首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Partial urinary bladder outlet obstruction (PBOO) in men, secondary to benign prostatic hyperplasia, induces detrusor smooth muscle (DSM) hypertrophy. However, despite DSM hypertrophy, some bladders become severely dysfunctional (decompensated). Using a rabbit model of PBOO, we found that although DSM from sham-operated bladders expressed nearly 100% of both the smooth muscle myosin heavy chain isoform SM-B and essential light chain isoform LC17a, DSM from severely dysfunctional bladders expressed as much as 75% SM-A and 40% LC17b (both associated with decreased maximum velocity of shortening). DSM from dysfunctional bladder also exhibited tonic-type contractions, characterized by slow force generation and high force maintenance. Immunofluorescence microscopy showed that decreased SM-B expression in dysfunctional bladders was not due to generation of a new cell population lacking SM-B. Metabolic cage monitoring revealed decreased void volume and increased voiding frequency correlated with overexpression of SM-A and LC17b. Myosin isoform expression and bladder function returned toward normal upon removal of the obstruction, indicating that the levels of expression of these isoforms are markers of the PBOO-induced dysfunctional bladders. bladder remodeling; bladder dysfunction; SM-A; LC17a; benign prostatic hyperplasia  相似文献   

3.
4.
Partial bladder outlet obstruction of the rabbit bladder results in a rapid increase in mass characterized by remodeling of the bladder wall.In this study we investigated the effect of partial outlet obstruction on microvessel density and distribution in the bladder wall immunohistochemically using CD31 as a marker for vascular endothelium, and on blood flow using a fluorescent microsphere technique. Transverse sections of bladder wall were examined after 0 (unobstructed), 1, 3, 5, 7, and 14 days of obstruction. The microvasculature of obstructed rabbit bladder mucosa and detrusor smooth muscle apparently increased relative to augmentation of these compartments, while new vessels appeared in the thickening serosa. These vascular changes correlated with results showing that, at 1 week after obstruction, blood flow (ml/min/g tissue) to the mucosa and detrusor was unchanged.Thickening of the serosa, apparent after 1 day of obstruction, began before its vascularization. Then, 1 week post-obstruction, there was significant microvessel formation in the transition region between the detrusor smooth muscle and the increasing serosa; after 2 weeks, the entire serosa was vascularized. The vascularization of the muscle-serosal transition region and then the remaining serosa apparently precedes fibroblast differentiation, providing blood supply and thus metabolic support for this process.All obstructed rabbit bladders in this study were in a state of compensated function based on their weights. Our working hypothesis is that blood flow per unit tissue mass is normal in compensated obstructed bladders, thus allowing for normal contractile function and cellular metabolism. The results of this study indicate the presence of an augmented microvasculature in compensated obstructed rabbit bladders that provides adequate blood perfusion for normal function.  相似文献   

5.
The differentiation patterns of smooth muscle cells (SMC) in rabbit bladder during development and in the hypertrophic response to partial outflow obstruction induced in adult animals were evaluated by biochemical and immunochemical techniques and by using a panel of monoclonal antibodies specific for desmin, vimentin, α-actin of smooth muscle (SM) type, SM myosin, and nonmuscle (NM) myosin isoforms. Desmin and SM α-actin were homogeneously distributed in SMC of developing, adult, and obstructed bladders. Conversely, marked changes in the ratio and antigenicity of SM myosin isoforms were observed by SDS electrophoresis and Western blotting, respectively. In particular, the 205 K (SM1) isoform was down-regulated with development whereas the 200 K (SM2) isoform was up-regulated around 7 days after birth and down-regulated in the obstructed bladder. Vimentin was expressed in SMC of the fetal bladder and declined markedly during postnatal, physiological hypertrophy of SMC, which occurs concomitantly with diminution of DNA synthesis. This polypeptide became detectable, however, in SMC of obstructed bladders. The 196 K (NM) myosin isoform recognized by NM-A9 antibody, present only in endothelium of blood vessels and in mucosa of normal fetal and adult bladders, became expressed in detrusor muscle, when SMC underwent a process of pathological hypertrophy. The reexpression of vimentin and the de novo appearance of NM myosin isoform in hypertrophic bladders can be reversed when the tissue mass is reduced, such as in bladders after 1-month recovery from partial obstruction. Thus, a specific NM myosin isoform can be used as a marker of SMC hypertrophy in obstructed bladder. In addition, the combined use of anti-vimentin and NM-A9 antibodies can distinguish between SMC which are in the physiological or in the pathological condition of adaptive bladder hypertrophy.  相似文献   

