首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 183 毫秒
1.
Rapid economic development in China’s Lake Taihu basin during the past four decades has accelerated nitrogen (N) and phosphorus (P) loadings to the lake. This has caused a shift from mesotrophic to hypertrophic conditions, symptomized by harmful cyanobacterial blooms (CyanoHABs). The relationships between phytoplankton biomass as chlorophyll a (Chla) and nutrients as total nitrogen (TN) and total phosphorus (TP) were analyzed using historical data from 1992 to 2012 to link the response of CyanoHAB potential to long-term nutrient changes. Over the twenty year study period, annual mean Chla showed significantly positive correlations with both annual mean TN and TP (P < 0.001), reflecting a strong phytoplankton biomass response to changes in nutrient inputs to the lake. However, phytoplankton biomass responded slowly to annual changes in TN after 2002. There was not a well-defined or significant relationship between spring TN and summertime Chla. The loss of a significant fraction of spring N loading due to denitrification likely weakened this relationship. Bioavailability of both N and P during the summer plays a key role in sustaining cyanobacterial blooms. The frequency of occurrence of bloom level Chla (>20 μg L?1) was compared to TN and TP to determine nutrient-bloom thresholds. A decline in bloom risk is expected if TN remains below 1.0 mg L?1 and TP below 0.08 mg L?1.  相似文献   

2.
Microorganism with simultaneous nitrification and denitrification ability plays a significant role in nitrogen removal process, especially in the eutrophic waters with excessive nitrogen loads. The nitrogen removal capacity of microorganism may suffer from low temperature or nitrite nitrogen source. In this study, a hypothermia aerobic nitrite-denitrifying bacterium, Pseudomonas tolaasii strain Y-11, was selected to determine the simultaneous nitrification and denitrification ability with mixed nitrogen source at 15 °C. The sole nitrogen removal efficiencies of strain Y-11 in simulated wastewater were obtained. After 24 h of incubation at 15 °C, the ammonium nitrogen fell below the detection limit from an initial value of 10.99 mg/L. Approximately 88.0 ± 0.33% of nitrate nitrogen was removed with the initial concentration of 11.78 mg/L and the nitrite nitrogen was not detected with the initial concentration of 10.75 mg/L after 48 h of incubation at 15 °C. Additionally, the simultaneous nitrification and denitrification nitrogen removal ability of P. tolaasii strain Y-11 was evaluated using low concentration of mixed NH4+-N and NO3?–N/NO2?–N (about 5 mg/L-N each) and high concentration of mixed NH4+–N and NO3?–N/NO2?–N (about 100 mg/L-N each). There was no nitrite nitrogen accumulation at the time of evaluation. The results demonstrated that P. tolaasii strain Y-11 had higher simultaneous nitrification and denitrification capacity with low concentration of mixed inorganic nitrogen sources and may be applied in low temperature wastewater treatment.  相似文献   

3.
Cyanobacterial blooms in freshwaters have become one of the most widespread of environmental problems and threaten water resources worldwide. Previous studies on cyanobacteria in Lake Taihu often collected samples from one site (like Meiliang Bay or Zhushan Bay) and focused on the variation in patterns or abundance of Microcystis during the blooming season. However, the distribution of cyanobacteria in Lake Taihu shows differing pattern in various seasons. In this study, water samples were collected monthly for one year at five sites in Lake Taihu with different trophic status and a physicochemical analysis and denaturing gradient gel electrophoresis (DGGE) were conducted. DGGE fingerprint analysis showed that Microcystis (7/35 bands) and Synechococcus (12/35 bands) were the two most dominant genera present during the study period at all five sites. Cyanobium (3/35 bands) was the third most common genus which has seldom been previously reported in Lake Taihu. Redundancy analysis (RDA) indicated that the cyanobacterial community structure was significantly correlated with NO3--N, CODMn, and NH4+-N in the winter and spring, whereas it was correlated with water temperature in the summer and autumn. Limiting the nutrient input (especially of N and C loading) in Lake Taihu would be a key factor in controlling the growth of different genera of cyanobacteria.  相似文献   

