首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 694 毫秒
1.
Interleukin-1 (IL-1) is a potent inducer of prostaglandin E2 (PGE2) synthesis. We previously showed that ceramide accumulates in fibroblasts treated with IL-1 and that it enhances IL-1-induced PGE2 production. The present study was undertaken to determine the mechanism(s) by which ceramide and IL-1 interact to enhance PGE2 production by examining their respective effects on the rate-limiting enzymes in PGE2 synthesis, cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2), and cytosolic phospholipase A2 (cPLA2). IL-1-induced PGE2 synthesis required 8 h even though COX-1 was constitutively expressed (both mRNA and protein) and enzymatically active in untreated cells. Conversely, COX-2 mRNA was barely detectable in untreated cells but within 2 h, ceramide or IL-1 alone induced a 5 and 20 fold increase in COX-2 mRNA, respectively. However, IL-1 induced COX-2 protein synthesis was only detectable 6-7 h after maximal COX-2 mRNA induction; COX-2 protein accumulation was not induced by ceramide alone. Ceramide however, reduced the length of time required for IL- 1 to induce COX-2 protein accumulation and increased COX-2 protein accumulation. IL-1 induced a 15 fold increase in COX-1 mRNA including an alternatively spliced form of COX-1. IL-1, but not ceramide induced cPLA2 mRNA and protein expression which corresponded with the initiation of PGE2 synthesis. These observations indicate that, (1) while either ceramide or IL-1 rapidly induced COX-2 mRNA, COX-2 protein only accumulated in IL- 1 treated cells after a delay of 6-7 h, (2) IL-1-induced PGE2 synthesis required both COX-2 and cPLA2 protein synthesis and, (3) ceramide enhanced (temporally and quantitatively) IL-1-induced COX-2 protein accumulation resulting in enhanced PGE2 production.  相似文献   

2.
We investigated whether NS-398, a selective inhibitor of COX-2, induces HO-1 in IL-1β-stimulated vascular smooth muscle cells (VSMC). NS-398 reduced the production of PGE2 without modulation of expression of COX-2 in IL-1β-stimulated VSMC. NS-398 increased HO-1 mRNA and protein in a dose-dependent manner, but inhibited proliferation of IL-1β-stimulated VSMC. Furthermore, SnPPIX, a HO-1 inhibitor, reversed the effects of NS-398 on PGE2 production, suggesting that COX-2 activity can be affected by HO-1. Hemin, a HO-1 inducer, also reduced the production of PGE2 and proliferation of IL-1β-stimulated VSMC. CORM-2, a CO-releasing molecule, but not bilirubin inhibited proliferation of IL-1β-stimulated VSMC. NS-398 inhibited proliferation of IL-1β-stimulated VSMC in a HbO2-sensitive manner. In conclusion, NS-398 inhibits proliferation of IL-1β-stimulated VSMC by HO-1-derived CO. Thus, NS-398 may facilitate the healing process of vessels in vascular inflammatory disorders such as atherosclerosis.  相似文献   

3.

Objective

To explore the effects of atorvastatin on expression of cyclooxygenase-2 (COX-2) in human pulmonary epithelial cells (A549).

Methods

A549 cells were incubated in DMEM medium containing lipopolysaccharide (LPS) in the presence or absence of atorvastatin. After incubation, the medium was collected and the amount of prostaglandin E2 (PGE2) was measured by enzyme-linked immunosorbent assay (ELISA). The cells were harvested, and COX-2 mRNA and protein were analyzed by RT-PCR and western-blot respectively.

Results

LPS increased the expression of COX-2 mRNA and production of PGE2 in a dose- and time-dependent manner in A549. Induction of COX-2 mRNA and protein by LPS were inhibited by atorvastatin in a dose-dependent manner. Atorvastatin also significantly decreased LPS-induced production of PGE2. There was a positive correlation between reduced of COX-2 mRNA and decreased of PGE2 (r = 0.947, P < 0.05).

