首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The supraesophageal ganglion of the wolf spider Arctosa kwangreungensis is made up of a protocerebral and tritocerebral ganglion, whereas the subesophageal ganglionic mass is composed of a single pair of pedipalpal ganglia, four pairs of appendage ganglia, and a fused mass of abdominal neuromeres. In the supraesophageal ganglion, complex neuropile masses are located in the protocerebrum which include optic ganglia, the mushroom bodies, and the central body. Characteristically, the only nerves arising from the protocerebrum are the optic nerves, and the neuropiles of the principal eyes are the most thick and abundant in this wandering spider. The central body which is recognized as an important association center is isolated at the posterior of the protocerebrum and appears as a complex of highly condensed neurons. These cells give off fine parallel bundles of axons arranged in the mushroom bodies. The subesophageal nerve mass can be divided into two main tracts on the basis of direction of the neuropiles. The dorsal tracts are contributed to from the motor or interneurons of each ganglion, whereas the ventral tracts are from incoming sensory axons.  相似文献   

2.
Described herein is an as yet unprecedented structural and functional analogy of both the tracheal supply of the prosomal ganglion in opilionids and the arterial supply of the prosomal ganglion in pulmonate arachnids. Within Arachnida, two different modes of respiration can be observed: the so-called book lungs, and the tube-like tracheae. These different respiratory modes always correlate with a specific setup concerning the complexity of the circulatory system. This fact has a particular influence on the supply of certain organ systems, such as the central nervous system. It has recently been shown that pulmonate arachnids possess a highly complex pattern of intraganglionic arteries. Here, we show that Opiliones (harvestmen) possess a complex tracheal system (which supplies the different organ systems with oxygen) and only a relatively simple vascular system, comprising a short heart and an anterior aorta that runs directly to the prosomal ganglion. Using a variety of modern and classical morphological methods, we studied the vascular, tracheal and nervous systems of different representatives from all higher taxa of Opiliones. We show that the prosomal ganglion is extensively supplied with intraganglionic tracheae. What is especially surprising is the high degree of correspondence between the pattern of these ganglionic tracheae in harvestmen and the pattern of arteries in the prosomal ganglion of pulmonate arachnids. We aim to provide mechanistic causal explanations of these analogous patterns by applying the concepts of role analogy and constructional analogy. We also aim to establish the circulatory system as a model organ system and hope that this may, in turn, provide a starting point for future research programmes.  相似文献   

3.
Glutamic acid decarboxylase (GAD) is an enzyme that catalyzes the decarboxylation of glutamate to γ‐aminobutyric acid (GABA) and CO2. It has been discovered that the GAD has a restricted tissue distribution and it is highly expressed in the cytoplasm of GABAergic neurons in the CNS where GABA is used as a neurotransmitter. We have examined the microstructure of ganglionic neurons and nerves arising from the CNS and describe here the immunocytochemical localization of GAD isoforms to reveal the ecophysiological significance of GABA for the web‐building spider's behavior. In the CNS of the cobweb spider, Achaearanea tepidariorum, immunocytochemical localization of GAD isoforms can be detected in the neurons and neuropiles of the optic lobes. In addition, GAD‐like immunoreactive cell bodies are observed at the intrinsic cell bodies near the central body and the symmetric cell clusters of the protocerebrum. However, the fibrous masses within the protocerebral ganglion are not labeled at all. Based on its interconnection with other regions of the CNS, our findings suggest that the central body in the web‐building spider may act as an association center as well as a visual center.  相似文献   

4.
The anatomy and histology of the adult Argas (Persicargas) arboreus central nervous system are described and compared with these properties in other ticks. The single, integrated, central nerve mass (CNM) is formed by a fused supra-esophageal part (protocerebrum, cheliceral ganglia, palpal ganglia, and stomodeal pons) and a subesophageal part (4 pairs of pedal ganglia and the complex opisthosomatic ganglion). Single peripheral nerves (pharyngeal and recurrent) and paired peripheral nerves (compound protocerebral, cheliceral, palpal, pedal and opisthosomatic) extend from the CNM to body organs and appendages. Optic nerves, described in other Argas species, are not found in A. (P.) arboreus. Histologically, the CNM is enclosed by a thin-walled periganglionic blood sinus and invested by a collagenous neural lamella followed by a perineurial layer composed of glial cells and containing fine reticular spaces, a cortical layer of association, motor and neurosecretory cell bodies and glial cells, and inner neuropile regions of fiber tracts forming 5 horizontal levels of connectives and commissures.  相似文献   

