首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rat neu oncogene product is a member of the epidermal growth factor (EGF) receptor subgroup of the superfamily of growth factor receptor tyrosine kinases. The oncogenic activation of the neu protein occurs by a point mutation within its transmembrane region which results in an increase in its tyrosine kinase activity. Using three different forms of neu expressed in insect cells via baculovirus infection, we have examined the biochemical differences between the normal and transforming forms of neu and investigated the role of the transmembrane domain in its tyrosine kinase activity. One form of neu which was expressed in insect cells consisted of the complete tyrosine kinase domain but lacked the extracellular and transmembrane regions (designated NTK). The other two forms consisted of the tyrosine kinase domain, the transmembrane domain, and 40 amino acids of the extracellular domain. One of these transmembrane forms of neu contained the normal valine residue at position 664 within the transmembrane region (MS-N), while the other contained the oncogenic glutamic acid residue at this position (MS-T). Direct comparisons of NTK, MS-N, and MS-T have shown that the NTK protein is capable of the highest extents of both autophosphorylation activity and the tyrosine phosphorylation of exogenous substrate, suggesting that the presence of the transmembrane region of neu suppresses the tyrosine kinase activity of this receptor. In addition, we have found that the oncogenic point mutation within the transmembrane region stimulates the tyrosine kinase activity of the neu protein by allowing it to more effectively utilize Mg2+. Overall, the results of these studies suggest that the valine to glutamic acid substitution at position 664 may at least partially relieve a negative constraint imparted by the membrane-spanning domain on the tyrosine kinase activity of neu and enables a more effective use of Mg2+ in the catalysis of tyrosine phosphorylation of exogenous substrates.  相似文献   

2.
The rat neu gene, which encodes a receptor-like protein homologous to the epidermal growth factor receptor, is frequently activated by a point mutation altering a valine residue to a glutamic acid residue in its predicted transmembrane domain. Additional point mutations have been constructed in a normal neu cDNA at and around amino acid position 664, the site of the naturally arising mutation. A mutation which causes a substitution of a glutamine residue for the normal valine at residue 664 leads to full oncogenic activation of the neu gene, but five other substitutions do not. Substituted glutamic acid residues at amino acid positions 663 or 665 do not activate the neu gene. Thus only a few specific residues at amino acid residue 664 can activate the oncogenic potential of the neu gene. Deletion of sequences of the transforming neu gene demonstrates that no more than 420 amino acids of the 1260 encoded by the gene are required for full transforming function. Mutagenesis of the transforming clone demonstrates a correlation between transforming activity and tyrosine kinase activity. These data indicate that the activating point mutation induces transformation through (or together with) the activities of the tyrosine kinase.  相似文献   

3.
In this work, we have used Xenopus oocyte maturation as a read-out for examining the ability of the neu tyrosine kinase (p185neu) to participate with the epidermal growth factor (EGF) receptor in a common signal transduction pathway. We find that unlike the case for the EGF receptor, which elicits EGF-dependent maturation of these oocytes as reflected by their germinal vesicle breakdown (GVBD), neither the normal neu tyrosine kinase (p185val664) nor the oncogenic form of neu (p185glu664) are able to effectively trigger this maturation event. However, expression of p185glu664 causes a specific and significant promotion of the progesterone-induced GVBD, reducing the half-time for this maturation even from approximately 9 h to approximately 5 h. Stimulation of the progesterone-induced GVBD did not occur following the expression of a kinase-deficient p185neu protein (in which a lysine residue at position 758 was changed to alanine). Essentially identical results were obtained when the mRNAs coding for fusion proteins comprised of the extracellular domain of the receptor for immunoglobulin E (IgE), and the membrane-spanning and tyrosine kinase domains of normal or oncogenic p185neu (designated IgER/p185val664 and IgER/p185glu664, respectively), were injected into oocytes. Antigen-induced crosslinking of IgER/p185val164 proteins expressed in oocytes caused a reduction in the half-time for the progesterone-stimulated GVBD from approximately 9 h to approximately 7 h. Thus, the aggregation of the membrane-spanning and/or tyrosine kinase domains of p185val664 partially mimics the effects of the oncogenic forms of p185neu. Overall, the results of these studies suggest that the activation of the p185neu tyrosine kinase by a point mutation within its membrane-spanning helix, or an aggregation event, can result in the facilitation of oocyte maturation events that are elicited by other factors (e.g. progesterone). However, the activated p185neu tyrosine kinases are not able to mimic the EGF-stimulated EGF receptor tyrosine kinase in triggering oocyte maturation, which suggests that the EGF receptor and the p185neu tyrosine kinase do not input into identical signal transduction pathways in these cells.  相似文献   