6.
Major pelvic ganglion electrocautery (MPGE) and spinal cord injury in the rat induce bladder hypertrophy and a change in muscarinic receptor subtypes mediating bladder contraction from predominantly M3 to a combination of M2 and M3. To determine whether this is a result of bladder hypertrophy or denervation, we studied the following groups: sham-operated controls, urinary diversion (DIV), MPGE together with urinary diversion (DIV-DEN), bilateral MPGE (DEN), bladder outlet obstruction (BOO), and MPG decentralization (MPGDEC). The degree of bladder denervation was determined by the maximal carbachol response normalized to the response to electric field stimulation. Receptor subtype density was determined by immunoprecipitation. The affinity of subtype-selective muscarinic antagonists for inhibition of carbachol-induced contractions was used to determine the subtype-mediating contraction. DEN, MPG-DEC, and BOO bladders were hypertrophic whereas DIV bladders were atrophic compared with sham operated. Bladder contraction in sham-operated, DIV, and DIV-DEN was mediated by the M3 receptor subtype, whereas the M2 subtype participated in contraction in the DEN, MPG-DEC, and BOO groups. The hypertrophied bladders had an increase in total and M2 receptor density while all experimental groups showed a reduction in M3 receptor density. Thus bladder hypertrophy, independent from bladder denervation, causes a shift in the muscarinic receptor subtype mediating bladder contraction from M3 toward M2.  相似文献   

7.
The sarco(endo)plasmic reticulum Ca(2+)-ATPase2 (SERCA2) is downregulated in cardiac hypertrophy with decompensation. We sought to determine whether mice heterozygous for the SERCA2 allele would develop greater bladder hypertrophy and decompensation than their wild-type littermates following partial bladder outlet obstruction (pBOO). We found that following 4 wk of surgically created pBOO, SERCA2 heterozygous murine bladders showed significantly less hypertrophy, improved in vitro cystometry performance, diminished expression of the slow myosin isoform A analyzed by RT-PCR, a significant drop in nuclear translocation of nuclear factor of activated T cells by EMSA, and decreased cell proliferation within the smooth muscle layer following 5-bromo-2'-deoxyuridine labeling compared with their wild-type littermates. Thus, in contrast to cardiac muscle, deletion of a SERCA2 allele confers protection against bladder hypertrophy in a murine model of pBOO. Compensatory mechanisms in heterozygous mice seem to be related to the calcineurin pathway. Further studies are underway to better define the molecular basis of this observation, which has potential clinical applications.  相似文献   

8.
Partial obstruction of the rabbit bladder outlet induces a rapid hypertrophy characterized by increased bladder mass, increased smooth muscle content, and increased collagen deposition. In addition, partial outlet obstruction induces decreased contractile responses to both field stimulation and postsynaptic receptor stimulation. Although the morphological and contractile responses to partial outlet obstruction have been well characterized, there is little information on the cellular and molecular mechanisms of these changes. In a previous study, we demonstrated that one of the earliest genes to be expressed following partial outlet obstruction in rabbits was the gene expressing stress protein-70 (HSP-70). In order to further define the genetic and molecular basis of these responses, the expression of stress gene products HSP-70 and HSP-90 in rabbit urinary bladder subjected to partial outlet obstruction has been quantitatively evaluated by Western blot coupled with laser densitometry using anti-HSP-70 and-90 monoclonal antibodies. The data show that stress gene products HSP-70 and HSP-90 are constitutively expressed in control rabbit bladder tissue and transiently increased following partial outlet obstruction. Increased content of HSP-70 was detected at 6 hr after obstruction and reached a maximum (2.7-fold over the control level) at 24 hr. Increased HSP-90 was also detected at 6 hr but reached a maximum (4.5-fold over the control level) at 12 hr. By 7 day post-obstruction, the content of these two proteins returned to the control levels. This study suggests that alterations of stress gene expression resulting in increased HSP-70 and 90 may play an important role in the response of the bladder to partial outlet obstruction.  相似文献   

