybridization. With complete host genomes available for analysis, we can now see the great extent of viral invasion into the genomes of numerous vertebrate species, including humans. ERVs are found at many loci in host DNA and also in the genomes of large DNA viruses, such as herpesviruses and poxviruses. The evolution of xenotropism and cross-species infection is discussed in the light of the dynamic relationship between exogenous and endogenous retroviruses.  相似文献   

6.
Endogenous retroviruses(ERVs) are a component of the vertebrate genome and originate from exogenous infections of retroviruses in the germline of the host. ERVs have coevolved with their hosts over millions of years. Envelope glycoproteins of endogenous retroviruses are often expressed in the mammalian placenta, and their potential function has aroused considerable research interest, including the manipulation of maternal physiology to benefit the fetus. In most mammalian species, trophoblast fusion in the placenta is an important event, involving the formation of a multinucleated syncytiotrophoblast layer to fulfill essential fetomaternal exchange functions. The key function in this process derives from the envelope genes of endogenous retroviruses, namely syncytins, which show fusogenic properties and placenta-specific expression. This review discusses the important role of the recognized endogenous retrovirus envelope glycoproteins in the mammalian placenta.  相似文献   

7.
Retroviral replication involves the formation of a DNA provirus integrated into the host genome. Through this process, retroviruses can colonize the germ line to form endogenous retroviruses (ERVs). ERV inheritance can have multiple adverse consequences for the host, some resembling those resulting from exogenous retrovirus infection but others arising by mechanisms unique to ERVs. Inherited retroviruses can also confer benefits on the host. To meet the different threats posed by endogenous and exogenous retroviruses, various host defences have arisen during evolution, acting at various stages on the retrovirus life cycle. In this Review, I describe our current understanding of the distribution and architecture of ERVs, the consequences of their acquisition for the host and the emerging details of the intimate evolutionary relationship between virus and vertebrate host.  相似文献   

8.
Endogenous retroviruses (ERVs) are vertically transmitted intragenomic elements derived from integrated retroviruses. ERVs can proliferate within the genome of their host until they either acquire inactivating mutations or are lost by recombinational deletion. We present a model that unifies current knowledge of ERV biology into a single evolutionary framework. The model predicts the possible long-term outcomes of retroviral germline infection and can account for the variable patterns of observed ERV genetic diversity. We hope the model will provide a useful framework for understanding ERV evolution, enabling the testing of evolutionary hypotheses and the estimation of parameters governing ERV proliferation.  相似文献   

9.
Retroviruses are classified as exogenous or endogenous according to their mode of transmission. Generally, endogenous retroviruses (ERVs) are not pathogenic in their original hosts; however, some ERVs induce diseases. In humans, a novel gammaretrovirus was discovered in patients with prostate cancer or chronic fatigue syndrome. This virus was closely related to xenotropic murine leukemia virus (X-MLV) and designated as xenotropic murine leukemia virus-related virus (XMRV). The origin and transmission route of XMRV are still unknown at present; however, XMRV may be derived from ERVs of rodents because X-MLVs are ERVs of inbred and wild mice. Many live attenuated vaccines for animals are manufactured by using cell lines from animals, which are known to produce infectious ERVs; however, the risks of infection by ERVs from xenospecies through vaccination have been ignored. This brief review gives an overview of ERVs in cats, the potential risks of ERV infection by vaccination, the biological characteristics of RD-114 virus (a feline ERV), which possibly contaminates vaccines for companion animals, and the methods for detection of infectious RD-114 virus.  相似文献   