5.
TheHyalommadromedarii central nervous system, the synganglion, is an integrated nerve mass concentrated around the esophagus and formed by fusion of a small anterodorsal supraesophageal part an a large posteroventral subesophageal part. The supraesophageal part consists of the protocerebrum including a pair of optic ganglia, a pair of cheliceral ganglia, a pair of pedipalpal ganglia, and the stomodeal pons. The subesophageal part includes four paired pedal ganglia and the complex opisthosomatic ganglion. The peripheral nervous system includes the following pairs of nerves: optic, cheliceral, pedipalpal, primary and accessory (histologically traced); also unpaired pharyngeal and recurrent nerves, four pairs of pedal nerve trunks, each with a hemal branch, and two pairs of opisthosomatic nerves. Each peripheral nerve is traced distally to the innervation site. The salivary glands are innervated anteriorly by branches of the pedipalpal nerve and medially by branches of the hemal nerves associated with the third pedal nerves.Reprint request should be sent to: Medical Zoology Department, NAMRU-3, Fleet Post Office, New York 09527, U.S.A.  相似文献   

6.
Previous studies have revealed leucokinin (LK) expression in the brain and ventral ganglion of Drosophila CNS. One pair of protocerebrum neurons located in the lateral horn area (LHLK) surrounds the peduncles of the mushroom bodies while two pairs of subesophageal neurons (SELKs) project extended processes to the tritocerebrum and through a cervical connection to the ventral ganglion. There, axons of eight or nine pairs of abdominal (ABLK) neurons leave the CNS through the abdominal nerves and processes connecting each other ipsilaterally and contralaterally. The neural functions of LK remain largely unknown, especially those related to Drosophila behavior. Here, we have studied the role of LK in olfactory and gustatory perception by keeping the LK neurons electrically silent through targeted expression of inward rectifier K+ channels. In order to examine the effects of LK failure, we first analyzed the dehydration response, comparing the leucokinin-silent individuals with their parents as a control. Our results showed significant differences that demonstrate the effectiveness of the method. We then tested the olfactory behavioral response to a set of odorants over a range of concentrations in a T-maze paradigm in which flies were allowed to choose between the odorant and solvent compartments. The feeding preference assays were carried out on microplates in which flies were allowed to choose between two colored tastes. Our results show that the blockade of LK release alters both olfactory and gustatory responses, and are therefore evidence that this neuropeptide also modulates chemosensory responses through LHLK and SELK neurons.  相似文献   

7.
Summary Serotonin-immunoreactive neurons in the median protocerebrum and suboesophageal ganglion of the sphinx moth Manduca sexta were individually reconstructed. Serotonin immunoreactivity was detected in 19–20 bilaterally symmetrical pairs of interneurons in the midbrain and 10 pairs in the suboesophageal ganglion. These neurons were also immunoreactive with antisera against DOPA decarboxylase. All major neuropil regions except the protocerebral bridge are innervated by these neurons. In addition, efferent cells are serotonin-immunoreactive in the frontal ganglion (5 neurons) and the suboesophageal ganglion (2 pairs of neurons). The latter cells probably give rise to an extensive network of immunoreactive terminals on the surface of the suboesophageal ganglion and suboesophageal nerves. Most of the serotonin-immunoreactive neurons show a gradient in the intensity of immunoreactive staining, suggesting low levels of serotonin in cell bodies and dendritic arbors and highest concentrations in axonal terminals. Serotonin-immunoreactive cells often occur in pairs with similar morphological features. With one exception, all serotonin-immunoreactive neurons have bilateral projections with at least some arborizations in identical neuropil areas in both hemispheres. The morphology of several neurons suggests that they are part of neuronal feedback circuits. The similarity in the arborization patterns of serotonin-immunoreactive neurons raises the possibility that their outgrowing neurites experienced similar forces during embryonic development. The morphological similarities further suggest that serotonin-immunoreactive interneurons in the midbrain and suboesophageal ganglion share physiological characteristics.Abbreviations CNS central nervous system - DDC DOPA decarboxylase - LAL lateral accessory lobe - SLI serotonin-like immunoreactivity - SOG suboesophageal ganglion - VLP ventro-lateral protocerebrum  相似文献   