4.
A previous study has demonstrated that in sandy sediment the marine yabby (Trypaea australiensis) stimulated benthic metabolism, nitrogen regeneration and nitrification, but did not stimulate denitrification, as the intense bioturbation of the yabbies eliminated anoxic microzones amenable to denitrification. It was hypothesised that organic matter additions would alleviate this effect as the buried particles would provide anoxic microniches for denitrifiers. To test this hypothesis a 55-day microcosm (75 cm × 36 cm diameter) experiment, comprising four treatments: sandy sediment (S), sediment + yabbies (S + Y), sediment + A. marina litter (S + OM) and sediment + yabbies + A. marina litter (S + Y + OM), was conducted. Trypaea australiensis significantly stimulated benthic metabolism, nitrogen regeneration, nitrification and nitrate reduction in the presence and the absence of litter additions. In contrast, the effects of litter additions alone were more subtle, developed gradually and were only significant for sediment oxygen demand. However, there was a significant interaction between yabbies and litter with rates of total nitrate reduction and denitrification being significantly greater in the S + Y + OM than all other treatments, presumably due to the decaying buried litter providing anoxic micro-niches suitable to nitrate reduction. In addition, both T. australiensis and litter significantly decreased rates of DNRA and its contribution to nitrate reduction.  相似文献   

5.
Here, we investigated the patterns of microbial nitrogen cycling communities along a chronosequence of soil development in a salt marsh. The focus was on the abundance and structure of genes involved in N fixation (nifH), bacterial and archaeal ammonium oxidation (amoA; AOB and AOA), and the abundances of genes involved in denitrification (nirS, nirK, nosZ). Potential nitrification and denitrification activities were also measured, and increases in nitrification were found in soils towards the end of succession, whereas denitrification became maximal in soils at the intermediate stages. The nifH, nirK and nirS gene markers revealed increases in the sizes of the respective functional groups towards the intermediate stage (35 years), remaining either constant (for nifH) or slightly declining towards the latest stage of succession (for nirK and nirS). Moreover, whereas the AOB abundance peaked in soils at the intermediate stage, that of AOA increased linearly along the chronosequence. The abundance of nosZ was roughly constant, with no significant regression. The drivers of changes in abundance and structure were identified using path analysis; whereas the ammonia oxidizers (AOA and AOB) showed patterns that followed mainly N availability, those of the nitrogen fixers followed plant diversity and soil structure. The patterns of denitrifiers were group-dependent, following the patterns of plant diversity (nirK and nirS) and belowground shifts (nosZ). The variation observed for the microbial groups associated with the same function highlights their differential contribution at different stages of soil development, revealing an interplay of changes in terms of niche complementarity and adaptation to the local environment.  相似文献   

6.
Nitrate removal from synthetic and real groundwater was investigated by using cassava distiller’s dried grains (CDDG), which served as sole carbon source as well as the only microbe seed. It was found that remarkably higher total nitrogen removal efficiency (96.8±0.6 %) could be reached; the accumulation of nitrite and the releases of organic compounds, meanwhile, were insignificant in the denitrification process. Scanning electron microscope (SEM) analysis showed that CDDG were degraded during the denitrification process. Further investigation showed that CDDG were anaerobically hydrolyzed and acidified to butyric acid, acetic acid, and carbohydrate, which could be utilized directly as the reducing equivalent providers for denitrification by the microorganisms separated from CDDG. Microbial community analysis revealed that the fungi and bacteria present in the original CDDG functioned as the denitrifiers, which mainly consisted of Aspergillus (69.8 %) and Rhizomucor (15.9 %) in the fungi community and Burkholderia (20.6 %) and Rhizobium (15.9 %) in the bacteria community, respectively. Finally, the use of CDDG as both carbon and microbial sources for real groundwater denitrification was testified to be feasible and safe with a total nitrogen removal efficiency of around 100 %.  相似文献   