10.
Retroviruses have been infecting mammals for at least 100 million years, leaving descendants in host genomes known as endogenous retroviruses (ERVs). The abundance of ERVs is partly determined by their mode of replication, but it has also been suggested that host life history traits could enhance or suppress their activity. We show that larger bodied species have lower levels of ERV activity by reconstructing the rate of ERV integration across 38 mammalian species. Body size explains 37% of the variance in ERV integration rate over the last 10 million years, controlling for the effect of confounding due to other life history traits. Furthermore, 68% of the variance in the mean age of ERVs per genome can also be explained by body size. These results indicate that body size limits the number of recently replicating ERVs due to their detrimental effects on their host. To comprehend the possible mechanistic links between body size and ERV integration we built a mathematical model, which shows that ERV abundance is favored by lower body size and higher horizontal transmission rates. We argue that because retroviral integration is tumorigenic, the negative correlation between body size and ERV numbers results from the necessity to reduce the risk of cancer, under the assumption that this risk scales positively with body size. Our model also fits the empirical observation that the lifetime risk of cancer is relatively invariant among mammals regardless of their body size, known as Peto''s paradox, and indicates that larger bodied mammals may have evolved mechanisms to limit ERV activity.  相似文献   

11.
Several distinct families of endogenous retrovirus-like elements (ERVs) exist in the genomes of primates. Despite the important evolutionary consequences that carrying these intragenomic parasites may have for their hosts, our knowledge about their evolution is still scarce. A matter of particular interest is whether evolution of ERVs occurs via a master lineage or through several lineages coexisting over long periods of time. In this work, the paleogenomic approach has been applied to the study of the evolution of ERV9, one of the human endogenous retrovirus families mobilized during primate evolution. By searching the GenBank database with the first 676 bp of the ERV9 long terminal repeat, we identified 156 different element insertions into the human genome. These elements were grouped into 14 subfamilies based on several characteristic nucleotide differences. The age of each subfamily was roughly estimated based on the average sequence divergence of its members from the subfamily consensus sequence. Determination of the sequential order of diagnostic substitutions led to the identification of four distinct lineages, which retained their capacity of transposition over extended periods of evolution. Strong evidence for mosaic evolution of some of these lineages is presented. Taken altogether, the available data indicate that the possibility of ERV9 still being active in the human lineage can not be discarded.  相似文献   

12.
Endogenous retroviruses (ERV), or the remnants of past retroviral infections that are no longer active, are found in the genomes of most vertebrates, typically constituting approximately 10% of the genome. In some vertebrates, particularly in shorter-lived species like rodents, it is not unusual to find active endogenous retroviruses. In longer-lived species, including humans where substantial effort has been invested in searching for active ERVs, it is unusual to find them; to date none have been found in humans. Presumably the chance of detecting an active ERV infection is a function of the length of an ERV epidemic. Intuitively, given that ERVs or signatures of past ERV infections are passed from parents to offspring, we might expect to detect more active ERVs in species with longer generation times, as it should take more years for an infection to run its course in longer than in shorter lived species. This means the observation of more active ERV infections in shorter compared to longer-lived species is paradoxical. We explore this paradox using a modeling approach to investigate factors that influence ERV epidemic length. Our simple epidemiological model may explain why we find evidence of active ERV infections in shorter rather than longer-lived species.  相似文献   

13.
14.
15.
Endogenous retroviruses (ERVs) are widespread in vertebrate genomes and have been loosely grouped into "classes" on the basis of their phylogenetic relatedness to the established genera of exogenous retroviruses. Four of these genera-the lentiviruses, alpharetroviruses, betaretroviruses, and deltaretroviruses-form a well-supported clade in retroviral phylogenies, and ERVs that group with these genera have been termed class II ERVs. We used PCR amplification and sequencing of retroviral fragments from more than 130 vertebrate taxa to investigate the evolution of the class II retroviruses in detail. We confirm that class II retroviruses are largely confined to mammalian and avian hosts and provide evidence for a major novel group of avian retroviruses, and we identify additional members of both the alpha- and the betaretrovirus genera. Phylogenetic analyses demonstrated that the avian and mammalian viruses form distinct monophyletic groups, implying that interclass transmission has occurred only rarely during the evolution of the class II retroviruses. In contrast to previous reports, the lentiviruses clustered as sister taxa to several endogenous retroviruses derived from rodents and insectivores. This topology was further supported by the shared loss of both the class II PR-Pol frameshift site and the class II retrovirus G-patch domain.  相似文献   