9.
Bladder outlet obstruction (BOO) is a common disorder that is associated with altered bladder structure and function. For example, it is well established that BOO results in hypertrophy and hyperplasia of the bladder smooth muscle as well as detrusor instability. Since prostaglandins (PGs) and cyclic nucleotides (cyclic AMP [cAMP] and cyclic GMP [cGMP]) mediate both smooth muscle tone and proliferation, it is reasonable to suggest that changes in their levels may be involved in the pathophysiology of BOO-associated bladder disorders. Hence, the objective of this study was to investigate cyclic AMP, cyclic GMP and prostaglandins in the bladder of a rabbit model of BOO. BOO was induced in adult male New Zealand White rabbits. After 3 weeks, urinary bladders were excised, weighed and cut into segments. They were then incubated with stimulators of PGs, cAMP and cGMP and the formation of PGs, cAMP and cGMP were measured using radioimmunoassays. There was a significant increase in the obstructed bladder weights (P=0.002). The formation of PGE2, PGI2, cAMP and cGMP was significantly diminished in the detrusor (P<0.05) and bladder neck (P<0.05) in the BOO bladders compared to age-matched controls. Since PGE2, PGI2, cAMP and cGMP are known to inhibit the proliferation of smooth muscle cells (SMCs), the decreased synthesis of these factors, in BOO, may play a role in bladder SMC hypertrophy/hyperplasia. Our study points to the possible use of drugs that modulate the NO-cGMP and/or PG-cAMP axes in BOO-associated bladder pathology.  相似文献   

10.
Evaluation of bladder wall mechanical behavior is important in understanding the functional changes that occur in response to pathologic processes such as partial bladder outlet obstruction (pBOO). In the murine model, the traditional approach of cystometry to describe bladder compliance can prove difficult secondary to small bladder capacity and surgical exposure of the bladder. Here, we explore an alternative technique to characterize murine mechanical properties by applying biaxial mechanical stretch to murine bladders that had undergone pBOO. 5–6 week old female C57/Bl6 mice were ovariectomized and subjected to pBOO via an open surgical urethral ligation and sacrificed after 4 weeks (n=12). Age matched controls (n=6) were also analyzed. Bladders were separated based on phenotype of fibrotic (n=6) or distended (n=6) at the time of harvest. Biaxial testing was performed in modified Kreb's solution at 37 °C. Tissue was preconditioned to 10 cycles and mechanical response was evaluated by comparing axial strain at 50 kPa. The normal murine bladders exhibited anisotropy and were stiffer in the longitudinal direction. All mice showed a loss of anisotropy after 4 weeks of pBOO. The two phenotypes observed after pBOO, fibrotic and distended, exhibited less and more extensibility, respectively. These proof-of-principle data demonstrate that pBOO creates quantifiable changes in the mechanics of the murine bladder that can be effectively quantified with biaxial testing.  相似文献   

11.
The temperature sensitivity of in vitro whole bladder preparations from neonatal and adult rats with or without chronic partial urethral obstruction was investigated. After the bladder was filled to a volume eliciting isovolumetric contractions, temperature was changed between 19 and 38 degrees C. In all preparations, higher temperatures were associated with higher frequencies of spontaneous intravesical pressure waves (IVPW). In 1- to 2-wk-old neonates, IVPW amplitude increased as the temperature increased; however, in older neonates and normal adults, the opposite occurred. The transition period was at 3 wk of age when bladder volume also markedly increased. At this age as well as in adult rats with outlet obstruction, changing temperature had little influence on the amplitude of IVPW. Thus obstructed outlet bladders and 3-wk-old bladders had similar properties. It is concluded that the properties of bladder muscle are changed during postnatal maturation and that in 3-wk-old rats, when brain control of voiding is emerging, micturition is abnormal, leading to obstructive changes in bladder muscle.  相似文献   