7.
Coupling of biodegradable corncob and plastic carrier was optimized in continuous-flow solid-phase denitrification systems for enhancing simultaneously removal of nitrogen and organics in agricultural runoff. In compared with preposition of plastic carriers and mixed distribution method, it was demonstrated that the preposition of corncobs simultaneously enhanced nitrate (6.64 ± 1.35 mg L?1 day ?1) and organics removal (6.33 ± 1.44 mg L?1 day?1) at a hydraulic retention time (HRT) of 6 h. The operation performance could be further enhanced with extension of HRT to 12 h. The dominant genera found in corncob were denitrifiers for nitrate reduction (Bosea, Simplicispira, Desulfovibrio, Klebsiella, etc.) and fermentative bacteria (Pleomorphomonas, Actinotalea, Opitutus, Cellulomonas, Bacteroides, etc.) responsible for corncob degrading to simple organics for other denitrifiers. However, much lower and different denitrifiers abundances (Bradyrhizobium, Acinetobacter, Bacillus, etc.) exhibited on plastic filler than those of corncob. It well explained that the biofilm on plastic carrier was mainly related with organics removal while the biofilm on corncobs inclined to effectively remove nitrate, and simultaneous removal of nitrogen and organics could be achieved in coupling carriers system with preposition of biodegradable corncob.  相似文献   

8.
This paper investigates the effect of temperature on nitrogen and carbon removal by aerobic granules from landfill leachate with a high ammonium concentration and low concentration of biodegradable organics. The study was conducted in three stages; firstly the operating temperature of the batch reactor with aerobic granules was maintained at 29 °C, then at 25 °C, and finally at 20 °C. It was found that a gradual decrease in operational temperature allowed the nitrogen-converting community in the granules to acclimate, ensuring efficient nitrification even at ambient temperature (20 °C). Ammonium was fully removed from leachate regardless of the temperature, but higher operational temperatures resulted in higher ammonium removal rates [up to 44.2 mg/(L h) at 29 °C]. Lowering the operational temperature from 29 to 20 °C decreased nitrite accumulation in the GSBR cycle. The highest efficiency of total nitrogen removal was achieved at 25 °C (36.8 ± 10.9 %). The COD removal efficiency did not exceed 50 %. Granules constituted 77, 80 and 83 % of the biomass at 29, 25 and 20 °C, respectively. Ammonium was oxidized by both aerobic and anaerobic ammonium-oxidizing bacteria. Accumulibacter sp., Thauera sp., cultured Tetrasphaera PAO and AzoarcusThauera cluster occurred in granules independent of the temperature. Lower temperatures favored the occurrence of denitrifiers of Zooglea lineage (not Z. resiniphila), bacteria related to Comamonadaceae, Curvibacter sp., Azoarcus cluster, Rhodobacter sp., Roseobacter sp. and Acidovorax spp. At lower temperatures, the increased abundance of denitrifiers compensated for the lowered enzymatic activity of the biomass and ensured that nitrogen removal at 20 °C was similar to that at 25 °C and significantly higher than removal at 29 °C.  相似文献   

9.
In this study, we analysed metagenomes along with biogeochemical profiles from Skagerrak (SK) and Bothnian Bay (BB) sediments, to trace the prevailing nitrogen pathways. NO3 ? was present in the top 5 cm below the sediment-water interface at both sites. NH4 + increased with depth below 5 cm where it overlapped with the NO3 ? zone. Steady-state modelling of NO3 ? and NH4 + porewater profiles indicates zones of net nitrogen species transformations. Bacterial protease and hydratase genes appeared to make up the bulk of total ammonification genes. Genes involved in ammonia oxidation (amo, hao), denitrification (nir, nor), dissimilatory NO3 ? reduction to NH4 + (nfr and otr) and in both of the latter two pathways (nar, nap) were also present. Results show ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) are similarly abundant in both sediments. Also, denitrification genes appeared more abundant than DNRA genes. 16S rRNA gene analysis showed that the relative abundance of the nitrifying group Nitrosopumilales and other groups involved in nitrification and denitrification (Nitrobacter, Nitrosomonas, Nitrospira, Nitrosococcus and Nitrosomonas) appeared less abundant in SK sediments compared to BB sediments. Beggiatoa and Thiothrix 16S rRNA genes were also present, suggesting chemolithoautotrophic NO3 ? reduction to NO2 ? or NH4 + as a possible pathway. Our results show the metabolic potential for ammonification, nitrification, DNRA and denitrification activities in North Sea and Baltic Sea sediments.  相似文献   