Conclusion

Atorvastatin down-regulates LPS-induced expression of the COX-2 and consequently inhibits production of PGE2 in cultured A549 cells.  相似文献   

4.
The COX-2/PGE2 pathway has been implicated in the occurrence and progression of cancer. The underlying mechanisms facilitating the production of COX-2 and its mediator, PGE2, in cancer survival remain unknown. Herein, we investigated PGE2-induced COX-2 expression and signaling in HL-60 cells following menadione treatment. Treatment with PGE2 activated anti-apoptotic proteins such as Bcl-2 and Bcl-xL while reducing pro-apoptotic proteins, thereby enhancing cell survival. PGE2 not only induced COX-2 expression, but also prevented casapse-3, PARP, and lamin B cleavage. Silencing and inhibition of COX-2 with siRNA transfection or treatment with indomethacin led to a pronounced reduction of the extracellular levels of PGE2, and restored the menadione-induced cell death. In addition, pretreatment of cells with the MEK inhibitor PD98059 and the PKA inhibitor H89 abrogated the PGE2-induced expression of COX-2, suggesting involvement of the MAPK and PKA pathways. These results demonstrate that PGE2 signaling acts in an autocrine manner, and specific inhibition of PGE2 will provide a novel approach for the treatment of leukemia. [BMB Reports 2015; 48(2): 109-114]  相似文献   

5.
Arachidonic acid is converted to prostaglandin E(2) (PGE(2)) by a sequential enzymatic reaction performed by two isoenzyme groups, cyclooxygenases (COX-1 and COX-2) and terminal prostaglandin E synthases (cPGES, mPGES-1, and mPGES-2). mPGES-1 is widely considered to be the final enzyme regulating COX-2-dependent PGE(2) synthesis. These generalizations have been based in most part on experiments utilizing gene expression analyses of cell lines and tumor tissue. To assess the relevance of these generalizations to a native mammalian tissue, we used isolated human and rodent pancreatic islets to examine interleukin (IL)-1β-induced PGE(2) production, because PGE(2) has been shown to mediate IL-1β inhibition of islet function. Rat islets constitutively expressed mRNAs of COX-1, COX-2, cPGES, and mPGES-1. As expected, IL-1β increased mRNA levels for COX-2 and mPGES-1, but not for COX-1 or cPGES. Basal protein levels of COX-1, cPGES, and mPGES-2 were readily detected in whole cell extracts but were not regulated by IL-1β. IL-1β increased protein levels of COX-2, but unexpectedly mPGES-1 protein levels were low and unaffected. In microsomal extracts, mPGES-1 protein was barely detectable in rat islets but clearly present in human islets; however, in neither case did IL-1β increase mPGES-1 protein levels. To further assess the importance of mPGES-1 to IL-1β regulation of an islet physiologic response, glucose-stimulated insulin secretion was examined in isolated islets of WT and mPGES-1-deficient mice. IL-1β inhibited glucose-stimulated insulin secretion equally in both WT and mPGES-1(-/-) islets, indicating that COX-2, not mPGES-1, mediates IL-1β-induced PGE(2) production and subsequent inhibition of insulin secretion.  相似文献   

6.
The present study examines the effect of chondroitin-4-sulfate (C4S) on the immediate (non-inflammatory conditions) and the delayed (inflammatory conditions) prostaglandin E2 (PGE2) release from rat calvarial osteoblasts. An immediate low release of PGE2 was induced by PAF, phorbol ester and arachidonic acid but not by IL1β, TNF-α and LPS whereas a delayed high release of PGE2 was induced by the inflammatory agents IL1β, TNF-α and LPS but not by PAF, phorbol ester and arachidonic acid. C4S had no effect on the immediate PGE2 release but inhibited the delayed release of PGE2. IL1β, TNF-α and LPS enhanced the expression of COX-2 and mPGES1 whereas phorbol ester enhanced COX-2 expression only. PAF and arachidonic acid had no effect on the expression of COX-2 and mPGES1. C4S inhibited the enhanced expression of COX-2 and mPGES1 but had no effect on the IL1β-induced decrease of I-κBα and nuclear translocation of NF-κB. These results indicate that the beneficial effects of C4S in bone inflammatory diseases might be due to a specific inhibition of the delayed high PGE2 release from osteoblasts.  相似文献   

7.