12.
13.
The urinary bladder depends on intracellular ATP to support a number of essential intracellular processes including contraction. The concentration of ATP is maintained by mitochondrial oxidative phosphorylation, cytosolic glycolysis and the cytosolic activity of creatine kinase, the enzyme that catalysis the rapid transfer of a phosphate from creatine phosphate (CP) to ADP resulting in the formation of ATP.Prior studies in this lab and others have demonstrated that mitochondrial respiration is significantly lower in hypertrophied bladder tissue (induced by partial outlet obstruction of the white New Zealand Rabbit). In addition to decreased mitochondrial respiration, there are significant increases in glycolysis and lactic acid formation in the hypertrophied tissue.In view of the increased glycolysis and decreased mitochondrial function in the hypertrophied tissue, and the importance in creatine kinase in maintaining cytosolic levels of ATP, the current study was designed to determine if outlet obstruction induces any changes in the activity of creatine kinase.The following is a summary of the results: 1) The bladder mass increased from 2.2 ± 0.2 gm to 11.5 ±1.6 gm at 7 days following outlet obstruction. 2) The intracellular concentrations of both ATP and CP were significantly reduced in the bladder tissue following 7 days of obstruction. 3) The percent of protein (per tissue mass) was significantly lower in the obstructed bladders, although the percent of soluble protein was similar. 4) Creatine kinase activity of control bladders showed linear kinetics with a Vmax = 1120 nmoles/mg protein/4 min and Km = 147 µM CP. 2) The creatine kinase activity of obstructed bladders also displayed linear kinetics with a Vmax = 1125 nmoles/mg protein/4 min tissue, and Km = 276 µM CP.These studies demonstrate that whereas both control and obstructed bladders have virtually identical maximum creatine kinase activities, the Km for the obstructed tissue is significantly higher than the Km for the control tissue. This may indicate that under cellular conditions (at sub-maximum substrate concentrations), the creatine kinase activity of the obstructed bladders may be significantly lower than the activity of the control bladders. In addition, the reduced tissue concentrations of ATP and CP would certainly be consistent with the reduced functional response to bethanechol and field stimulation.  相似文献   

14.
Purpose Partial bladder outlet obstruction (PBOO) results in marked biochemical alterations in the bladder. In this study, we focused on comparison of thapsigargin sensitive sarco/endoplasmic reticulum Ca2+ ATPase activity (SERCA) and Citrate Synthase after short term PBOO in young versus old rabbits. Materials and methods A total of 20 young and 20 mature male rabbits were divided into 4 sub-groups of 5 rabbits each (4 obstructed and 1 sham-control rabbit). The rabbits in the groups were evaluated after 1, 3, 7, and 14 days of obstruction, respectively. The activities of SERCA and citrate synthase were examined as markers for sarcoplasmic reticular calcium storage and release and mitochondrial function, respectively. Results The SERCA activity of bladder body smooth muscle in the young animals increased at 7 and 14 days. For the old rabbits, the SERCA activity decreased significantly by 1 day and remained this level throughout the course of obstruction, and was significantly lower than young at all time periods. The citrate synthase activity in the young animals decreased over the 1–7 days, and then returned toward control level by 14 days following obstruction. In the old animals, citrate synthase activity of bladder body smooth muscle progressively decreased over the course of the study, and was significantly lower in the old than the young animals after 14 days obstructed. Conclusion The urinary bladders of the young rabbits have a considerable greater ability to adapt to PBOO than do those of the old rabbits. The deterioration of mitochondrial and SR function may be important mechanisms underlying geriatric voiding dysfunction.  相似文献   

15.
E. F. LoPresti 《Oecologia》2014,174(3):921-930
Trichomes on leaves and stems of certain chenopods (Chenopodiaceae) are modified with a greatly enlarged apical cell (a salt bladder), containing a huge central vacuole. These structures may aid in the extreme salt tolerance of many species by concentrating salts in the vacuole. Bladders eventually burst, covering the leaf in residue of bladder membranes and solid precipitates. The presence of this system in non-halophytic species suggests additional functions. I tested the novel hypothesis that these bladders have a defensive function against insect herbivores using choice, no choice, and field tests. Generalist insect herbivores preferred to feed on leaves without salt bladders in choice tests. In no choice tests, herbivores consumed less leaf matter with bladders. In a field test, leaves from which I had removed bladders suffered greater herbivory than adjacent leaves with bladders. Solutions containing bladders added to otherwise preferred leaves deterred herbivores, suggesting a water-soluble chemical component to the defense. This bladder system has a defensive function in at least four genera of chenopods. Salt bladders may be a structural defense, like spines or domatia, but also have a chemical defense component.  相似文献   

16.

Aims

To confirm the mechanisms of age-associated detrusor underactivity (DU), we examined the differences in bladder activity and connexin-43 (Cx43)-derived gap junctions in the bladders of young and old rats.

Main methods

Female Sprague–Dawley rats aged 3 months (young) and 12 months (old) were used. Continuous cystometry was performed under urethane anesthesia in both ages of rats. In addition, isovolumetric cystometry was performed in young rats during the intravesical application of carbenoxolone, a gap junction blocker, to confirm the role of gap junction proteins in the bladder. Western blotting analyses were performed to assess Cx43 protein expression in the bladders of both groups of rats. Bladders were also analyzed using Masson's trichrome staining and immunostaining for Cx43.