10.
Marichromatium gracile: YL28 (M. gracile YL28) is an anoxygenic phototrophic bacterial strain that utilizes ammonia, nitrate, or nitrite as its sole nitrogen source during growth. In this study, we investigated the removal and transformation of ammonium, nitrate, and nitrite by M. gracile YL28 grown in a combinatorial culture system of sodium acetate-ammonium, sodium acetate-nitrate and sodium acetate-nitrite in response to different initial dissolved oxygen (DO) levels. In the sodium acetate-ammonium system under aerobic conditions (initial DO?=?7.20–7.25 mg/L), we detected a continuous accumulation of nitrate and nitrite. However, under semi-anaerobic conditions (initial DO?=?4.08–4.26 mg/L), we observed a temporary accumulation of nitrate and nitrite. Interestingly, under anaerobic conditions (initial DO?=?0.36–0.67 mg/L), there was little accumulation of nitrate and nitrite, but an increase in nitrous oxide production. In the sodium acetate-nitrite system, nitrite levels declined slightly under aerobic conditions, and nitrite was completely removed under semi-anaerobic and anaerobic conditions. In addition, M. gracile YL28 was able to grow using nitrite as the sole nitrogen source in situations when nitrogen gas produced by denitrification was eliminated. Taken together, the data indicate that M. gracile YL28 performs simultaneous heterotrophic nitrification and denitrification at low-DO levels and uses nitrite as the sole nitrogen source for growth. Our study is the first to demonstrate that anoxygenic phototrophic bacteria perform heterotrophic ammonia-oxidization and denitrification under anaerobic conditions.  相似文献   

11.
In Lake Tega, Japan, the shift of dominant algal species was caused as a result of discharging water from the adjacent river into the lake. The transition from cyanobacteria (mainly the genus Microcystis) to diatoms (mainly the genus Cyclotella) resulted in a disappearance of algal blooms. Although some environmental conditions such as flow rate, nutrient concentration, and transparency were changed by the project, the decisive factor for the transition has not been clarified yet. For the effective control of algal blooms by water discharge, this study aimed to elucidate the effects of daily renewal rate and nitrogen concentration on the interspecific competition between Microcystis aeruginosa and Cyclotella sp. Monoculture experiments were conducted to obtain growth characteristics for each species and mixed culture experiments were performed to examine their competitive abilities under various daily renewal rates of the culture medium (15 and 30 %) and nitrate concentrations (71.4, 178, and 357 μM). In addition to prepared medium, Lake Tega water was also used for mixed culture experiments. The results showed that the increase in a daily renewal rate contributed to the dominance of Cyclotella sp., while a nitrate concentration had little influence on the competition. We conclude that algal blooms composed of the genus Microcystis would be controlled by maintaining a daily renewal rate up to 30 % or more, which corresponded to the dilution rate of 0.36 day?1, under a nitrate concentration of ≤357 μM. The study would include essential information for the management of lakes suffering from frequent occurrences of algal blooms.  相似文献   