Background

Homeodomain-interacting protein kinase 2 (HIPK2) is a multifunctional protein that exploits its kinase activity to modulate key molecular pathways in cancer to restrain tumor growth and induce response to therapies. For instance, HIPK2 knockdown induces upregulation of oncogenic hypoxia-inducible factor-1 (HIF-1) activity leading to a constitutive hypoxic and angiogenic phenotype with increased tumor growth in vivo. HIPK2 inhibition, therefore, releases pathways leading to production of pro-inflammatory molecules such as vascular endothelial growth factor (VEGF) or prostaglandin E2 (PGE2). Tumor-produced inflammatory mediators other than promote tumour growth and vascular development may permit evasion of anti-tumour immune responses. Thus, dendritic cells (DCs) dysfunction induced by tumor-produced molecules, may allow tumor cells to escape immunosurveillance. Here we evaluated the molecular mechanism of PGE2 production after HIPK2 depletion and how to modulate it.

Methodology/Principal findings

We show that HIPK2 knockdown in colon cancer cells resulted in cyclooxygenase-2 (COX-2) upregulation and COX-2-derived PGE2 generation. At molecular level, COX-2 upregulation depended on HIF-1 activity. We previously reported that zinc treatment inhibits HIF-1 activity. Here, zinc supplementation to HIPK2 depleted cells inhibited HIF-1-induced COX-2 expression and PGE2/VEGF production. At translational level, while conditioned media of both siRNA control and HIPK2 depleted cells inhibited DCs maturation, conditioned media of only zinc-treated HIPK2 depleted cells efficiently restored DCs maturation, seen as the expression of co-stimulatory molecules CD80 and CD86, cytokine IL-10 release, and STAT3 phosphorylation.

Conclusion/Significance

These findings show that: 1) HIPK2 knockdown induced COX-2 upregulation, mostly depending on HIF-1 activity; 2) zinc treatment downregulated HIF-1-induced COX-2 and inhibited PGE2/VEGF production; and 3) zinc treatment of HIPK2 depleted cells restored DCs maturation.  相似文献   

8.
Understanding the mechanisms of sphingosine 1-phosphate (S1P)-induced cyclooxygenase (COX)-2 expression and prostaglandin E2 (PGE2) formation in renal mesangial cells may provide potential therapeutic targets to treat inflammatory glomerular diseases. Thus, we evaluated the S1P-dependent signaling mechanisms which are responsible for enhanced COX-2 expression and PGE2 formation in rat mesangial cells under basal conditions. Furthermore, we investigated whether these mechanisms are operative in the presence of angiotensin II (Ang II) and of the pro-inflammatory cytokine interleukin-1β (IL-1β).  相似文献   

9.
β1-Integrins mediate cell attachment to different extracellular matrix proteins, intracellular proteins, and intercellular adhesions. Recently, it has been reported that prostaglandin E2 (PGE2) has anti-inflammatory properties such as inhibition of the expression of adhesion molecules or production of chemokines. However, the effect of PGE2 on the expression of β1-integrin remains unknown. In this study, we investigated the effects of PGE2 on the expression of β1-integrin in the human monocytic cell line THP-1 and in CD14+ monocytes/macrophages in human peripheral blood. For this, we examined the role of four subtypes of PGE2 receptors and E-prostanoid (EP) receptors on PGE2-mediated inhibition. We found that PGE2 significantly inhibited the expression of β1-integrin, mainly through EP4 receptors in THP-1 cells and CD14+ monocytes/macrophages in human peripheral blood. We suggest that PGE2 has anti-inflammatory effects, leading to the inhibited expression of β1-integrin in human monocytes/macrophages, and that the EP4 receptor may play an important role in PGE2-mediated inhibition.  相似文献   