4.
Theneu oncogene is frequently found in certain types of human carcinomas and has been shown to be activated in animal models by nitrosourea-induced mutation. The activating mutation in theneu oncogene results in the substitution of a glutamic acid for a valine at position 664 in the transmembrane domain of the encoded protein product of 185 kda (designated p185), which, on the basis of homology studies, is presumed to be a receptor for an as yet unidentified growth factor. It has been proposed that activating amino acid substitutions in this region of p185 lead to a conformational change in the protein which causes signal transduction via an increase in tyrosine kinase activity in the absence of any external signal. Using conformational energy analysis, we have determined the preferred three-dimensional structures for the transmembrane decapeptide (residues 658–667) of the p185 protein with valine and glutamic acid at the critical position 664. The results indicate that the global minimum energy conformation of the decapeptide from the normal protein with Val at position 664 is an α-helix with a sharp bend (CD* conformation at residues 664 and 665) in this region, whereas the global minimum conformation for the decapeptide from the mutant transforming protein with Glu at position 664 assumes an all α-helical configuration. Furthermore, the second highest energy conformation for the decapeptide from the normal protein is identical to the global minimum energy conformation for the decapeptide from the transforming protein, providing a possible explanation why overexpression of the normal protein also has a transforming effect. These results suggest there may be a normal and a transforming conformation for theneu-encoded p185 proteins which may explain their differences in transforming activity.  相似文献   

5.
The receptor tyrosine kinase p185c-neu can be constitutively activated by the transmembrane domain mutation Val664→ Glu, found in the oncogenic mutant p185neu. This mutation is predicted to allow intermolecular hydrogen bonding and receptor dimerization. Understanding the activation of p185c-neu has assumed greater relevance with the recent observation that achondroplasia, the most common genetic form of human dwarfism, is caused by a similar transmembrane domain mutation that activates fibroblast growth factor receptor (FGFR) 3. We have isolated novel transforming derivatives of p185c-neu using a large pool of degenerate oligonucleotides encoding variants of the transmembrane domain. Several of the transforming isolates identified were unusual in that they lacked a Glu at residue 664, and others were unique in that they contained multiple Glu residues within the transmembrane domain. The Glu residues in the transforming isolates often exhibited a spacing of seven residues or occurred in positions likely to represent the helical interface. However, the distinction between the sequences of the transforming clones and the nontransforming clones did not suggest clear rules for predicting which specific sequences would result in receptor activation and transformation. To investigate these requirements further, entirely novel transmembrane sequences were constructed based on tandem repeats of simple heptad sequences. Activation was achieved by transmembrane sequences such as [VVVEVVA]n or [VVVEVVV]n, whereas activation was not achieved by a transmembrane domain consisting only of Val residues. In the context of these transmembrane domains, Glu or Gln were equally activating, while Lys, Ser, and Asp were not. Using transmembrane domains with two Glu residues, the spacing between these was systematically varied from two to eight residues, with only the heptad spacing resulting in receptor activation. These results are discussed in the context of activating mutations in the transmembrane domain of FGFR3 that are responsible for the human developmental syndromes achondroplasia and acanthosis nigricans with Crouzon Syndrome.  相似文献   

6.
Theneu oncogene is frequently found in certain types of human carcinomas and has been shown to be activated in animal models by nitrosourea-induced mutation. The activating mutation in theneu oncogene results in the substitution of a glutamic acid for a valine at position 664 in the transmembrane domain of the encoded protein product of 185 kda (designated p185), which, on the basis of homology studies, is presumed to be a receptor for an as yet unidentified growth factor. It has been proposed that activating amino acid substitutions in this region of p185 lead to a conformational change in the protein which causes signal transduction via an increase in tyrosine kinase activity in the absence of any external signal. Using conformational energy analysis, we have determined the preferred three-dimensional structures for the transmembrane decapeptide (residues 658–667) of the p185 protein with valine and glutamic acid at the critical position 664. The results indicate that the global minimum energy conformation of the decapeptide from the normal protein with Val at position 664 is an -helix with a sharp bend (CD* conformation at residues 664 and 665) in this region, whereas the global minimum conformation for the decapeptide from the mutant transforming protein with Glu at position 664 assumes an all -helical configuration. Furthermore, the second highest energy conformation for the decapeptide from the normal protein is identical to the global minimum energy conformation for the decapeptide from the transforming protein, providing a possible explanation why overexpression of the normal protein also has a transforming effect. These results suggest there may be a normal and a transforming conformation for theneu-encoded p185 proteins which may explain their differences in transforming activity.  相似文献   