Key findings

Cystometric evaluations revealed that compared with young rats, bladder contractility was reduced by 27% and residual urine volume was significantly increased in old rats. However, the intercontraction intervals did not differ between the two groups. Under isovolumetric conditions, bladder contraction was suppressed after the intravesical application of carbenoxolone. In the bladders of old rats, increase of smooth muscle cell hypertrophy and fibrous tissue was observed compared with young rats. In association with these findings, immunostaining for smooth muscle Cx43 and its protein level were decreased by 28% compared with young rats.

Significance

These results suggest that age-related DU might be caused by the downregulation of gap junctional intercellular communication in the bladder. Consequently, the normal signals that contribute to voiding function might not be transported between detrusor muscles.  相似文献   

17.
Partial outlet obstruction of the urinary bladder has been demonstrated to induce specific dysfunctions in cellular and sub-cellular membrane structures within the bladder's smooth muscle and mucosal compartments. Recent studies have linked these membrane dysfunctions to alterations in phospholipid metabolism leading to mobilization of free arachidonic acid, the precursor for synthesis of prostaglandins (PG). The purpose of this study was to determine if partial outlet obstruction of the urinary bladder induces changes in the capacity of bladder smooth muscle and mucosa to generate PG. PG were isolated from control and partially obstructed urinary bladder smooth muscle and mucosa of male New Zealand White (NZW) rabbits. PG concentrations (PGE2, PGF2alpha and PGI2, as its stable metabolite 6-keto-PGF1alpha) were determined after 30 minute incubations using enzyme-linked immunoassay (ELISA) kits. In both control and obstructed rabbit urinary bladders, PG generation was significantly higher in isolated mucosa than muscle tissues. A significantly higher concentration of PGF2alpha, and 6-keto-PGF1alpha was measured in obstructed muscle tissue relative to controls. The concentration of 6-keto-PGF1alpha was also significantly higher than the concentrations measured for PGE2 and PGF2alpha in both control and obstructed smooth muscle samples. The generation of PGE2 was significantly higher in rabbit urinary bladder mucosa than either PGF2alpha or 6-keto-PGF1alpha in both control and obstructed samples. The capacity of obstructed mucosal tissue to generate 6-keto-PGF1alpha was significantly higher than control tissue, while no significant differences in PGE or PGF2alpha generation were noted. These data suggest obstruction of the urinary bladder induce specific elevations in PG in both smooth muscle and mucosal tissues.  相似文献   

18.
Overdistension of the urinary bladder, secondary to outlet obstruction, causes cellular changes in the bladder wall, including hypertrophy of the smooth muscle cells, which increase bladder mass. To investigate the effects of increased mass on the cystometrogram (CMG), we have developed two mathematical models. In the first model, we assume that mass is added such that the largest bladder volume at zero transmural pressure, the zero pressure volume (ZPV), is constant. It predicts increased pressures and decreased compliance in the CMG. In the second model, we assume that both mass and ZPV increase proportionally. It predicts unchanged pressures, increased compliance, and increased capacity in the CMG. These results allow us to divide animal experiments in the literature into two groups. Cystometrograms performed on animals that have had outlet obstruction induced by a cuff method, inducing a small increase in mass, belong to the first group: hypertrophy with no change in ZPV. Cystometrograms performed on animals that have had outlet obstruction induced by a ligature method, inducing a large increase in mass, belong to the second group: hypertrophy with increased ZPV. We conclude that increased ZPV results from a more severe obstruction which is indicated by the increased capacity and compliance.  相似文献   

19.
20.
Partial outlet obstruction of the rabbit urinary bladder results, initially, in a rapid increase in bladder mass and remodeling of the bladder wall. Previously, it was shown that this response was characterized by serosal growth (thickening) which was apparent after 1 day of obstruction, before any visible vascularization was observed. After 1 week of obstruction, significant microvessel formation was seen in the transition region between the detrusor smooth muscle and the thickening serosa; after 2 weeks the entire serosa was vascularized.In this study we investigated the effect of chronic (4 week) partial outlet obstruction on microvessel density and distribution in the bladder wall immunohistochemically using CD31 as a marker for vascular endothelium. Transverse sections of bladder wall were examined after 4 weeks of no surgery, sham surgery or partial obstruction.The microvessel density of the obstructed rabbit bladder mucosa and detrusor smooth muscle increased relative to augmentation of these compartments while new vessels appeared in the thickening serosa. Although vessel density did not change with obstruction a significant shift in mean vessel circumference to the left occurred indicating a significant increase in the number of microvessels and small vessels consistent with angiogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号