10.
IL-27 is a heterodimeric cytokine that regulates both innate and adaptive immunity. The immunosuppressive effect of IL-27 largely depends on induction of IL-10-producing Tr1 cells. To date, however, effects of IL-27 on regulation of immune responses via mediators other than cytokines remain poorly understood. To address this issue, we examined immunoregulatory effects of conditional medium of bone marrow-derived macrophages (BMDMs) from WSX-1 (IL-27Rα)-deficient mice and found enhanced IFN-γ and IL-17A secretion by CD4+ T cells as compared with that of control BMDMs. We then found that PGE2 production and COX-2 expression by BMDMs from WSX-1-deficient mice was increased compared to control macrophages in response to LPS. The enhanced production of IFN-γ and IL-17A was abolished by EP2 and EP4 antagonists, demonstrating PGE2 was responsible for enhanced cytokine production. Murine WSX-1-expressing Raw264.7 cells (mWSX-1-Raw264.7) showed phosphorylation of both STAT1 and STAT3 in response to IL-27 and produced less amounts of PGE2 and COX-2 compared to parental RAW264.7 cells. STAT1 knockdown in parental RAW264.7 cells and STAT1-deficiency in BMDMs showed higher COX-2 expression than their respective control cells. Collectively, our result indicated that IL-27/WSX-1 regulated PGE2 secretion via STAT1–COX-2 pathway in macrophages and affected helper T cell response in a PGE2-mediated fashion.  相似文献   

11.
12.
Prostaglandin E2 (PGE2) is induced in vivo by bacterial products including TLR agonists. To determine whether PGE2 is induced directly or via IL-1β, human monocytes and macrophages were cultured with LPS or with Pam3CSK4 in presence of caspase-1 inhibitor, ZVAD, or IL-1R antagonist, Kineret. TLR agonists induced PGE2 in macrophages exclusively via IL-1β-independent mechanisms. In contrast, ZVAD and Kineret reduced PGE2 production in LPS-treated (but not in Pam3CSK4-treated) monocytes, by 30–60%. Recombinant human IL-1β augmented COX-2 and mPGES-1 mRNA and PGE2 production in LPS-pretreated monocytes but not in un-primed or Pam3CSK4-primed monocytes. This difference was explained by the finding that LPS but not Pam3CSK4 induced phosphorylation of IRF3 in monocytes suggesting activation of the TRIF signaling pathway. Knocking down TRIF, TRAM, or IRF3 genes by siRNA inhibited IL-1β-induced COX-2 and mPGES-1 mRNA. Blocking of TLR4 endocytosis during LPS priming prevented the increase in PGE2 production by exogenous IL-1β. Our data showed that TLR2 agonists induce PGE2 in monocytes independently from IL-1β. In the case of TLR4, IL-1β augments PGE2 production in LPS-primed monocytes (but not in macrophages) through a mechanism that requires TLR4 internalization and activation of the TRIF/IRF3 pathway. These findings suggest a key role for blood monocytes in the rapid onset of fever in animals and humans exposed to bacterial products and some novel adjuvants.  相似文献   

13.
14.
15.
Elevated levels of tissue inhibitor of metalloproteases-1 (TIMP-1) have been demonstrated in inflamed synovial membranes, and it is believed that the inhibitor may play a critical role in the regulation of connective tissue degradation. The present study was undertaken to define the cellular mechanism of action of the inflammatory mediators, interleukin-1β (IL-1β) and prostaglandin E2 (PGE2), in the control of TIMP-1 synthesis and expression in human synovial fibroblasts. Recombinant human IL-1β induced a time- and dose-dependent saturable response in terms of TIMP-1 mRNA expression (effective concentration for 50% maximal response, EC50 = 31.5 ± 3.3 pg/ml) and protein synthesis (EC50 = 30 ± 3.3 pg/ml). The protein kinase C (PKC) inhibitors, H-7, staurosporine, and calphostin C, reversed the rhIL-1β induction of TIMP-1 mRNA. PGE2 also inhibited rhIL-1β-stimulated TIMP-1 mRNA expression and protein secretion in a dose-dependent fashion. The concentration of PGE2 necessary to block 50% of rhIL-1β-stimulated TIMP-1 secretion, IC50, was 1.93 ng/ml (4.89 nM). Forskolin, and other stable derivatives of cAMP, mimicked, to a large extent, the effects of PGE2. The phorbol ester, PMA, up-regulated considerably the mRNA expression of TIMP-1 but had no effect on protein production. Calphostin C substantially reduced PMA-activated TIMP-1 expression. Staurosporine, calphostin C, H-7, and substances that elevate cellular levels of cAMP, like PGE2, also reduced basal expression and synthesis of TIMP-1. Taken together, the data suggest that PKA and C may mediate opposing effects in terms of TIMP-1 expression and secretion in human synovial fibroblasts.  相似文献   