7.
The specific point mutation Val-->Glu664 within the transmembrane domain of the neu/erbB-2 receptor is associated with increased receptor dimerization and increased receptor tyrosine kinase activity resulting in malignant transformation of cells. It is well established that Glu and residues in proximity are necessary for receptor dimerization but many studies suggest that other intramembrane constraints, not yet elucidated, are determinant for transformation. In this work, we investigated dimer models both to understand the structural role of the Glu mutation in the transmembrane domain association and to determine helix-helix contacts required for oncogenic transformation. Different types of helix-helix association based on data resulting from Cys mutational studies of the full wild receptor and spectroscopic data of transmembrane neu peptides have been explored by molecular dynamics simulations. The study leads to propose a model for the dimeric association of the transmembrane domains of the oncogenic neu receptor showing left-handed interactions of the two helices stabilized by symmetrical hydrogen bonding interactions involving the Glu side chain on one helix and the facing carbonyl of Ala661 on the second helix. Contacting residues observed in the symmetric interface explain the transforming activity or the non transforming activity of many neu mutants. Moreover the left-handed coiled coil structure is fully consistent with recent results proving the role of rotational linkage of the transmembrane domain with the kinase domain. Comparison between the predicted dimer model and those presumed from experiments strongly suggests helix flexibility in the extracellular juxtamembrane region.  相似文献   

8.
p185, the product of the neu/erbB2 proto-oncogene, is oncogenically activated by a point mutation that substitutes glutamic acid for valine in the transmembrane domain of the protein. We have found that the transforming form of p185 differs from its normal counterpart in inducing increased tyrosine phosphorylation of other proteins in vivo and in having a much shorter half-life. These results support the model that the transforming p185 resembles a ligand-activated receptor.  相似文献   

9.
The neu proto-oncogene encodes a receptor tyrosine kinase (p185) that is closely related to the epidermal growth factor receptor. It has been proposed that receptor tyrosine kinases are activated through oligomerization. Because this clustering model predicts that oligomerization of receptors is sufficient to activate them, we determined if p185 can be activated by introducing an extra cysteine proximal to the transmembrane domain. This should induce inter-receptor disulfide bonding and, according to the clustering model, activate the receptor. This amino acid substitution enhanced recovery of both normal and transforming neu proteins as dimers, with normal p185 recovered predominantly as monomers and transforming p185* as dimers. However, the cysteine substitution did not affect the transforming activity of the two proteins.  相似文献   

10.
The Drosophila epidermal growth factor receptor homolog (DER) displays sequence similarity to both the epidermal growth factor (EGF) receptor and the neu vertebrate proteins. We have examined the possibility of deregulating the tyrosine kinase activity of DER by introducing structural changes which mimic the oncogenic alterations in the vertebrate counterparts. Substitution of valine by glutamic acid in the transmembrane domain, in a position analogous to the oncogenic mutation in the rat neu gene, elevated the in vivo kinase activity of DER in Drosophila Schneider cells sevenfold. A chimera containing the oncogenic neu extracellular and transmembrane domains and the DER kinase region, also showed a threefold elevated activity relative to a similar chimera with normal neu sequences. Double truncation of DER in the extracellular and cytoplasmic domains, mimicking the deletions in the v-erbB oncogene, did not however result in stimulation of in vivo kinase activity. The chimeric constructs were also expressed in monkey COS cells, and similar results were obtained. The ability to enhance the DER kinase activity by a specific structural modification of the transmembrane domain demonstrates the universality of this activation mechanism and strengthens the notion that this domain is intimately involved in signal transduction. These results also support the inclusion of DER within the tyrosine-kinase receptor family.  相似文献   