16.
The evolutionary arms race between mammals and retroviruses has long been recognized as one of the oldest host–parasite interactions. Rapid evolution rates in exogenous retroviruses have often made accurate viral age estimations highly problematic. Endogenous retroviruses (ERVs), however, integrate into the germline of their hosts, and are subjected to their evolutionary rates. This study describes, for the first time, a retroviral orthologue predating the divergence of placental mammals, giving it a minimum age of 104–110 Myr. Simultaneously, other orthologous selfish genetic elements (SGEs), inserted into the ERV sequence, provide evidence for the oldest individual mammalian-wide interspersed repeat and medium-reiteration frequency interspersed repeat mammalian repeats, with the same minimum age. The combined use of shared SGEs and reconstruction of viral orthologies defines new limits and increases maximum ‘lookback’ times, with subsequent implications for the field of paleovirology.  相似文献   

17.
It has become increasingly clear that retrotransposons (RTEs) are more widely expressed in somatic tissues than previously appreciated. RTE expression has been implicated in a myriad of biological processes ranging from normal development and aging, to age related diseases such as cancer and neurodegeneration. Long Terminal Repeat (LTR)-RTEs are evolutionary ancestors to, and share many features with, exogenous retroviruses. In fact, many organisms contain endogenous retroviruses (ERVs) derived from exogenous retroviruses that integrated into the germ line. These ERVs are inherited in Mendelian fashion like RTEs, and some retain the ability to transmit between cells like viruses, while others develop the ability to act as RTEs. The process of evolutionary transition between LTR-RTE and retroviruses is thought to involve multiple steps by which the element loses or gains the ability to transmit copies between cells versus the ability to replicate intracellularly. But, typically, these two modes of transmission are incompatible because they require assembly in different sub-cellular compartments. Like murine IAP/IAP-E elements, the gypsy family of retroelements in arthropods appear to sit along this evolutionary transition. Indeed, there is some evidence that gypsy may exhibit retroviral properties. Given that gypsy elements have been found to actively mobilize in neurons and glial cells during normal aging and in models of neurodegeneration, this raises the question of whether gypsy replication in somatic cells occurs via intracellular retrotransposition, intercellular viral spread, or some combination of the two. These modes of replication in somatic tissues would have quite different biological implications. Here, we demonstrate that Drosophila gypsy is capable of both cell-associated and cell-free viral transmission between cultured S2 cells of somatic origin. Further, we demonstrate that the ability of gypsy to move between cells is dependent upon a functional copy of its viral envelope protein. This argues that the gypsy element has transitioned from an RTE into a functional endogenous retrovirus with the acquisition of its envelope gene. On the other hand, we also find that intracellular retrotransposition of the same genomic copy of gypsy can occur in the absence of the Env protein. Thus, gypsy exhibits both intracellular retrotransposition and intercellular viral transmission as modes of replicating its genome.  相似文献   

18.
19.
20.
The genomes of many species are crowded with repetitive mobile sequences. In the case of endogenous retroviruses (ERVs) there is, for various reasons, considerable confusion regarding names assigned to families/groups of ERVs as well as individual ERV loci. Human ERVs have been studied in greater detail, and naming of HERVs in the scientific literature is somewhat confusing not just to the outsider. Without guidelines, confusion for ERVs in other species will also probably increase if those ERVs are studied in greater detail. Based on previous experience, this review highlights some of the problems when naming and classifying ERVs, and provides some guidance for detecting and characterizing ERV sequences. Because of the close relationship between ERVs and exogenous retroviruses (XRVs) it is reasonable to reconcile their classification with that of XRVs. We here argue that classification should be based on a combination of similarity, structural features, (inferred) function, and previous nomenclature. Because the RepBase system is widely employed in genome annotation, RepBase designations should be considered in further taxonomic efforts. To lay a foundation for a phylogenetically based taxonomy, further analyses of ERVs in many hosts are needed. A dedicated, permanent, international consortium would best be suited to integrate and communicate our current and future knowledge on repetitive, mobile elements in general to the scientific community.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号