8.
Summary In Cupiennius salei (Ctenidae), as in other spiders, the central nervous system is divided into the supraoesophageal ganglion or brain and the suboesophageal ganglia (Fig. 1). The two masses are interconnected by oesophageal connectives. The brain gives off four pairs of optic and one pair of cheliceral nerves. From the suboesophageal ganglia arise a pair of pedipalpal, four pairs of leg, and several pairs of opisthosomal nerves (Fig. 2). 1. Cell types. In the brain a total of 50900 cells were counted, in the suboesophageal ganglia 49000. They are all monopolar cells, found in the ganglion periphery and may be classified into four types: (a) Small globuli cells (nuclear diameter 6–7 m) forming a pair of compact masses in the protocerebrum (Fig. 10b); (b) Small and numerous cells (cell diameter 12–20 m) with processes forming the bulk of the neuropil in the brain and suboesophageal ganglia; (c) Neurosecretory cells (cell diameter ca. 45 m) in the brain and suboesophageal ganglia; (d) Large motor and interneurons (cell daimeter 40–112 m), mostly in the suboesophageal ganglia (Figs. 10a and c). 2. Suboesophageal mass. The cell bodies form a sheet of one to several cell layers on the ventral side of each ganglion and are arranged in groups. Three such groups were identified as motor neurons, four as interneurons. At the dorsal, dorso-lateral, and mid-central parts of the ganglion there are no cell somata. The fibre bundles arising from them form identifiable transverse commissural pathways (Fig. 9b). They form the fibrous mass in the central part of the suboesophageal mass.Neuropil is well-formed in association with the sensory terminations of all major nerves (Fig. 9a). As these proceed centrally they break up into five major sensory tracts forming five layers one above the other. There are six pairs of additional major longitudinal tracts arranged at different levels dorsoventrally (Fig. 8). They ascend into the brain through the oesophageal connectives and terminate mostly in the mushroom bodies and partly in the central body. 3. Protocerebrum. Fine processes of the globuli cells form the most important neuropil mass in the fibrous core, called the mushroom bodies. These consist of well developed glomeruli, hafts, and bridge which are interconnected with the optic masses of the lateral eyes and most fibre tracts from the brain and suboesophageal mass (Fig. 7). The median eye nerves form a small optic lamella and optic ganglia, connected to the central body through an optic tract. Each posterior median and posterior lateral eye nerve ends in large optic lamellae (Fig. 13a). These are connected through chiasmata to a large optic mass where fibres from globuli cells form conspicuous glomeruli. There are 10–12 large fibres (diameter 9 m) of unknown origin on each side, terminating in the optic lambella of the posterior lateral eye.The central body, another neuropil mass (Fig. 13b) in the protocerebrum, is well developed in Cupiennius and located transversely in its postero-dorsal region (Fig. 10d). It consists of two layers and is interconnected with optic masses of the median and lateral eyes through optic tracts. Fibre tracts from the brain and suboesophageal mass join the central body.  相似文献   

9.
The γ‐aminobutyric acid (GABA) has long been considered as an inhibitory neurotransmitter in the central nervous system (CNS) of both vertebrates and arthropods. Since the glutamic acid decarboxylase (GAD) has a restricted tissue distribution and catalyzes the conversion of L‐glutamate to GABA, immunoreactivity of GAD isoforms can reveal distribution of GABAergic neurons in the CNS. In the CNS of the spider Araneus cavaticus, immunoreactivity of GAD isoforms can be detected in the optic lobes including neurons and neuropiles of the supraesophageal ganglia. Strong GAD‐like immunoreactive cell bodies are concentrated in two bilaterally symmetric cell clusters of the protocerebrum. Some intrinsic cell bodies near the central body also show strong immunoreactivity. However, the intrinsic nerve masses and some of the longitudinal and transverse tracts within the supraesophageal ganglion are only lightly labelled, and the fibers transverse the hemisphere and the central fibrous masses are not labelled. Among the three basic types of cell bodies surrounding the central body, several clusters of the Type‐C cells show strong GAD‐like immunoreactivity, however both of the Type‐A and Type‐B cells are not labelled at all.  相似文献   