11.
The neu protooncogene encodes a receptor tyrosine kinase homologous to the receptor for the epidermal growth factor. The oncogenic potential of neu is released upon chemical carcinogenesis, which replaces a glutamic acid for a valine residue, within the single transmembrane domain. This results in constitutive receptor dimerization and activation of the intrinsic catalytic function. To study the implications of the oncogenic mutation and the consequent receptor dimerization on the interaction with the yet incompletely characterized ligand of p185neu, we constructed chimeric proteins between the ligand binding domain of the epidermal growth factor receptor and the transmembrane and cytoplasmic domains of the normal or the transforming Neu proteins. The chimeric receptors displayed cellular and biochemical differences characteristic of the normal and the transforming Neu proteins and therefore may reliably represent the ligand binding functions of the two receptor forms. Analyses of ligand binding revealed qualitative and quantitative differences that were a result of the single mutation; whereas the normal chimera (valine version) displayed two populations of binding sites with approximately 90% of the receptors in the low affinity state, the transforming receptor (glutamic acid version) showed a single population of binding sites with relatively high affinity. Kinetics measurements indicated that the difference in affinities was because of slower rates of both ligand association and ligand dissociation from the constitutively dimerized mutant receptor. It therefore appears that the oncogenic mutation, by permanently dimerizing the receptor, establishes a high affinity ligand binding state which is functionally equivalent to the ligand-occupied normal receptor. Our conclusion is further supported by the rates of endocytosis of the wild-type and the mutant receptor. Hence, these results provide the first experimental evidence from living cells which supports a model that attributes the heterogeneity of ligand binding sites to the state of oligomerization of receptor tyrosine kinases.  相似文献   

12.
The human breast carcinoma cell line SK-BR-3, expresses the neu oncogene product, p185, which is a receptor tyrosine kinase. Using a double monoclonal antibody capture enzyme-linked immunosorbent assay for p185, activity was detected in conditioned media from cultures of SK-BR-3 cells. Two monoclonal antibodies specific for the extracellular domain of p185/neu immunoprecipitated a protein with a molecular mass of approximately 105 kDa. p105 was further shown to compete with p185 for binding to monoclonal antibodies and pulse-chase experiments indicate that it was generated by post-translational processing. Peptide maps showed that p105 and p185 are related polypeptides. Since p105 is close to the predicted size for the extracellular domain of p185/neu, we propose that SK-BR-3 cells specifically process and release this portion of the receptor into the medium. The release of the extracellular domain may have implications in oncogenesis and its detection could prove useful as a cancer diagnostic.  相似文献   

13.
The neu protooncogene encodes a tyrosine kinase receptor that is involved in the regulation of normal growth and malignant transformation. To circumvent the use of the incompletely characterized ligand of Neu, we constructed a chimeric protein composed of the ligand-binding domain of the epidermal growth factor receptor and the transmembrane and cytoplasmic portions of Neu. By expressing this Neu-epidermal growth factor receptor chimera (termed NEC), we found that following stimulation by the heterologous ligand, the tyrosine kinase of Neu became associated with a phosphatidylinositol (PI) kinase activity. The association was dependent on the concentration of the ligand and was almost maximal within 30 s after ligand binding. The lipid kinase was identified as a type I PI 3'-kinase on the basis of its inhibition by Nonidet P-40 and high pressure liquid chromatography of the phosphorylated product. To confirm the identification of PI 3'-kinase as an effector of Neu, we raised antibodies to the alpha-isoform of the regulatory subunit of PI 3'-kinase (p85). Using these antibodies, it was possible to directly demonstrate ligand-dependent formation of a tyrosine-phosphorylated complex of NEC and PI 3'-kinase. Apparently, both PI 3'-kinase and phospholipase C gamma, another substrate of the Neu kinase, simultaneously associated with the same activated NEC molecule. Nevertheless, immunofluorescence localization of PI 3'-kinase revealed no significant cellular redistribution of the enzyme after activation of the Neu kinase. Interestingly, PI 3'-kinase was localized primarily to the cell nucleus and to confined regions of the plasma membrane. Analysis of mutants of the Neu protein indicated that the oncogenic point-mutated Neu (Glu664) was permanently coupled to PI 3'-kinase; but two nontransforming versions of the oncoprotein, a kinase-defective protein and a carboxyl-terminally deleted Neu, were devoid of the constitutive association with PI 3'-kinase. Hence, we concluded that phosphatidylinositol 3'-kinase is a physiological substrate of the Neu receptor, but the regulation of this coupling is released upon oncogenic activation.  相似文献   