16.
Infection is a major cause of preterm labor. Amniotic fluid from women in preterm labor associated with intrauterine infection contains increased concentrations of cytokines. The mechanism underlying this association may be a cytokine-mediated stimulation of amnion cell prostaglandin production. The biosynthesis of prostaglandins from arachidonic acid is regulated by the enzyme cyclooxygenase which exists in two forms; the constitutive form (COX-1) and the other mitogen inducible (COX-2). The purpose of this study was to evaluate the effect of the cytokine interleukin-4 (IL-4) on cyclooxygenase activity and PGE2 production in amnion. Amnion tissue was taken at caesarean section from term women not in labor and immediately incubated for 2 hours in media containing concentrations of IL-4 ranging from 1 to 100 ng/ml. An increase in both COX-2 enzyme and prostaglandin E2 (PGE2) production was observed for all concentrations of IL-4 greater than 25 ng/ml (P < 0.05, n = 8). No change in COX-1 was observed. Our data suggest that the cytokine IL-4 may be involved in the pathogenesis of premature labor by inducing COX-2 in amnion tissue resulting in increased production of PGE2 and subsequent myometrial activity.  相似文献   

17.
18.
19.
Upregulation and activation of phospholipases A2 (PLA2) and cyclooxygenases (COX) leading to prostaglandin E2(PGE2) production have been implicated in a number of neurodegenerative diseases. In this study, we investigated PGE2 production in primary rat astrocytes in response to agents that activate PLA2 including pro-inflammatory cytokines (IL-1β, TNFα and IFNγ), the P2 nucleotide receptor agonist ATP, and oxidants (H2O2 and menadione). Exposure of astrocytes to cytokines resulted in a time-dependent increase in PGE2 production that was marked by increased expression of secretory sPLA2 and COX-2, but not COX-1 and cytosolic cPLA2. Although astrocytes responded to ATP or phorbol ester (PMA) with increased cPLA2 phosphorylation and arachidonic acid release, ATP or PMA only caused a small increase in levels of PGE2. However, when astrocytes were first treated with cytokines, further exposure to ATP or PMA, but not H2O2 or menadione, markedly increased PGE2 production. These results suggest that ATP release during neuronal excitation or injury can enhance the inflammatory effects of cytokines on PGE2 production and may contribute to chronic inflammation seen in Alzheimer's disease.  相似文献   

20.
Cyclooxygenase (COX) is the rate-limiting enzyme for the biosynthesis of prostaglandins in monocytes/macrophages. The COX-1 is constitutively expressed in most tissues and may be involved in cellular homeostasis, whereas the COX-2 is an inducible enzyme that may play an important role in inflammation and mitogenesis. When U937 monocytic cells were incubated with retinoic acid (RA) for 48 h, cell differentiation took place with concomitant increases in prostaglandin E2 (PGE2) production and COX activity. In this study, the mechanism of RA (all-trans- or 9-cis-RA)-induced enhancement of PGE2 biosynthesis in U937 cells was examined. Treatment of cells with all-trans- or 9-cis-RA up to 48 h caused an increase in PGE2 production in a time- and dose-dependent manner. Both RA isomers caused the enhancement of PGE2 production and the up-regulation of COX-1 expression at the protein and mRNA levels. The increase in COX-1 mRNA was found to precede the increase in COX-1 protein expression. Interestingly, the COX-2 protein and COX-2 mRNA were not detected in U937 cells, and their levels remained undetectable during the entire course of RA treatment. We conclude that treatment of U937 cells by RA for 48 h caused the initiation of cell differentiation, which was found to be concomitant with a significant increase in PGE2 production mediated via the up-regulation of COX-1 mRNA and protein expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号