10.
The development of the dorsal ganglion of the salp, Thalia democratica, is described from electron microscope reconstructions up to the stage of central neuropile formation. The central nervous system (CNS) rudiment is initially tubular with an open central canal. Early developmental events include: (i) the formation of a thick dorsal mantle of neuroblasts from which paired dorsal paraxial neuropiles arise; (ii) the differentiation of clusters of primary motor neurons along the ventral margin of the mantle; and (iii) the development from the latter of a series of peripheral nerves. The dorsal paraxial neuropiles ultimately connect to the large central neuropile, which develops later. Direct contact between neuroblasts and muscle appears to be involved in the development of some anterior nerves. The caudal nerves responsible for innervating more distant targets in the posterior part of the body develop without such contacts, which suggests that a different patterning mechanism may be employed in this part of the neuromuscular system. The results are compared with patterns of brain organization in other chordates. Because the salp CNS is symmetrical and generally less reduced than that of ascidian larvae, it is more easily compared with the CNS of amphioxus and vertebrates. The dorsal paraxial centres in the salp resemble the dorsolateral tectal centres in amphioxus in both position and organization; the central neuropile in salps likewise resembles the translumenal system in amphioxus. The neurons themselves are similar in that many of their neurites appear to be derived from the apical surface instead of the basal surface of the cell. Such neurons, with extensively developed apical neurites, may represent a new cell type that evolved in the earliest chordates in conjunction with the formation of translumenal or intralumenal integrative centres. In comparing the salp ganglion with vertebrates, we suggest that the main core of the ganglion is most like the mes-metencephalic region of the vertebrate brain, i.e. the zone occupied by the midbrain, isthmus, and anterior hindbrain. Counterparts of more anterior regions (forebrain) and posterior ones (segmented hindbrain) appear to be absent in salps, but are found in other tunicates, suggesting that evolution has acted quite differently on the main subdivisions of the CNS in different types of tunicates.  相似文献   

11.
Summary We have used specific antisera against protein-conjugated-aminobutyric acid (GABA) in immunocytochemical preparations to investigate the distribution of putatively GABAergic neurons in the brain and suboesophageal ganglion of the sphinx mothManduca sexta. About 20000 neurons per brain hemisphere exhibit GABA-immunoreactivity. Most of these are optic-lobe interneurons, especially morphologically centrifugal neurons of the lamina and tangential neurons that innervate the medulla or the lobula complex. Many GABA-immunoreactive neurons, among them giant fibers of the lobula plate, project into the median protocerebrum. Among prominent GABA-immunoreactive neurons of the median protocerebrum are about 150 putatively negative-feedback fibers of the mushroom body, innervating both the calyces and lobes, and a group of large, fan-shaped neurons of the lower division of the central body. Several commissures in the supra- and suboesophageal ganglion exhibit GABA-immunoreactivity. In the suboesophageal ganglion, a group of contralaterally descending neurons shows GABA-like immunoreactivity. The frontal ganglion is innervated by immunoreactive processes from the tritocerebrum but does not contain GABA-immunoreactive somata. With few exceptions the brain nerves do not contain GABA-immunoreactive fibers.  相似文献   

12.
Neurosecretory cells of only one type (A, sub type A2) are seen in adult Melanoplus. Two groups of about 400 cells each are located dorsally in the pars intercerebralis medialis; four cells are located deep within the protocerebrum. We found no neurosecretory cells in other parts of the central or sympathetic nervous systems. In about 10% of the specimens, there was marked asymmetry in the location of the dorsal cell groups, with both of these groups and their axons located in one lobe of the protocerebrum. The nervi corporis cardiaci 1 cross-over in the corpus cardiacum, with the result that material produced by neurosecretory cells on one side of the brain is transported along axons that undergo two chiasmata to the corpus cardiacum of the same side. Stainable secretory material could be traced clearly from the cerebral cells to the corpus cardiacum, and even into the oesophageal nerves from the hypocerebral ganglion. However, stainable neurosecretory material is never present in the corpus allatum or along any of the nerves to this gland.  相似文献   

13.
The following structural characteristics of the chemosensory, visual, and vestibular pathways of the snail (Helix lucorum) were demonstrated by using a variety of histological techniques. Large and small neurons of the tentacle ganglion, the bipolar cells of the olfactory nerve, and a proportion of optic tentacle bulb chemoreceptors within the olfactory nerve all send their processes to the CNS of the mollusk. Here they are divided up into numerous bundles of fibers in the neuropil of the ipsilateral cerebral ganglion. They are joined by processes from the central nervous system put out by all neurons of the protocerebrum and the cluster of cells of the commissural section of the metacerebrum. Ocular receptors do not send processes down below the enlargement of the upper optic nerve. This enlargement is also the site where processes from cells within the CNS and the nerve itself terminate. An area of arborization of processes from the visual pathway cells is located in the neuropil of the pleural portion of the metacerebrum. Hair cells of statocysts put out processes to the cerebral ganglion, whence axons of small metacerebral neurons extend towards the organ of balance. Some processes from vestibular pathway cells form an arborization zone at the ipsilateral cerebral ganglion, while others pass through the cerebral commissure to form their area of arborization in the contralateral ganglion. Processes from vestibular and visual pathway cells arborize in exactly the same area.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 18, No. 1, pp. 7–16, January–February, 1986.  相似文献   