14.
p185neu is a receptor-like protein encoded by the neu/erbB-2 proto-oncogene. This protein is closely related to the epidermal growth factor (EGF) receptor, but does not bind EGF. We report here that incubation of Rat-1 cells with EGF stimulates tyrosine phosphorylation of p185. This effect is specific to EGF since neither platelet derived growth factor (PDGF) nor insulin, which also bind to receptors with ligand-stimulated tyrosine kinase activity, induced tyrosine phosphorylation of p185. The EGF-stimulated tyrosine phosphorylation of p185 and of the EGF receptor occurred with similar kinetics and EGF dose-responses, and both phosphorylations were prevented by down-regulation of the EGF receptor with EGF. Since p185 does not bind EGF, these results suggested that p185 is a substrate for the EGF receptor kinase. Incubation of cells with EGF before lysis stimulated the tyrosine phosphorylation of p185 in immune complexes. This suggested that EGF, acting through the EGF receptor, can regulate the intrinsic kinase activity of p185.  相似文献   

15.
C I Bargmann  M C Hung  R A Weinberg 《Cell》1986,45(5):649-657
The neu oncogene, which is frequently activated in neuro- and glioblastomas of BDIX rats, was originally identified in the NIH 3T3 focus-forming assay. cDNA clones of the normal and transforming alleles of neu have been isolated. When these clones are inserted into the expression vector pSV2, they direct the synthesis of p185, the neu gene product. The transforming cDNA clone yields foci when transfected onto a NIH 3T3 monolayer, but the normal cDNA does not. The construction of in vitro recombinants between the normal and transforming cDNAs has allowed the determination of the mutation responsible for the activation of the neu proto-oncogene. A single point mutation changes a valine in the transmembrane domain of the predicted protein product insert to a glutamic acid. The DNAs from four independent cell lines containing activated neu oncogenes contain the identical mutation at this position.  相似文献   

16.
The neu oncogene was originally identified in cell lines derived from rat neuroectodermal tumors. neu is related to but distinct from the c-erbB gene, which encodes the epidermal growth factor (EGF) receptor. neu encodes a protein, designated p185, that is serologically related to the EGF receptor. Identification of the normal homolog of p185 encoded by the neu proto-oncogene enabled us to compare the product of the neu proto-oncogene with the mutated version specified by the neu oncogene and with the EGF receptor. The normal form of p185 was structurally similar to its transforming counterpart, indicating that activation of the neu oncogene did not cause major structural alterations in the gene product. Both normal and transforming forms of p185 were associated with tyrosine kinase activity, supporting the idea that normal p185 functions as a growth factor receptor. p185 differed both structurally and functionally from the EGF receptor. p185 and the EGF receptor had distinct electrophoretic mobilities when synthesized under normal culture conditions or in the presence of tunicamycin. EGF did not stimulate increased turnover of p185 and did not bind quantitatively to p185. A number of other growth factors failed to stimulate degradation of p185 or tyrosine phosphorylation of p185 and are therefore unlikely to be ligands for p185.  相似文献   

17.
The neu proto-oncogene may be converted into a dominantly transforming oncogene by a single point mutation. Substitution of a valine residue at position 664 in the transmembrane region with glutamic acid activates the tyrosine kinase of the molecule and is associated with increased receptor dimerization. Previously we have proposed a model in which the glutamic acid side chain stabilizes receptor dimerization by hydrogen bonding. Other models have been proposed in which the mutation leads to a conformational change in the transmembrane region mimicking that assumed to occur following binding of a natural ligand. Synthetic peptides representing part of the transmembrane region were prepared. Some residues were replaced with serine in order to improve peptide solubility to allow purification and analysis. Both the peptides containing valine and glutamic acid dissolved in water and in an artificial lipid monolayer. The structures of the peptides were determined by NMR spectroscopy to be alpha-helical. No significant difference in conformation was observed between the two peptides. This result does not support the model proposing a conformational change. The receptor structures determined experimentally do allow alternative models involving receptor transmembrane region packing.  相似文献   