12.
To enhance the startup and efficient simultaneous nitrification and denitrification for sewage treatment, sequencing batch biofilm reactors (SBBRs) partially coupled with rice husk were established and operated under various intermittent micro-aeration cycles (IMCs) and COD/N ratios under oxygen-limiting intermittent aeration conditions. Experimental results showed that the increase of IMCs with non-aeration/micro-aeration mode of (8 h/4 h)1 to (2 h/1 h)4 in a 12 h-cycle accelerated the startup performance and improved NH4+–N and COD removal. NH4+–N, TN and COD removal efficiencies were 98.7?±?0.9, 89.2?±?5.2 and 82.9?±?6.7% at COD/N ratio of 7.6 with the highest IMCs in SBBR, respectively. Higher TN removal efficiencies of 87.2?±?4.0 and 58.1?±?3.5% were also achieved at lower COD/N ratio of 5.6 and 2.8, respectively. In SBBRs with various IMCs, facultative denitrifier like genus Acinetobacter and solid-phase denitrifier belonging to Comamonadaceae family were enriched. However, aerobic denitrifiers with function of heterotrophic nitrification like Paracoccus were favored to enrich under higher IMCs condition, and more anoxic denitrifiers like sulfur-based autotrophic denitrifier Thiothrix and heterotrophic denitrifiers like Pseudomonas and Methyloversatilis were observed at lower IMCs condition. Autotrophic nitrifier (Nitrosomonas and Nitrosipra) and heterotrophic nitrifiers both contributed to the efficient nitrification.  相似文献   

13.
Exotic plant invasions are a major driver of global environmental change that can significantly alter the availability of limiting nutrients such as nitrogen (N). Beginning with European colonization of California, native grasslands were replaced almost entirely by annual exotic grasses, many of which are now so ubiquitous that they are considered part of the regional flora (“naturalized”). A new wave of invasive plants, such as Aegilops triuncialis (Barb goatgrass) and Elymus caput-medusae (Medusahead), continue to spread throughout the state today. To determine whether these new-wave invasive plants alter soil N dynamics, we measured inorganic N pools, nitrification and denitrification potentials, and possible mediating factors such as microbial biomass and soil pH in experimental grasslands comprised of A. triuncialis and E. caput-medusae. We compared these measurements with those from experimental grasslands containing: (1) native annuals and perennials and (2) naturalized exotic annuals. We found that A. triuncialis and E. caput-medusae significantly reduced ion-exchange resin estimates of nitrate (NO3 ?) availability as well as nitrification and denitrification potentials compared to native communities. Active microbial biomass was also lower in invaded soils. In contrast, potential measurements of nitrification and denitrification were similar between invaded and naturalized communities. These results suggest that invasion by A. triuncialis and E. caput-medusae may significantly alter the capacity for soil microbial communities to nitrify or denitrify, and by extension alter soil N availability and rates of N transformations during invasion of remnant native-dominated sites.  相似文献   

14.
A pilot-scale reactor treating domestic sewage was operated to promote anaerobic digestion and denitrification using endogenous electron donors. While 55 % of organic matter was removed, nitrogen and sulfur showed a different dynamics during the operation. Pyrosequencing analysis clarified this behavior revealing that specific microbial communities inhabited the anaerobic (47.05 % of OTUs) and anoxic (31.39 % of OTUs) chambers. Analysis of 16S rRNA gene partial sequences obtained through pyrosequencing revealed a total of 1727 OTUs clustered at a 3 % distance cutoff. In the anaerobic chamber, microbial community was comprised of fermentative, syntrophic and sulfate-reducing bacteria. The majority of sequences were related to Aminobacterium and Syntrophorhabdus. In the anoxic chamber, the majority of sequences were related to mixotrophic and strictly autotrophic denitrifiers Arcobacter and Sulfuricurvum, respectively, both involved in sulfur-driven denitrification. These results show that pyrosequencing was a powerful tool to investigate the microbial panorama of a complex system, providing new insights to the improvement of the system.  相似文献   