14.
Seidel C  Bicker G 《Tissue & cell》1996,28(6):663-672
The biogenic amine serotonin is a neurotransmitter and modulator in both vertebrates and invertebrates. In the CNS of insects, serotonin is expressed by identifiable subsets of neurons. In this paper, we characterize the onset of expression in the brain and suboesophageal ganglion of the honeybee during pupal development. Several identified serotonin-immunoreactive neurons are present in the three neuromeres of the suboesophageal ganglion the dorsal protocerebrum, and the deutocerebrum at pupal ecdysis. Further immunoreactive neurons are incorporated into the developing pupal brain in two characteristic developmental phases. During the first phase, 5 days after pupal ecdysis, serotonin immunoreactivity is formed in the protocerebral central body, the lamina and lobula, and the deutocerebral antennal lobe. During the second phase, 2 days later, immunoreactivity appears in neurons of the protocerebral noduli of the central complex, the medulla, and the pedunculi and lobes of the mushroom bodies. Three novel serotonin-immunoreactive neurons that innervate the central complex and the mushroom bodies can be individually identified.  相似文献   

15.
Musculature and nervous system of Gnathostomula peregrina (Gnathostomulida, Scleroperalia) were reconstructed from whole animals by immunohistochemistry and confocal laser scanning microscopy. The F-actin muscular subset, stained with FITC-labeled phalloidin, consists of: (1) eleven pairs (four ventral, one ventrolateral, one dorsolateral, five dorsal) of longitudinal muscles; (2) two types of diagonal muscles (thin fibers throughout the body, and slightly thicker fibers of which seven pairs occur ventrally and two pairs dorsally); (3) evenly spaced thin circular fibers that gird the posterior half of the body, continuing less prominently into the anterior half; and (4) a complex pharyngeal and genital musculature. Dorsoventral muscles are absent. The organization of the FMRFamidergic nervous system shows: (1) a central nervous system with a frontal ganglion and one pair of longitudinal nerves ending in a terminal commissure, and one median ventral nerve; (2) eight to ten unipolar perikarya above, and up to ten bipolar perikarya in front of the brain; (3) a total of five (one unpaired, two paired) longitudinal nerves of the peripheral nervous system with two to four accompanying perikarya; and (4) a buccal ganglion of the stomatogastric nervous system with six to eight perikarya above the pharyngeal bulbus. Our results reveal the musculature and nervous system of Gnathostomula to be more complex than hitherto reported.  相似文献   

16.
The distribution and morphology of crustacean cardioactive peptide-immunoreactive neurons in the brain of the locust Locusta migratoria has been determined. Of more than 500 immunoreactive neurons in total, about 380 are interneurons in the optic lobes. These neurons invade several layers of the medulla and distal parts of the lobula. In addition, a small group of neurons projects into the accessory medulla, the lamina, and to several areas in the median protocerebrum. In the midbrain, 12 groups or individual neurons have been reconstructed. Four groups innervate areas of the superior lateral and ventral lateral protocerebrum and the lateral horn. Two cell groups have bilateral arborizations anterior and posterior to the central body or in the superior median protocerebrum. Ramifications in subunits of the central body and in the lateral and the median accessory lobes arise from four additional cell groups. Two local interneurons innervate the antennal lobe. A tritocerebral cell projects contralaterally into the frontal ganglion and appears to give rise to fibers in the recurrent nerve, and in the hypocerebral and ingluvial ganglia. Varicose fibers in the nervi corporis cardiaci III and the corpora cardiaca, and terminals on pharyngeal dilator muscles arise from two subesophageal neurons. Some of the locust neurons closely resemble immunopositive neurons in a beetle and a moth. Our results suggest that the peptide may be (1) a modulatory substance produced by many brain interneurons, and (2) a neurohormone released from subesophageal neurosecretory cells.  相似文献   