18.
The ligand-binding domain of the epidermal growth factor (EGF) receptor is separated from the cytoplasmic protein tyrosine kinase domain by a predicted single transmembrane segment. Antipeptide antibodies prepared against the outer portion of the predicted transmembrane segment confirmed this area was exposed only when cells were treated with permeabilizing agents. To investigate structural requirements for signal transduction by the transmembrane domain, three types of mutant EGF receptor were prepared. The first type was designed to shorten the transmembrane domain, the second to place proline substitutions within this domain, and the third to make amino acid substitutions analogous to those present in the transforming c-erbB2/neu oncoprotein. Mutant human receptors were expressed in null recipient mouse B82L and Chinese hamster ovary cells. All receptors bound EGF and exhibited EGF-stimulated protein tyrosine kinase activity in vivo as assayed using a 125I-labeled monoclonal anti-phosphotyrosine antibody. EGF stimulated growth of cells expressing each mutant receptor with similar dose-response characteristics. In contrast to other growth factor receptors, the transmembrane domain of the EGF receptor is tolerant to a variety of changes which neither mimic EGF action by constitutive activation nor interfere with ligand-induced signal transduction.  相似文献   

19.
Receptor tyrosine kinases bind ligands such as cytokines, hormones, and growth factors and regulate key cellular processes, including cell division. They are also implicated in the development of many types of cancer. One such example is the Neu receptor tyrosine kinase found in rats (homologous to the human ErbB2 protein), which can undergo a valine to glutamic acid (V(664)E) mutation at the center of its α-helical transmembrane domain. This substitution results in receptor activation and oncogenesis. The molecular basis of this dramatic change in behavior upon introduction of the V(664)E mutation has been difficult to pin down, with conflicting results reported in the literature. Here we report the first quantitative, thermodynamic analysis of dimerization and biophysical characterization of the rat Neu transmembrane domain and several mutants in a range of chemical environments. These data have allowed us to identify the effects of the V(664)E mutation in the isolated TM domain with respect to protein-protein and protein-lipid interactions, membrane insertion, and secondary structure. We also report the results from a 100 ns atomistic molecular dynamics simulation of the Neu transmembrane domain in a model membrane bilayer (dipalmitoylphosphatidylcholine). The results from simulation and experiment are in close agreement and suggest that, in the model systems investigated, the V(664)E mutation leads to a weakening of the TM dimer and a change in sequence-dependent interactions. These results are contrary to recent results obtained in mammalian membranes, and the implications of this are discussed.  相似文献   

20.
Smith SO  Smith C  Shekar S  Peersen O  Ziliox M  Aimoto S 《Biochemistry》2002,41(30):9321-9332
The Neu receptor tyrosine kinase is constitutively activated by a single amino acid change in the transmembrane domain of the receptor. The mutation of Val664 to glutamate or glutamine induces receptor dimerization and autophosphorylation of the receptor's intracellular kinase domain. The ability of this single mutation to activate the receptor is sequence-dependent, suggesting that specific helix-helix interactions stabilize the transmembrane dimer. We have determined the local secondary structure and interhelical contacts in the region of position 664 in peptide models of the activated receptor using solid-state rotational resonance and rotational echo double-resonance (REDOR) NMR methods. Intrahelical (13)C rotational resonance distance measurements were made between 1-(13)C-Thr662 and 2-(13)C-Gly665 on peptides corresponding to the wild-type Neu and activated Neu transmembrane sequences containing valine and glutamate at position 664, respectively. We observed similar internuclear distances (4.5 +/- 0.2 A) in both Neu and Neu*, indicating that the region near residue 664 is helical and is not influenced by mutation. Interhelical (15)N...(13)C REDOR measurements between Gln664 side chains on opposing helices were not consistent with hydrogen bonding between the side chain functional groups. However, interhelical rotational resonance measurements between 1-(13)C-Glu664 and 2-(13)C-Gly665 and between 1-(13)C-Gly665 and 2-(13)C-Gly665 demonstrated close contacts (4.3-4.5 A) consistent with the packing of Gly665 in the Neu* dimer interface. These measurements provide structural constraints for modeling the transmembrane dimer and define the rotational orientation of the transmembrane helices in the activated receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号