15.
The simultaneous partial nitrification, anammox and denitrification (SNAD) process for treating domestic wastewater was investigated in a sequencing batch reactor (SBR). The SBR was operated with air flow rate of 500 L h?1 at 30 °C. Domestic wastewater was used as influent and Kaldnes rings were used as biomass carriers. In the beginning, long aeration condition was implemented to cultivate nitrification biofilm. Afterwards, intermittent aerobic condition was conducted during the cycle operation. The influent organic matter loading rate was improved by reducing the aeration and mixing times. Consequently, when the SNAD biofilm reactor was fed with the organic matter loading rate of 0.77 (kg COD m?3 d?1), the bio-bubbles appeared in the reactor and the total inorganic nitrogen (TIN) removal efficiency decreased. After the organic matter loading rate decreased to 0.67 (kg COD m?3 d?1), the reactor showed excellent nitrogen removal performance. The TIN removal efficiency varied between 80 and 90 %, and the average TIN removal loading rate was 0.22 (kg TIN m?3 d?1). Additionally, the scanning electron microscope (SEM) observation confirmed that the anammox bacteria located in the inner part of the carriers. Finally, the microbial community analysis of 16S rRNA gene cloning revealed that the anammox bacteria on the carriers consisted of three main genuses: Candidatus Brocadia sp., Candidatus Brocadia caroliniensis and Candidatus Brocadia fulgida.  相似文献   

16.
Agricultural activities lead excessive emission of ammonia nitrogen in the environment and can profoundly interfere the equilibrium of the natural ecosystems leading to their contamination. Actually, the biological purification of wastewaters is the most adopted technique thanks to its several advantages such as high performance and low energy consumption. For this reason, two novel strains of Alcaligenes sp. S84S3 and Proteus sp. S19 genus were isolated from an activated sludge and applied in the treatment of ammonium and nitrite in aqueous solution. Under the optimum operating conditions of temperature (30 °C), pH (7), carbon substrate (2 g/L of glucose) and duration of incubation time (69 h), the strain Alcaligenes sp. S84S3 could oxidize 65 % of the ammonium as high as 272.72 mg-NH4 +/L. Moreover, during 48 h, the nitrate reduction rate performed by the strain Proteus S19 was about 99 % without production of nitrite intermediate (negligible concentration). Moreover, the coculture of the strains Alcaligenes sp. S84S3 and Proteus sp. S19 could eliminate 65.83 % of the ammonium ions without production of toxic forms of nitrogen oxides during a short time of incubation (118 h) at the same operational conditions with providing the aeration in the first treatment phase. The coculture of our isolated strains is assumed to have a good potential for nitrification and denitrification reactions applied in the treatment of wastewater containing ammonium, nitrite and nitrate. As a result, we can consider that the mixed culture is a practical method in the treatment of high-strength ammonium wastewater with reducing of sludge production.  相似文献   

17.
Burrowing benthic animals belonging to the same functional group may produce species-specific effects on microbially mediated nitrogen (N) processes depending upon different ecological traits. We investigated the effects of two tube-dwelling organisms, amphipods (Corophium insidiosum) and chironomid larvae (Chironomus plumosus), on benthic N cycling in bioturbated estuarine sediments. Aims of this work were to analyze the interactions among burrowers and N-related microbial processes in two distinct sedimentary environments colonized by benthic animals with different ecological traits. We hypothesized higher rates of nitrification and higher coupled nitrification–denitrification in sediments with C. insidiosum due to continuous ventilation rates. We expected higher denitrification of water column nitrate in sediments with C. plumosus due to lower and intermittent ventilation activity and lower oxygen levels in burrows. To this purpose, we combined process–specific (nitrification and denitrification) with net N flux measurements in intact and reconstructed sediments. Sediments with C. insidiosum had higher rates of oxygen demand and of potential nitrification and higher concentration of pore water NH4+ as compared to sediments with C. plumosus. Sediments with both species displayed comparable net N2 fluxes, mostly sustained by respiration of water column NO3? in sediments with chironomid larvae and by NO3? produced within sediments in sediments with corophiid amphipods. Corophium insidiosum stimulated nitrification nearly 15-fold more as compared to C. plumosus. Overall, our results demonstrate that sediments with burrowing fauna may display similar rates of denitrification, but underlying mechanisms may deeply vary and be species-specific.  相似文献   