17.
Opiliones are an order of arachnids commonly known as harvestmen. Although they belong to the class of arachnids, harvestmen are not spiders. Harvestmen are well known for their exceptionally long legs compared to body size, and the made up of two main parts, cephalothorax and abdomen. Although over 6,400 species of harvestmen have been discovered worldwide, the research on these arachnids is still an unexplored field comparing to spiders or insects. The Harvestmen is the Arachnids disregarded to Korean researchers. Therefore, in Korea, it doesn't become nearly the investigation of the harvestmen. Histological data about the harvestmen tries to be provided through the research of the internal structure of the harvestmen. The study of structures of the opiliones was made with the histological image and it focused mainly on the eye, leg, and genital organs.  相似文献   

18.
The distribution of corazonin in the central nervous system of the heteropteran insect Triatoma infestans was studied by immunohistochemistry. The presence of corazonin isoforms was investigated using MALDI-TOF mass spectrometry in samples containing the brain, the subesophageal ganglion, the corpora cardiaca-corpus allatum complex and the anterior part of the aorta. Several groups of immunopositive perikarya were detected in the brain, the subesophageal ganglion and the thoracic ganglia. Regarding the brain, three clusters were observed in the protocerebrum. One of these clusters was formed by somata located near the entrance of the ocellar nerves whose fibers supplied the aorta and the corpora cardiaca. The remaining groups of the protocerebrum were located in the lateral soma cortex and at the boundary of the protocerebrum with the optic lobe. The optic lobe housed immunoreactive somata in the medial soma layer of the lobula and at the level of the first optic chiasma. The neuropils of the deutocerebrum and the tritocerebrum were immunostained, but no immunoreactive perikarya were detected. In the subesophageal ganglion, immunostained somata were found in the soma layers of the mandibular and labial neuromeres, whereas in the mesothoracic ganglionic mass, they were observed in the mesothoracic, metathoracic and abdominal neuromeres. Immunostained neurites were also found in the esophageal wall. The distribution pattern of corazonin like immunoreactivity in the central nervous system of this species suggests that corazonin may act as a neurohormone. Mass spectrometric analysis revealed that [Arg7]-corazonin was the only isoform of the neuropeptide present in T. infestans tissue samples.  相似文献   

19.
As web spiders usually hang with their head downward, geometrical differences in body position could affect the organization of their central nervous system (CNS). Nevertheless, most of our knowledge of spider's CNS is dependent on what has been revealed from wandering spiders. To fill the gap, we describe here the fine structural organization of the ganglionic neurons and nerves in the geometric orb web spider Nephila clavata. Nerve cells in the supraesophageal ganglion in N. clavata are packed in the frontal, dorsal and lateral regions, but the nerve cells of the subesophageal mass are only restricted to the ventral and ventrolateral regions. High resolution transmission electron microscopy (TEM) reveals the fine structural details of the neuroglial cells and the neuronal cells which have a conspicuous Golgi apparatus, rough ER, free ribosomes and well‐developed mitochondria. Comparing fine structural characteristics of the CNS ganglia with those of wandering spiders in most respects, it has been revealed that the geometrical difference may affects to the arrangement of receptors in the central body known as an important association center for web building behavior. In particular, remarkable differences can be detected in the protocerebral area by the extraordinary development of the central body including absence of the globuli and associated mushroom bodies.  相似文献   

20.
Late stages of embryogenesis in the terrestrial snail Helix aspersa L. were studied and a developmental timetable was produced. The distribution of gamma-aminobutyric acid-like immunoreactive (GABA-ir) elements in the CNS of the snail was studied from embryos to adulthood in wholemounts. In adults, approximately 226 GABA-ir neurons were located in the buccal, cerebral and pedal ganglia. The population of GABA-ir cells included four pairs of buccal neurons, three neuronal clusters in the pedal ganglia, two clusters and six single neurons in the cerebral ganglia. GABA-ir fibers were observed in all ganglia and in some nerves. The first detected pair of GABA-ir cells in the embryos appeared in the buccal ganglia at about 63–64% of embryonic development. Five pairs of GABA-ir cell bodies were observed in the cerebral ganglia at about 64–65% of development. During the following 30% of development three more pairs of GABA-ir neurons were detected in the buccal ganglia and over fifteen cells were detected in each cerebral ganglion. At the stage of 70% of development, the first pair of GABA-ir neurons was found in the pedal ganglia. In the suboesophageal ganglion complex, GABA-ir fibers were first detected at about 90% of embryonic development. In the posthatching period, the quantity of GABA-ir neurons reached the adult status in four days in the cerebral ganglia, and in three weeks in the pedal ganglia. In juveniles, transient expression of GABA was found in the pedal ganglia (fourth cluster).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号