18.
Lake Tanganyika, the second-oldest and second-deepest lake in the world, harbors an impressive cichlid fish fauna counting about 250 endemic species that are characterized by a great level of ecological, morphological, and behavioral specialization. This study describes and compares cichlid fish communities at two rocky shores with differential human impact in the south of Lake Tanganyika. Species inventories and depth-dependent abundances were elaborated. About 41 and 46 sympatric cichlid species were recorded in the two study sites, respectively. Variabilichromis moorii was the most abundant species (29–60% of total number of fishes), followed by Aulonocranus dewindti (3–19%), Tropheus moorii (12%), Ophthalmotilapia ventralis (4–10%), Eretmodus cyanostictus (6–11%), and Cyathopharynx furcifer (0.01–9%). All other species had abundances below 5%. It further emerged that large cichlids such as Petrochromis species, Cyathopharynx furcifer, and Lobochilotes labiatus were very rare at one location, with frequencies of 0.55% or less. Territorial sizes of three particularly abundant species, Variabilichromis moorii, Aulonocranus dewindti, and Tropheus moorii, were assessed by behavioral observations. We distinguished between territorial core areas and total defended area, yielding average core areas between 0.4 (V. moorii) and 1.6 m2 (T. moorii), and total defended areas averaging for each species between 1.6 (V. moorii) and 5.0 m2 (A. dewindti) with no significant differences between the two study sites. The data on individual densities are also relevant for evolutionary studies, in that they allow more accurate calculations of effective population sizes.  相似文献   

19.
Drainage ditches are ubiquitous yet understudied features of the agricultural landscape. Nitrogen pollution disrupts the nutrient balance of drainage ditch ecosystems, as well as the waterbodies in which they drain. Denitrification can help ameliorate the impact of N-fertilization by converting reactive nitrogen into dinitrogen gas. However, factors affecting denitrification in drainage ditches are still poorly understood. In this study, we tested how within-ditch and regional environmental conditions affect denitrifier activity, abundance, and community structure, to understand controls on denitrification at multiple scales. To this end, we quantified in situ denitrification rates and denitrifier abundance in 13 drainage ditches characterized by different types of sediment, vegetation and land-use. We determined how denitrification rates relate to denitrifier abundance and community structure, using the presence of nirS, nirK and nosZ genes as a proxy. Denitrification rates varied widely between the ditches, ranging from 0.006 to 24 mmol N m?2 h?1. Ditches covered by duckweed, which contained high nitrate concentrations and had fine, sandy sediments, were denitrification hotspots. We found highest rates in ditches next to arable land, followed by those in grasslands; lowest rates were observed in peatlands and nature reserves. Denitrification correlated to nitrate concentrations, but not to nirK, nirS and nosZ abundance, whereas denitrifier-gene abundance correlated to organic matter content of the sediment, but not to nitrate concentrations. Our results show a mismatch in denitrification regulators at its different organizational scales. Denitrifier abundance is mostly regulated at within-ditch scales, whereas N-loads, regulated by landscape factors, are most important determinants of instantaneous denitrification rates.  相似文献   

20.
Akifumi Ohtaka 《Limnology》2018,19(3):367-373
In surveys conducted during 2000–2005, 39 taxa of aquatic oligochaetes belonging to the families Enchytraeidae and Naididae were found in Lake Tonle Sap in the Mekong River Basin, Cambodia. Dominated by naidines and pristinines (29 taxa), they mainly comprised widely distributed species as well as South Asian and Southeast Asian species. Among the four areas studied, the littoral regions of the lake—where inundated forests and aquatic vegetation developed during the flooded seasons—presented the highest number of species. Submerged vegetation in the littoral Lake Tonle Sap harbored abundant epiphytic oligochaetes, especially Stylaria fossularis. In contrast to the rich abundance of naidine and pristinine fauna, tubificines and ryhacodrilines were scarce in and around the lake, irrespective of the vegetation in their habitats. Several Aulodrilus species and Branchiura sowerbyi were the main representatives of the benthic oligochaete assemblages throughout the offshore zone of the lake without vegetation. It is noteworthy that the widely distributed tubificines Tubifex tubifex and Limnodrilus hoffmeisteri were not found in any surveyed locality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号